Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/20903
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMata, D.pt
dc.contributor.authorHorovistiz, A. L.pt
dc.contributor.authorBranco, I.pt
dc.contributor.authorFerro, M.pt
dc.contributor.authorFerreira, N. M.pt
dc.contributor.authorBelmonte, M.pt
dc.contributor.authorLopes, M. A.pt
dc.contributor.authorSilva, R. F.pt
dc.contributor.authorOliveira, F. J.pt
dc.date.accessioned2017-12-07T20:03:31Z-
dc.date.issued2014pt
dc.identifier.issn0928-4931pt
dc.identifier.urihttp://hdl.handle.net/10773/20903-
dc.description.abstractBone complexity demands the engineering of new scaffolding solutions for its reconstructive surgery. Emerging bone grafts should offer not only mechanical support but also functional properties to explore innovative bone therapies. Following this, ceramic bone grafts of Glass/hydroxyapatite (HA) reinforced with conductive carbon nanotubes (CNTs) - CNT/Glass/HA - were prepared for bone electrotherapy purposes. Computer-aided 3D microstructural reconstructions and TEM analysis of CNT/Glass/HA composites provided details on the CNT 3D network and further correlation to their functional properties. CNTs are arranged as sub-micrometric sized ropes bridging homogenously distributed ellipsoid-shaped agglomerates. This arrangement yielded composites with a percolation threshold of p(c) = 1.5 vol.%. At 4.4 vol.% of CNTs, thermal and electrical conductivities of 1.5 W.m(-1).K-1 and 55 S.m(-1), respectively, were obtained, matching relevant requisites in electrical stimulation protocols. While the former avoids bone damaging from Joule's heat generation, the latter might allow the confinement of external electrical fields through the conductive material if used for in vivo electrical stimulation. Moreover, the electrically conductive bone grafts have better mechanical properties than those of the natural cortical bone. Overall, these highly conductive materials with controlled size CNT agglomerates might accelerate bone bonding and maximize the delivery of electrical stimulation during electrotherapy practices. (C) 2013 Elsevier B.V. All rights reserved.pt
dc.language.isoengpt
dc.publisherELSEVIER SCIENCE BVpt
dc.relationinfo:eu-repo/grantAgreement/FCT/COMPETE/132936/PTpt
dc.rightsrestrictedAccesspor
dc.subjectGLASS-REINFORCED-HYDROXYAPATITEpt
dc.subjectCORTICAL BONEpt
dc.subjectCOMPOSITESpt
dc.subjectDEPENDENCEpt
dc.subjectNANOCOMPOSITESpt
dc.subjectOSTEOBLASTSpt
dc.subjectPERCOLATIONpt
dc.subjectPOROSITYpt
dc.subjectGROWTHpt
dc.subjectMWCNTpt
dc.titleCarbon nanotube-based bioceramic grafts for electrotherapy of bonept
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage360pt
degois.publication.lastPage368pt
degois.publication.titleMATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONSpt
degois.publication.volume34pt
dc.date.embargo10000-01-01-
dc.relation.publisherversion10.1016/j.msec.2013.09.028pt
dc.identifier.doi10.1016/j.msec.2013.09.028pt
Appears in Collections:CICECO - Artigos

Files in This Item:
File Description SizeFormat 
Carbon nanotube-based bioceramic grafts for electrotherapy of bone_10.1016j.msec.2013.09.028.pdf1.75 MBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.