Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/14983
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAizicovici, S.pt
dc.contributor.authorPapageorgiou, N. S.pt
dc.contributor.authorStaicu, V.pt
dc.date.accessioned2016-01-05T18:11:36Z-
dc.date.available2016-01-05T18:11:36Z-
dc.date.issued2015-04-16-
dc.identifier.issn1072-6691pt
dc.identifier.urihttp://hdl.handle.net/10773/14983-
dc.description.abstractWe consider a nonlinear periodic problem driven by a nonhomogeneous differential operator plus an indefinite potential and a reaction having the competing effects of concave and convex terms. For the superlinear (concave) term we do not employ the usual in such cases Ambrosetti-Rabinowitz condition. Using variational methods together with truncation, perturbation and comparison techniques, we prove a bifurcation-type theorem describing the set of positive solutions as the parameter varies.pt
dc.language.isoengpt
dc.publisherTexas State University, Department of Mathematicspt
dc.relationFEDER/CIDMA/FCT - PEst-C/MAT/UI4106/2011, FCOMP-01-0124-FEDER-022690pt
dc.rightsopenAccesspor
dc.subjectNonhomogeneous differential operatorpt
dc.subjectPositive solutionpt
dc.subjectLocal minimizerpt
dc.subjectNonlinear maximum principlept
dc.subjectMountain pass theorempt
dc.subjectBifurcationpt
dc.titlePositive solutions for parametric nonlinear periodic problems with competing nonlinearitiespt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage1pt
degois.publication.issue103pt
degois.publication.lastPage18pt
degois.publication.titleElectronic Journal of Differential Equationspt
degois.publication.volume2015pt
dc.relation.publisherversionhttp://ejde.math.txstate.edu/Volumes/2015/103/aizicovici.pdfpt
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
P62_EJDE_2015(2015)_1-18.pdfMain article280.45 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.