Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/21013
Title: Modeling of the binodal curve of ionic liquid/salt aqueous systems
Author: Alvarez-Guerra, Enrique
Ventura, Sonia P. M.
Alvarez-Guerra, Manuel
Coutinho, Joao A. P.
Irabien, Angel
Keywords: 3-PHASE PARTITIONING ILTPP
BIPHASIC SYSTEMS
2-PHASE SYSTEMS
PHASE-DIAGRAMS
CONTROLLED PH
K EXPERIMENT
EXTRACTION
RECOVERY
TETRAFLUOROBORATE
EQUILIBRIA
Issue Date: 2016
Publisher: ELSEVIER SCIENCE BV
Abstract: Ionic Liquid-based Aqueous Two Phase Systems (ILATPS) are an innovative technique to separate biomolecules that combines the advantages of liquid liquid extraction and hydrophilic ionic liquids. Most ILATPS are based on ionic liquids and conventional inorganic salts, and the phase envelope, described by the binodal curve, is usually modeled by empirical equations that are used to determine the phase compositions and assess the ionic liquid recyclability. However, these empirical equations may provide a poor extrapolation ability or low accuracy at the extreme regions of the binodal curve or suffer from problems of convergence. Therefore, the aim of this work is the analysis of the binodal curve equations, comparing the models reported in the literature to describe ILATPS and proposing alternative equations to improve accuracy or to reduce the mathematical complexity. For this purpose, a database compiling binodal experimental data of 100 ILATPS has been built, so that the analysis could make it possible to obtain representative conclusions for all these systems. Several models were developed, and different statistical criteria were used to assess the advantages and disadvantages of each one of these models for the binodal curve. The results show that, when accuracy is critical, a proposed model with just an additional parameter reduced more than 25% the residual mean squared error (RMSE) with respect to the commonly used equation, without losing the statistical significance of the parameters. For complex problems where an explicit equation in both the concentration of ionic liquid and of salt is needed, the use of an explicit model developed with 3 adjusted parameters that kept high accuracy (R-2 > 0.996 and RMSE < 0.66) is proposed. Finally, the analysis also revealed that a fitting method based on the minimization of relative errors is recommended to increase the accuracy of the binodal curve at high salt concentrations, which is the crucial region for assessing the recyclability of the ionic liquid. (C) 2016 Elsevier B.V. All rights reserved.
Peer review: yes
URI: http://hdl.handle.net/10773/21013
DOI: 10.1016/j.fluid.2016.01.004
ISSN: 0378-3812
Publisher Version: 10.1016/j.fluid.2016.01.004
Appears in Collections:CICECO - Artigos

Files in This Item:
File Description SizeFormat 
Modeling of the binodal curve of ionic liquidsalt aqueous systems_10.1016j.fluid.2016.01.004.pdf659.97 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.