Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/15314
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cação, Isabel | pt |
dc.contributor.author | Falcão, Maria Irene | pt |
dc.contributor.author | Malonek, Helmuth Robert | pt |
dc.date.accessioned | 2016-03-16T15:24:57Z | - |
dc.date.available | 2016-03-16T15:24:57Z | - |
dc.date.issued | 2012-12 | - |
dc.identifier.issn | 2195-3724 | pt |
dc.identifier.uri | http://hdl.handle.net/10773/15314 | - |
dc.description.abstract | This paper provides an insight into different structures of a special polynomial sequence of binomial type in higher dimensions with values in a Clifford algebra. The elements of the special polynomial sequence are homogeneous hypercomplex differentiable (monogenic) functions of different degrees and their matrix representation allows to prove their recursive construction in analogy to the complex power functions. This property can somehow be considered as a compensation for the loss of ultiplicativity caused by the non-commutativity of the underlying algebra. | pt |
dc.language.iso | eng | pt |
dc.publisher | Springer Verlag | pt |
dc.relation | PEst-C/MAT/UI4106/2011 | pt |
dc.relation | Compete - FCOMP-01-0124-FEDER-022690 | pt |
dc.rights | openAccess | por |
dc.subject | Special polynomial sequence | pt |
dc.subject | Monogenic function | pt |
dc.subject | Matrix representation | pt |
dc.title | Matrix representations of a special polynomial sequence in arbitrary dimension | pt |
dc.type | article | pt |
dc.peerreviewed | yes | pt |
ua.distribution | international | pt |
degois.publication.firstPage | 371 | pt |
degois.publication.issue | 2 | pt |
degois.publication.lastPage | 391 | pt |
degois.publication.title | Computational Methods and Function Theory | pt |
degois.publication.volume | 12 | pt |
dc.identifier.doi | 10.1007/BF03321833 | pt |
Appears in Collections: | CIDMA - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Cacao_Falcao_Malonek_2012.pdf | final draft post-refereeing | 260 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.