Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/16195
Title: | Nonlinear, nonhomogeneous parametric Neumann problems |
Author: | Aizicovici, S. Papageorgiou, Nikolaos S. Staicu, Vasile |
Keywords: | Positive solutions Nonlinear nonhomogeneous differential operator Nonlinear regularity Nonlinear maximum principle Bifurcation type result Nodal solutions |
Issue Date: | Sep-2016 |
Publisher: | Juliusz Schauder University Centre for Nonlinear Studies; Nicolaus Copernicus University in Toruń |
Abstract: | We consider a parametric nonlinear Neumann problem driven by a nonlinear nonhomogeneous differential operator and with a Caratheodory reaction $f\left( t,x\right) $ which is $p-$superlinear in $x$ without satisfying the usual in such cases Ambrosetti-Rabinowitz condition. We prove a bifurcation type result describing the dependence of the positive solutions on the parameter $\lambda>0,$ we show the existence of a smallest positive solution $\overline{u}_{\lambda}$ and investigate the properties of the map $\lambda\rightarrow\overline{u}_{\lambda}.$ Finally we also show the existence of nodal solutions. |
Peer review: | yes |
URI: | http://hdl.handle.net/10773/16195 |
DOI: | 10.12775/TMNA.2016.035 |
ISSN: | 1230-3429 |
Appears in Collections: | CIDMA - Artigos FAAG - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TMNA1629_secondProofs.pdf | full text | 498.41 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.