Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/21024
Title: Hydrogen-Bonding and the Dissolution Mechanism of Uracil in an Acetate Ionic Liquid: New Insights from NMR Spectroscopy and Quantum Chemical Calculations
Author: Araujo, Joao M. M.
Pereiro, Ana B.
Lopes, Jose N. Canongia
Rebelo, Luis P. N.
Marrucho, Isabel M.
Keywords: N-BODY CLUSTERS
CARBOXYLIC-ACIDS
BONDED COMPLEXES
MASS-SPECTROMETRY
INORGANIC SALTS
PHASE-BEHAVIOR
CARBON-DIOXIDE
CELLULOSE
WATER
DENSITY
Issue Date: 2013
Publisher: AMER CHEMICAL SOC
Abstract: The dissolution of uracil-a pyrimidine nucleic acid base-in the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C(2)mim][CH3COO]) has been investigated by methods of H-1 and C-13 NMR spectroscopy, H-1-H-1 NOESY NMR spectroscopy, and quantum chemical calculations. The uracil-[C(2)mim][CH3COO] interactions that define the dissolution mechanism comprise the hydrogen bonds between the oxygen atoms of the acetate anion and the hydrogen atoms of the N1-H and N3-H groups of uracil and also the hydrogen bonds between the most acidic aromatic hydrogen atom (H2) of the imidazolium cation and the oxygen atoms of the carbonyl groups of uracil. The bifunctional solvation nature of the ionic liquid can be inferred from the presence of interactions between both ions of the ionic liquid and the uracil molecule. The location of such interaction sites was revealed using NMR data (H-1 and C-13 chemical shifts both in the IL and in the uracil molecule), complemented by DFT calculations. NOESY experiments provided additional evidence concerning the cation uracil interactions.
Peer review: yes
URI: http://hdl.handle.net/10773/21024
DOI: 10.1021/jp400749j
ISSN: 1520-6106
Publisher Version: 10.1021/jp400749j
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.