Please use this identifier to cite or link to this item:
Title: Biomechanical evaluation of pyrocarbon proximal interphalangeal joint arthroplasty: An in-vitro analysis
Author: Completo, António
Nascimento, Abel
Girão, André
Keywords: Experimental strains
Finite element model
PIP joint
Issue Date: 2018
Publisher: Elsevier
Abstract: Background Pyrocarbon proximal interphalangeal (PIP) joint arthroplasty provided patients with excellent pain relief and joint motion, however, overall implant complications have been very variable, with some good outcomes at short-medium-term follow-up and some bad outcomes at longer-term follow-up. Implant loosening with migration, dislocation and implant fracture were the main reported clinical complications. The aim of the present work was to test the hypothesis that the magnitude PIP joint cyclic loads in daily hand functions generates stress-strain behaviour which may be associated with a risk of pyrocarbon component loosening in the long-term. Methods This study was performed using synthetic proximal and middle phalanges to experimentally predict the cortex strain behaviour and implant stability considering different load conditions for both intact and implanted states. Finite element models were developed to assess the structural behaviour of cancellous-bone and pyrocarbon components, these models were validated against experimentally measured cortex strains. Findings Cortex strains showed a significant increase at dorsal side and reduction at palmar side between intact and implanted states. Cancellous-bone adjacent to the condylar implant base components suffers a two to threefold strain increase, comparing with the intact condition. Interpretation The use of pyrocarbon implant changes the biomechanical behaviour of the joint phalanges and is associated with a potential risk of support cancellous-bone suffer fatigue failure in mid to long term due to the strain increase for cyclic loads in the range of daily hand activities, this risk is more prominent than the risk of bone resorption due to strain-shielding effect
Peer review: yes
DOI: 10.1016/j.clinbiomech.2018.01.005
ISSN: 0268-0033
Appears in Collections:DEM - Artigos

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.