Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/16621
Title: Initial value problems in linear integral operator equations
Author: Castro, L.P.
Rodrigues, M.M.
Saitoh, S.
Keywords: Integral transform
Reproducing kernel
Isometric mapping
Inversion formula
Initial value problem
Eigenfunction
Eigenvalue
Fourier integral transform
Inverse problem
Lalesco-Picard equation
Dixon equation
Tricomi equation
Issue Date: 11-Jul-2014
Publisher: Springer International Publishing
Abstract: For some general linear integral operator equations, we investigate consequent initial value problems by using the theory of reproducing kernels. A new method is proposed which -- in particular -- generates a new field among initial value problems, linear integral operators, eigenfunctions and values, integral transforms and reproducing kernels. In particular, examples are worked out for the integral equations of Lalesco-Picard, Dixon and Tricomi types.
URI: http://hdl.handle.net/10773/16621
DOI: 10.1007/978-3-319-06554-0_7
ISBN: 978-3-319-06553-3
Appears in Collections:CIDMA - Capítulo de livro
FAAG - Capítulo de livro

Files in This Item:
File Description SizeFormat 
2014_PostPrintInitialValueProb.pdfAccepted Manuscript81.6 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.