Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/23675
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Almeida, Ricardo | pt |
dc.contributor.author | Malinowska, A.B. | pt |
dc.contributor.author | Odzijewicz, T. | pt |
dc.date.accessioned | 2018-06-27T11:09:07Z | - |
dc.date.issued | 2019 | - |
dc.identifier.isbn | 978-331978457-1 | pt |
dc.identifier.uri | http://hdl.handle.net/10773/23675 | - |
dc.description.abstract | In this paper, the fractional order Hegselmann–Krause type model with leadership is studied. We seek an optimal control strategy for the system to reach a consensus in such a way that the control mechanism is included in the leader dynamics. Necessary optimality conditions are obtained by the use of a fractional counterpart of Pontryagin Maximum Principle. The effectiveness of the proposed control strategy is illustrated by numerical examples. | pt |
dc.language.iso | eng | pt |
dc.publisher | Springer | pt |
dc.relation | info:eu-repo/grantAgreement/FCT/5876/147206/PT | pt |
dc.relation | DEC-2014/15/B/ST7/05270 | pt |
dc.rights | restrictedAccess | por |
dc.subject | Hegselmann–Krause model | pt |
dc.subject | Consensus | pt |
dc.subject | Fractional derivatives | pt |
dc.subject | Optimal control | pt |
dc.title | Non-invasive control of the fractional Hegselmann-Krause type model | pt |
dc.type | bookPart | pt |
degois.publication.firstPage | 14 | pt |
degois.publication.lastPage | 27 | pt |
degois.publication.location | Cham | pt |
degois.publication.title | Non-Integer Order Calculus and its Applications. Lecture Notes in Electrical Engineering | pt |
dc.date.embargo | 10000-01-01 | - |
dc.identifier.doi | 10.1007/978-3-319-78458-8_2 | pt |
Appears in Collections: | CIDMA - Capítulo de livro SCG - Capítulo de livro |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
[2019] Non-invasive Control of the Fractional Hegselmann-Krause Type Model.pdf | Documento principal | 10.16 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.