Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/15347
Title: The existence of solutions to variational problems of slow growth
Author: Cellina, Arrigo
Staicu, Vasile
Issue Date: 5-Apr-2016
Publisher: Elsevier
Abstract: We consider the existence of solutions, in the space W^{1,1}(Ω), to the problem minimize ∫_{Ω}L(∇v(x))dx on φ+W₀^{1,1}(Ω) where L is of slow (linear or at most quadratic) growth. We present a necessary and sufficient condition in order that, for any smooth boundary datum φ and for any bounded Ω with smooth boundary, the minimum problem be solvable.
Peer review: yes
URI: http://hdl.handle.net/10773/15347
DOI: 10.1016/j.jde.2015.12.025
ISSN: 0022-0396
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
CeStPaper_JDE_260(2016)-5834-5846.pdfdocumento principal244.07 kBAdobe PDF    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.