Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/18684
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cerejeiras, Paula | pt |
dc.contributor.author | Fonseca, Aurineide | pt |
dc.contributor.author | Kähler, Uwe | pt |
dc.contributor.author | Vieira, Nelson | pt |
dc.date.accessioned | 2017-10-31T12:26:45Z | - |
dc.date.issued | 2017-09 | - |
dc.identifier.isbn | 978-3-319-62361-0 | pt |
dc.identifier.uri | http://hdl.handle.net/10773/18684 | - |
dc.description.abstract | In this paper we present the basic tools of a fractional function theory in higher dimensions by means of a fractional correspondence to the Weyl relations via Gelfond-Leontiev operators of generalized di erentiation. A Fischer decomposition is established. Furthermore, we give an algorithm for the construction of monogenic homogeneous polynomials of arbitrary degree. | pt |
dc.language.iso | eng | pt |
dc.publisher | Birkhäuser | pt |
dc.relation | info:eu-repo/grantAgreement/FCT/5876/147206/PT | pt |
dc.relation | FCT - IF/00271/2014 | pt |
dc.rights | openAccess | por |
dc.subject | Fractional monogenic polynomials | pt |
dc.subject | Fischer decomposition | pt |
dc.subject | Fractional Clifford analysis | pt |
dc.subject | Fractional Dirac operator | pt |
dc.subject | Gelfond-Leontiev operators | pt |
dc.title | Fischer decomposition in generalized fractional Clifford Analysis | pt |
dc.type | bookPart | pt |
degois.publication.firstPage | 37 | pt |
degois.publication.issue | III | pt |
degois.publication.lastPage | 53 | pt |
degois.publication.location | Basel | pt |
degois.publication.title | Advances in Complex Analysis and Operator Theory | pt |
dc.date.embargo | 2018-09-01T11:00:00Z | - |
dc.identifier.doi | 10.1007/978-3-319-62362-7_3 | pt |
Appears in Collections: | CIDMA - Capítulo de livro CHAG - Capítulo de livro |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
artigo36.pdf | Documento Principal | 365.06 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.