Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/15109
Title: Maximum principle for the regularized Schrödinger operator
Author: KrauBhar, R. S.
Rodrigues, M. M.
Vieira, N.
Keywords: Clifford analysis
Time dependent operators
Schrödinger equation
Günter derivatives
Boundary problems on manifolds
Issue Date: Feb-2016
Publisher: Springer International Publishing
Abstract: In this paper we present analogues of the maximum principle and of some parabolic inequalities for the regularized time-dependent Schrödinger operator on open manifolds using Günter derivatives. Moreover, we study the uniqueness of bounded solutions for the regularized Schrödinger-Günter problem and obtain the corresponding fundamental solution. Furthermore, we present a regularized Schrödinger kernel and prove some convergence results. Finally, we present an explicit construction for the fundamental solution to the Schrödinger-Günter problem on a class of conformally flat cylinders and tori.
Peer review: yes
URI: http://hdl.handle.net/10773/15109
DOI: 10.1007/s00025-015-0474-y
ISSN: 1422-6383
Appears in Collections:CIDMA - Artigos
CHAG - Artigos

Files in This Item:
File Description SizeFormat 
artigo13_VF.pdf417.26 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.