Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/18704
Title: Nodal solutions for nonlinear nonhomogeneous Neumann equations
Author: Aizicovici, S.
Papageorgiou, N. S.
Staicu, Vasile
Keywords: Positive solutions
Nonlinear nonhomogeneous differential op- erator
Nonlinear regularity
Nonlinear maximum principle
Byfurcation type result
Nodal solutions
Issue Date: 2014
Publisher: Nicolaus Copernicus University in Torun, Juliusz Schauder Centre for Nonlinear Studies
Abstract: We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator with a Caratheodory reaction which is $(p-1)$-sublinear near $\pm\infty$. Using variational tools we show that the problem has at least three nontrivial smooth solutions (one positive, one negative and a third nodal). Our formulation unifies problems driven by the $p$-Laplacian, the $(p,q) $ Laplacian and the $p$-generalized mean curvature operator.
Peer review: yes
URI: http://hdl.handle.net/10773/18704
ISSN: 1230-3429
Publisher Version: https://www.tmna.ncu.pl/static/archives/vol-43-2.html
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
P59_TMNA_43(2014)_421-438.pdfDocumento principal181.6 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.