Please use this identifier to cite or link to this item:
Title: Influence of surface modified poly(L-lactic acid) films on the differentiation of human monocytes into macrophages
Author: Correia, Clara R.
Gaifem, Joana
Oliveira, Mariana B.
Silvestre, Ricardo
Mano, João F.
Keywords: 2 D surfaces
Issue Date: Mar-2017
Publisher: Royal Society of Chemistry
Abstract: Macrophages play a crucial role in the biological performance of biomaterials, as key factors in defining the optimal inflammation-healing balance towards tissue regeneration and implant integration. Here, we investigate how different surface modifications performed on poly(L-lactic acid) (PLLA) films would influence the differentiation of human monocytes to macrophages. We tested PLLA films without modification, surface-modified by plasma treatment (pPLLA) or by combining plasma treatment with different coating materials, namely poly(L-lysine) and a series of proteins from the extracellular matrix: collagen I, fibronectin, vitronectin, laminin and albumin. While all the tested films are non-cytotoxic, differences in cell adhesion and morphology are observed. Monocyte-derived macrophages (MDM) present a more rounded shape in non-modified films, while a more elongated phenotype is observed containing filopodia-like and podosome-like structures in all modified films. No major differences are found for the expression of HLA-DR+/CD80+ and CD206+/CD163+ surface markers, as well as for the ability of MDM to phagocytize. Interestingly, MDM differentiated on pPLLA present the highest expression of MMP9. Upon differentiation, MDM in all surface modified films present lower amounts of IL-6 and IL-10 compared to non-modified films. After stimulating MDM with the potent pro-inflammatory agent LPS, pPLLA and poly(L-lysine) and fibronectin-modified films reveal a significant reduction on IL-6 secretion, while the opposite effect is observed with IL-10. Of note, in comparison to non-modified films, all surface modified films induce a significant reduction of the IL-6/IL-10 ratio, a valuable prognosticator of pro- versus anti-inflammatory balance. These findings give important insights about MDM-biomaterial interactions, while strengthening the need of designing immune-informed biomaterials.
Peer review: yes
DOI: 10.1039/C6BM00920D
ISSN: 2047-4830
Publisher Version:!divAbstract
Appears in Collections:CICECO - Artigos

Files in This Item:
File Description SizeFormat 
Article.docx4.98 MBMicrosoft Word XMLView/Open
Figure1.tif18.18 MBTIFFView/Open
Figure2(new).tif4.22 MBTIFFView/Open
FigureSI1.tif521.06 kBTIFFView/Open
FigureSI2(new).tif300.33 kBTIFFView/Open
FigureSI3.tif9.72 MBTIFFView/Open
Graphical abstract.tif884.91 kBTIFFView/Open
Figure and table legends.docx15.81 kBMicrosoft Word XMLView/Open
Figure and table legends.docx15.81 kBMicrosoft Word XMLView/Open
table MFI.docx38.29 kBMicrosoft Word XMLView/Open

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.