Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/15530
Title: Random extremal solutions of differential inclusions
Author: Bressan, Alberto
Staicu, Vasile
Keywords: Differential inclusions
Lipschitz selections
Extremal solutions
Random solutions
Issue Date: Jun-2016
Publisher: Springer Verlag; Birkhäuser Basel
Abstract: Given a Lipschitz continuous multifunction F on Rⁿ, we construct a probability measure on the set of all solutions to the Cauchy problem x∈F(x) with x(0)=0. With probability one, the derivatives of these random solutions take values within the set extF(x) of extreme points for a.e. time t. This provides an alternative approach in the analysis of solutions to differential inclusions with non-convex right hand side.
Peer review: yes
URI: http://hdl.handle.net/10773/15530
DOI: 10.1007/s00030-016-0375-0
ISSN: 1021-9722
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
P73_NoDEA_23(2016).pdfartigo publicado online399.29 kBAdobe PDF    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.