Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/18078
Title: An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings
Author: Kuijper, M.
Pinto, R.
Keywords: Iterative algorithms
Minimal basis
Parametrization
Polynomial modules
Sequences
Shift registers
Issue Date: May-2017
Publisher: Springer Verlag
Abstract: The construction of shortest feedback shift registers for a finite sequence S1,…,SN is considered over finite chain rings, such as Zpr. A novel algorithm is presented that yields a parametrization of all shortest feedback shift registers for the sequence of numbers S1,…,SN, thus solving an open problem in the literature. The algorithm iteratively processes each number, starting with S1, and constructs at each step a particular type of minimal basis. The construction involves a simple update rule at each step which leads to computational efficiency. It is shown that the algorithm simultaneously computes a similar parametrization for the reverse sequence SN,…,S1. The complexity order of the algorithm is shown to be O(rN2).
Peer review: yes
URI: http://hdl.handle.net/10773/18078
DOI: 10.1007/s10623-016-0226-3
ISSN: 0925-1022
Appears in Collections:CIDMA - Artigos
SCG - Artigos

Files in This Item:
File Description SizeFormat 
Kuijper_Pinto_Iterative-algorithm accepted version.pdfDocumento Principal424.59 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.