Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/18243
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alpay, Daniel | pt |
dc.contributor.author | Cerejeiras, Paula | pt |
dc.contributor.author | Kähler, Uwe | pt |
dc.date.accessioned | 2017-08-29T10:02:50Z | - |
dc.date.available | 2018-07-20T14:01:01Z | - |
dc.date.issued | 2017-05-30 | - |
dc.identifier.issn | 0002-9939 | pt |
dc.identifier.uri | http://hdl.handle.net/10773/18243 | - |
dc.description.abstract | In this paper we present the building blocks for a function theory based on fractional Cauchy-Riemann operators. We are going to construct basic monogenic powers and Fueter series. With these tools we are going to study Gleason’s problem and reproducing kernel spaces, like the Drury- Arveson space and de Branges-Rovnyak spaces. We end with a statement on Schur multipliers in this setting. | pt |
dc.language.iso | eng | pt |
dc.publisher | American Mathematical Society | pt |
dc.relation | info:eu-repo/grantAgreement/FCT/5876/147206/PT | pt |
dc.rights | openAccess | por |
dc.subject | Fractional Dirac operator | pt |
dc.subject | Gleason's problem | pt |
dc.subject | Drury-Arveson space | pt |
dc.title | Gleason’s problem associated to the fractional cauchy-riemann operator, fueter series, drury-arveson space and related topics | pt |
dc.type | article | pt |
dc.peerreviewed | yes | pt |
ua.distribution | international | pt |
degois.publication.firstPage | 4821 | pt |
degois.publication.issue | 11 | pt |
degois.publication.lastPage | 4838 | pt |
degois.publication.title | Proceedings of the American Mathematical Society | pt |
degois.publication.volume | 145 | pt |
dc.date.embargo | 2018-05-30T10:00:00Z | - |
dc.identifier.doi | 10.1090/proc/13613 | pt |
Appears in Collections: | CIDMA - Artigos CHAG - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
proc13613.pdf | Documento principal | 241.04 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.