Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/15109
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKrauBhar, R. S.pt
dc.contributor.authorRodrigues, M. M.pt
dc.contributor.authorVieira, N.pt
dc.date.accessioned2016-01-22T12:19:07Z-
dc.date.available2018-07-20T14:00:51Z-
dc.date.issued2016-02-
dc.identifier.issn1422-6383pt
dc.identifier.urihttp://hdl.handle.net/10773/15109-
dc.description.abstractIn this paper we present analogues of the maximum principle and of some parabolic inequalities for the regularized time-dependent Schrödinger operator on open manifolds using Günter derivatives. Moreover, we study the uniqueness of bounded solutions for the regularized Schrödinger-Günter problem and obtain the corresponding fundamental solution. Furthermore, we present a regularized Schrödinger kernel and prove some convergence results. Finally, we present an explicit construction for the fundamental solution to the Schrödinger-Günter problem on a class of conformally flat cylinders and tori.pt
dc.language.isoengpt
dc.publisherSpringer International Publishingpt
dc.relationFCT - UID/MAT/0416/2013pt
dc.relationFCT - IF/00271/2014pt
dc.rightsopenAccesspor
dc.subjectClifford analysispt
dc.subjectTime dependent operatorspt
dc.subjectSchrödinger equationpt
dc.subjectGünter derivativespt
dc.subjectBoundary problems on manifoldspt
dc.titleMaximum principle for the regularized Schrödinger operatorpt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage49pt
degois.publication.issue1pt
degois.publication.lastPage68pt
degois.publication.titleResults in Mathematicspt
degois.publication.volume69pt
dc.date.embargo2017-01-31T12:00:00Z-
dc.identifier.doi10.1007/s00025-015-0474-ypt
Appears in Collections:CIDMA - Artigos
CHAG - Artigos

Files in This Item:
File Description SizeFormat 
artigo13_VF.pdf417.26 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.