Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/21071
Title: Fundamental solution of the time-fractional telegraph Dirac operator
Author: Ferreira, Milton dos Santos
Rodrigues, Maria Manuela Fernandes
Vieira, Nelson Felipe Loureiro
Keywords: Time-fractional telegraph and telegraph Dirac operators
Fundamental solution
Caputo fractional derivative
Multivariate Mittag-Leffler functions
H-function of two variables
Issue Date: Dec-2017
Publisher: Wiley
Abstract: In this work we obtain the fundamental solution (FS) of the multidimensional time-fractional telegraph Dirac operator where the two time-fractional derivatives of orders $\alpha \in ]0,1]$ and $\beta \in ]1,2]$ are in the Caputo sense. Explicit integral and series representation of the FS are obtained for any dimension. We present and discuss some plots of the FS for some particular values of the dimension and of the fractional parameters $\alpha$ and $\beta$. Finally, using the FS we study some Poisson and Cauchy problems.
Peer review: yes
URI: http://hdl.handle.net/10773/21071
DOI: 10.1002/mma.4511
ISSN: 1099-1476
Appears in Collections:CIDMA - Artigos
CHAG - Artigos

Files in This Item:
File Description SizeFormat 
artigo41_Dirac.pdfDocumento Principal565.95 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.