Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/16729
Title: Heisenberg uncertainty principles for an oscillatory integral operator
Author: Castro, L. P.
Guerra, R. C.
Tuan, N. M.
Keywords: Heisenberg uncertainty principle
Oscillatory integral operator
Parseval type identity
Plancherel type theorem
Issue Date: 27-Jan-2017
Publisher: American Institute of Physics
Abstract: The main aim of this work is to obtain Heisenberg uncertainty principles for a specific oscillatory integral operator which representatively exhibits different parameters on their sine and cosine phase components. Additionally, invertibility theorems, Parseval type identities and Plancherel type theorems are also obtained.
Peer review: yes
URI: http://hdl.handle.net/10773/16729
DOI: 10.1063/1.4972629
ISSN: 1551-7616
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
2017_AIP_CastroGuerraTuan.pdfPaper133.36 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.