Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/16492
Title: Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems
Author: Almeida, Ricardo
Malinowska, Agnieszka B.
Morgado, M. Luísa
Odzijewicz, Tatiana
Keywords: Fractional Sturm–Liouville problem
Fractional calculus of variations
Discrete fractional calculus
Continuous fractional calculus
Issue Date: 2017
Publisher: Mathematical Sciences Publishers
Abstract: The fractional Sturm–Liouville eigenvalue problem appears in many situations, e.g., while solving anomalous diffusion equations coming from physical and engineering applications. Therefore to obtain solutions or approximation of solutions to this problem is of great importance. Here, we describe how the fractional Sturm–Liouville eigenvalue problem can be formulated as a constrained fractional variational principle and show how such formulation can be used in order to approximate the solutions. Numerical examples are given, to illustrate the method.
Peer review: yes
URI: http://hdl.handle.net/10773/16492
DOI: 10.2140/jomms.2017.12-1
ISSN: 1559-3959
Appears in Collections:CIDMA - Artigos
SCG - Artigos

Files in This Item:
File Description SizeFormat 
1604.04272v1.pdfMain article308.96 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.