Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/15109
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | KrauBhar, R. S. | pt |
dc.contributor.author | Rodrigues, M. M. | pt |
dc.contributor.author | Vieira, N. | pt |
dc.date.accessioned | 2016-01-22T12:19:07Z | - |
dc.date.available | 2018-07-20T14:00:51Z | - |
dc.date.issued | 2016-02 | - |
dc.identifier.issn | 1422-6383 | pt |
dc.identifier.uri | http://hdl.handle.net/10773/15109 | - |
dc.description.abstract | In this paper we present analogues of the maximum principle and of some parabolic inequalities for the regularized time-dependent Schrödinger operator on open manifolds using Günter derivatives. Moreover, we study the uniqueness of bounded solutions for the regularized Schrödinger-Günter problem and obtain the corresponding fundamental solution. Furthermore, we present a regularized Schrödinger kernel and prove some convergence results. Finally, we present an explicit construction for the fundamental solution to the Schrödinger-Günter problem on a class of conformally flat cylinders and tori. | pt |
dc.language.iso | eng | pt |
dc.publisher | Springer International Publishing | pt |
dc.relation | FCT - UID/MAT/0416/2013 | pt |
dc.relation | FCT - IF/00271/2014 | pt |
dc.rights | openAccess | por |
dc.subject | Clifford analysis | pt |
dc.subject | Time dependent operators | pt |
dc.subject | Schrödinger equation | pt |
dc.subject | Günter derivatives | pt |
dc.subject | Boundary problems on manifolds | pt |
dc.title | Maximum principle for the regularized Schrödinger operator | pt |
dc.type | article | pt |
dc.peerreviewed | yes | pt |
ua.distribution | international | pt |
degois.publication.firstPage | 49 | pt |
degois.publication.issue | 1 | pt |
degois.publication.lastPage | 68 | pt |
degois.publication.title | Results in Mathematics | pt |
degois.publication.volume | 69 | pt |
dc.date.embargo | 2017-01-31T12:00:00Z | - |
dc.identifier.doi | 10.1007/s00025-015-0474-y | pt |
Appears in Collections: | CIDMA - Artigos CHAG - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
artigo13_VF.pdf | 417.26 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.