Please use this identifier to cite or link to this item:
Title: Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators using Caputo derivatives
Author: Ferreira, M.
Vieira, N.
Keywords: Fractional partial differential equations
Fractional Laplace and Dirac operators
Caputo derivative
Fundamental solution
Issue Date: 1-Jun-2017
Publisher: Taylor & Francis
Abstract: In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator ${}^C\!\Delta_+^{(\alpha,\beta,\gamma)}:= {}^C\!D_{x_0^+}^{1+\alpha} +{}^C\!D_{y_0^+}^{1+\beta} +{}^C\!D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$ and the fractional derivatives ${}^C\!D_{x_0^+}^{1+\alpha}$, ${}^C\!D_{y_0^+}^{1+\beta}$, ${}^C\!D_{z_0^+}^{1+\gamma}$ are in the Caputo sense. Applying integral transform methods we describe a complete family of eigenfunctions and fundamental solutions of the operator ${}^C\!\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. The solutions are expressed using the Mittag-Leffler function. From the family of fundamental solutions obtained we deduce a family of fundamental solutions of the corresponding fractional Dirac operator, which factorizes the fractional Laplace operator introduced in this paper.
Peer review: yes
DOI: 10.1080/17476933.2016.1250401
ISSN: 1747-6933
Appears in Collections:CIDMA - Artigos
CHAG - Artigos

Files in This Item:
File Description SizeFormat 
artigo51.pdfDocumento Principal403.49 kBAdobe PDFView/Open

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.