Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/20080
Title: Role of high microwave power on growth and microstructure of thick nanocrystalline diamond films: A comparison with large grain polycrystalline diamond films
Author: Tang, C. J.
Fernandes, A. J. S.
Girao, A. V.
Pereira, S.
Shi, Fa-Nian
Soares, M. R.
Costa, F.
Neves, A. J.
Pinto, J. L.
Keywords: CHEMICAL-VAPOR-DEPOSITION
MATERIALS SCIENCE
CVD DIAMOND
NITROGEN
FABRICATION
MORPHOLOGY
TEXTURE
MEMS
MECHANISMS
NUCLEATION
Issue Date: 2014
Publisher: ELSEVIER SCIENCE BV
Abstract: In this work, we study the growth habit of nanocrystalline diamond (NCD) films by exploring the very high power regime, up to 4 kW, in a 5 kW microwave plasma chemical vapour deposition (NiPCVD) reactor, through addition of a small amount of nitrogen and oxygen (0.24%) into 4% CH4, in H-2 plasma. The coupled effect of high microwave power and substrate temperature on NCD growth behaviour is systematically investigated by varying only power, while fixing the remaining operating parameters. When the power increases from 2 kW to 4 kW, resulting also in rise of the Si substrate temperature higher than 150 degrees C, the diamond films obtained maintain the NCD habit, while the growth rate increases significantly. The highest growth rate of 4.6 mu m/h is achieved for the film grown at 4 kW, which represents a growth rate enhancement of about 15 times compared with that obtained when using 2 kW power. Possible factors responsible for such remarkable growth rate enhancement of the NCD films are discussed. The evolution of NCD growth characteristics such as morphology, microstructure and texture is studied by growing thick films and comparing it with that of large grain polycrystalline (PCD) films. One important characteristic of the NCD films obtained, in contrast to PCD films, is that irrespective of deposition time (i.e film thickness), their grain size and surface roughness remain in the nanometer range throughout the growth. Finally, based on our present and previous experimental results, a potential parameter window is established for fast growth of NCD films under high power conditions. (C)) 2013 Elsevier B.V. All rights reserved
Peer review: yes
URI: http://hdl.handle.net/10773/20080
DOI: 10.1016/j.jcrysgro.2013.11.091
ISSN: 0022-0248
Publisher Version: 10.1016/j.jcrysgro.2013.11.091
Appears in Collections:CICECO - Artigos



FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.