Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/20172
Title: | Bioinspired Antimicrobial and Biocompatible Bacterial Cellulose Membranes Obtained by Surface Functionalization with Aminoalkyl Groups |
Author: | Fernandes, Susana C. M. Sadocco, Patrizia Aonso-Varona, Ana Palomares, Teodoro Eceiza, Arantxa Silvestre, Armando J. D. Mondragon, Inaki Freire, Carmen S. R. |
Keywords: | ANTIBACTERIAL ACTIVITY COUPLING AGENTS CHITOSAN FIBERS PROTEINS CELLS FILMS |
Issue Date: | 2013 |
Publisher: | AMER CHEMICAL SOC |
Abstract: | There has been a great deal of interest in the use of nanostructured bacterial cellulose membranes for biomedical applications, including tissue implants, wound healing, and drug delivery. However, as bacterial cellulose does not intrinsically present antimicrobial properties, in the present study, antimicrobial bacterial cellulose membranes were obtained by chemical grafting of aminoalkyl groups onto the surface of its nanofibrillar network. This approach intends to mimic intrinsic antimicrobial properties of chitosan. Interestingly, these novel grafted bacterial cellulose membranes (BC-NH2) are simultaneously lethal against S. aureus and E. coli and nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus may be useful for biomedical applications. In addition to these biological properties, the bioactive nanostructured BC-NH2 membranes also present improved mechanical and thermal properties. |
Peer review: | yes |
URI: | http://hdl.handle.net/10773/20172 |
DOI: | 10.1021/am400338n |
ISSN: | 1944-8244 |
Publisher Version: | 10.1021/am400338n |
Appears in Collections: | CICECO - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Bioinspired Antimicrobial and Biocompatible Bacterial Cellulose Membranes Obtained by Surface Functionalization with Aminoalkyl Groups_10.1021am400338n.pdf | 1.5 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.