Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/22456
Title: Nano-ionics: proton conduction enhancement of electrolytes by heterogeneous doping
Other Titles: Nano-iónicos: optimização da condução protónica de electrólitos por dopagem heterogénea
Author: Salvador, Maria Adelaide Cotovio
Advisor: Figueiredo, Filipe Miguel Henriques Lebre Ramos
Ferreira, Paula Celeste da Silva
Keywords: Ciência dos materiais
Condutores protónicos
Materiais mesoporosos
Semicondutores de óxidos metálicos
Electrólitos - Dopagem
Materiais nanocompósitos
Defense Date: 8-Mar-2017
Publisher: Universidade de Aveiro
Abstract: Condutores protónicos são o cerne funcional de muitos equipamentos de conversão de energia, sensores e controle de luz. Portanto, é muito importante compreender fenómenos interfaciais. O objectivo desta Tese de Doutoramento é o estudo da condutividade protónica de compósitos nano-iónicos obtidos pela dopagem heterogénea de electrólitos fracos com nanopartículas de óxido e materiais mesoporosos, que são essencialmente dieléctricos, através da formação de interfaces condutoras com elevada concentração de protões. Esta investigação baseia-se na dopagem heterogénea de electrólitos fracos tais como imidazol (Iz), benzimidazol (Bz), 1H-1,2,4-triazol (Tz) e pirazol (Pz) com nanopartículas de óxidos metálicos e os correspondentes óxidos mesoporosos, CeO2, TiO2, ZrO2 e BaZrO3. O princípio subjacente é o da criação de zonas de carga espacial com elevada concentração de protões na interface entre o electrólito e o óxido, configurando assim novos tipos de materiais interfaciais do tipo nano-iónico. Numa primeira fase, o trabalho é dedicado à síntese de CeO2, TiO2, ZrO2 e BaZrO3 mesoporosos por nano replicação utilizando SBA-15 ou CMK-3 como moldes. O material molde foi selecionado de forma a minimizar a interacção química entre o molde e os percursores, maximizando assim a pureza da fase de óxido mesoporoso obtido. O óxido de cério foi obtido usando SBA-15, o óxido de zircónio e o óxido de titânio foram preparadas usando ambos os moldes SBA-15 e CMK-3, e o zirconato de bário foi sintetizado unicamente com CMK-3. Numa segunda etapa, medidas de potencial zeta foram usadas para avaliação da carga superficial dos óxidos em contacto com os vários electrólitos, em suspensões aquosas. O potencial zeta diminui com o aumento da fracção do electrólito, o que pode ser explicado assumindo a adsorção selectiva de aniões na superfície dos óxidos. Este efeito é mais evidente com a adição de Iz e Bz do que com a adição de Tz e Pz, em concordância com a menor constante de dissociação apresentada pelos primeiros electrólitos fracos. O enriquecimento dos aniões à superfície tem de ser compensado pelo estabelecimento de regiões de carga ricas em catiões adjacentes à superfície das partículas, o que leva ao desejado efeito mesoscópico do aumento da condutividade. Este efeito foi verificado pelo estudo detalhado de espectroscopia de impedância, o qual mostra que a condutividade protónica, em condições anidras, para os compósitos óxido/electrólito aumenta com o aumento da fracção volúmica das partículas de óxido e com a mesoporosidade. O aumento da condutividade observado pode alcançar cerca de 3 ordens de magnitude em relação a CeO2 e ao electrólito Bz puros. Embora os resultados do aumento da condutividade sejam impressionantes são ainda insuficientes para aplicação tecnológica. Evidências para a contribuição interfacial encontram-se nos espectros de impedância com o aparecimento de semicírculos adicionais, que podem ser correlacionados à área interfacial óxido/electrólito através da fracção volúmica do óxido e da mesoporosidade.
Proton conductors are the functional core of many devices for energy conversion, sensing and light control. Thus, it is very important to understand interfacial phenomena. The main objective of this PhD Thesis is to study the protonic conductivity of nano-ionic composites obtained by heterogeneous doping of weak electrolytes with oxide nanoparticles and mesoporous materials, which are essentially dielectric, via the formation of conducting interfaces with enhanced proton concentration. This investigation is based on the heterogeneous doping of weak proton conducting electrolytes such as imidazole (Iz), benzimidazole (Bz), 1H-1,2,4-triazole (Tz) and pyrazole (Pz) with metal oxide nanoparticles and matching mesoporous counterparts of CeO2, TiO2, ZrO2 and BaZrO3. The underlying principle is the formation of proton-enriched space-charge layers at the electrolyte/particle interface, configuring in this way new types of interfacial materials of nano-ionic type. On a first stage, the work is devoted to the synthesis of mesoporous CeO2, TiO2, ZrO2 and BaZrO3 by nanocasting using suitable SBA-15 silica or CMK-3 carbon hard templates in order to minimize the chemical interaction between the template and the reactant precursors, thus maximizing the phase purity of the obtained mesoporous oxide. Ceria was obtained with SBA-15, zirconia and titania with both SBA-15 and CMK-3, and barium zirconate only with CMK-3. On a second stage, zeta potential measurements were used to assess the oxide surface charge in contact with the various electrolytes, in aqueous suspension. The zeta potential decreases with increasing fraction of electrolyte, which can be explained assuming the selective anion adsorption on the surface of the oxides. This effect is stronger upon addition of Iz and Bz than of Tz and Pz, in agreement with the smaller self-dissociation constants of the former weak electrolytes. The enriched anion surface must be compensated by the establishment of adjacent cation-rich space-charge regions, which produce the desired mesoscopic conductivity enhancement. This effect was verified by detailed impedance spectroscopy studies showing that the proton conductivity in anhydrous conditions of the oxide/electrolyte composites increases with increasing volume fraction of the oxide particle and with the mesoporosity. The observed conductivity enhancement may reach ca. 3 orders of magnitude with respect to pure CeO2 and Bz. While impressive, the attained conductivities are still insufficient for technological application. Evidence for interfacial contribution is found in impedance spectra by additional semicircles, which can be correlated to oxide/electrolyte interfacial area through the oxide volume fraction and mesoporosity.
Description: Doutoramento em Ciência e Engenharia de Materiais
URI: http://hdl.handle.net/10773/22456
Appears in Collections:UA - Teses de doutoramento
DEMaC - Teses de doutoramento

Files in This Item:
File Description SizeFormat 
Tese doutoramento_M Adelaide Salvador.pdf9.77 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.