Please use this identifier to cite or link to this item:
Title: Biomedical word sense disambiguation with word embeddings
Author: Antunes, Rui
Matos, Sérgio
Keywords: Biomedical word sense disambiguation
Word embeddings
Issue Date: 21-Jun-2017
Publisher: Springer
Abstract: There is a growing need for automatic extraction of information and knowledge from the increasing amount of biomedical and clinical data produced, namely in textual form. Natural language processing comes in this direction, helping in tasks such as information extraction and information retrieval. Word sense disambiguation is an important part of this process, being responsible for assigning the proper concept to an ambiguous term. In this paper, we present results from machine learning and knowledge-based algorithms applied to biomedical word sense disambiguation. For the supervised machine learning algorithms we used word embeddings, calculated from the full MEDLINE literature database, as global features and compare the results to the use of local unigram and bigram features. For the knowledge-based method we represented the textual definitions of biomedical concepts from the UMLS database as word embedding vectors, and combined this with concept associations derived from the MeSH term co-occurrences. Both the machine learning and the knowledge-based results indicate that word embeddings are informative and improve the biomedical word disambiguation accuracy. Applied to the reference MSH WSD data set, our knowledge-based approach achieves 85.1% disambiguation accuracy, which is higher than some previously proposed approaches that do not use machine-learning strategies.
Peer review: yes
DOI: 10.1007/978-3-319-60816-7_33
ISBN: 978-3-319-60815-0
Publisher Version:
Appears in Collections:IEETA - Capítulo de livro

Files in This Item:
File Description SizeFormat 
paper.pdf202.7 kBAdobe PDFView/Open

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.