Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/15007
Title: Linear spanning sets for matrix spaces
Author: Micheli, G.
Rosenthal, J.
Vettori, P.
Keywords: Matrices
Linear span
Cyclic matrices
Finite fields
Issue Date: 15-Oct-2015
Publisher: Elsevier
Abstract: Necessary and sufficient conditions are given on matrices $A$, $B$ and $S$, having entries in some field $F$ and suitable dimensions, such that the linear span of the terms $A^iSB^j$ over $F$ is equal to the whole matrix space. This result is then used to determine the cardinality of subsets of $F[A]SF[B]$ when $F$ is a finite field.
Peer review: yes
URI: http://hdl.handle.net/10773/15007
DOI: 10.1016/j.laa.2015.06.008
ISSN: 0024-3795
Appears in Collections:CIDMA - Artigos
SCG - Artigos

Files in This Item:
File Description SizeFormat 
MichRoseVett15.pdfArticle Preprint217.04 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.