Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/16464
Title: | On the Schrödinger–Poisson system with a general indefinite nonlinearity |
Author: | Lirong Huang Rocha, Eugénio M. Jianqing Chen |
Keywords: | Non-autonomous Schrödinger–Poisson system Variational method Positive solutions |
Issue Date: | 26-Apr-2016 |
Publisher: | Elsevier |
Abstract: | We study the existence and multiplicity of positive solutions of a class of Schrödinger–Poisson system: [View the MathML source Turn MathJax on] where k∈C(R3) changes sign in R3, lim∣x∣→∞k(x)=k∞<0, and the nonlinearity g behaves like a power at zero and at infinity. We mainly prove the existence of at least two positive solutions in the case that μ>μ1 and near μ1, where μ1 is the first eigenvalue of −Δ+id in H1(R3) with weight function h, whose corresponding positive eigenfunction is denoted by e1. An interesting phenomenon here is that we do not need the condition View the MathML source, which has been shown to be a sufficient condition to the existence of positive solutions for semilinear elliptic equations with indefinite nonlinearity (see e.g. Costa and Tehrani, 2001). |
Peer review: | yes |
URI: | http://hdl.handle.net/10773/16464 |
DOI: | 10.1016/j.nonrwa.2015.09.001 |
ISSN: | 1468-1218 |
Appears in Collections: | CIDMA - Artigos FAAG - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S1468121815001078-main.pdf | Main article | 740.49 kB | Adobe PDF | ![]() |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.