Please use this identifier to cite or link to this item:
Title: Riemann-Hilbert problems for monogenic functions in axially symmetric domains
Author: He, Fuli
Ku, Min
Kähler, Uwe
Sommen, Frank
Bernstein, Swanhild
Keywords: Quaternion analysis
Generalized Cauchy Riemann operator
Axial symmetry
Riemann-Hilbert boundary value problems
Variable coefficients
Issue Date: 25-Jan-2016
Publisher: SpringerOpen
Abstract: We consider Riemann-Hilbert boundary value problems (for short RHBVPs) with variable coefficients for axially symmetric monogenic functions defined in axial symmetric domains. This is done by constructing a method to reduce the RHBVPs for axially symmetric monogenic functions defined in four-dimensional axial symmetric domains into the RHBVPs for analytic functions defined over the complex plane. Then we derive solutions to the corresponding Schwarz problem. Finally, we generalize the results obtained to null-solutions of (D−α)ϕ=0, α∈R, where R denotes the field of real numbers.
Peer review: yes
DOI: 10.1186/s13661-016-0530-x
ISSN: 1687-2770
Appears in Collections:CIDMA - Artigos
CHAG - Artigos

Files in This Item:
File Description SizeFormat 
Ku_BV.pdfDocumento principal1.69 MBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.