Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/14842
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBarros, Carmen Sofia da Rocha Freirept
dc.contributor.advisorVilela, Carla Andreia Cunhapt
dc.contributor.authorSaidi, Louisept
dc.date.accessioned2015-11-04T14:17:33Z-
dc.date.available2015-11-04T14:17:33Z-
dc.date.issued2015-
dc.identifier.urihttp://hdl.handle.net/10773/14842-
dc.descriptionMestrado em Ciências e Engenharia de Materiaispt
dc.description.abstractCellulose is the most abundant polysaccharide on earth, it is the main structural component of plant cell walls. However, it is also produced by bacteria in a purer form called bacterial cellulose (BC). BC is well known and mainly used in several field for its peculiar 3D network that confers to it outstanding properties such as water high holding capacity, high porosity and excellent mechanical properties. BC is also biodegradable and biocompatible. Among the different fields of application, BC is greatly used, in its pure form or in the form of nanocomposites, in the biomedical field, as artificial blood vessels, controlled drug delivery systems, and in tissue engineering, etc. The present study reports the development of new nanocomposites made from BC and an acrylate polymer namely the poly(N-methacryloyl glycine) (PMGly) through an in situ free radical polymerization using N,N-methylenebis(acrylamide) (MBA) as cross linker agent. Several nanocomposites with different amounts of polymer and BC were prepared and characterized. The obtained nanocomposites displayed improved mechanical properties, thermal stability and crystallinity when compared to the homopolymer. Moreover, their cytotoxicity (MTT tests) in regard to HaCaT skin cells was also evaluated, and the results showed that the new nanocomposites were not cytotoxic until 48 hours of exposure. Finally, two different potential applications were tested for these materials, namely as systems for drug release and as scaffolds for bone regeneration. First, the membranes were tested as drug delivery system for diclofenac. The impregnation of the drug into the membrane was successfully assessed and the drug dissolution was studied for different pH values (pH 7.4 and 2.1) at 37 ºC during 24 hours. However, the drug release was always accompanied by polymer dissolution. Secondly, the membranes were immersed in a simulated body solution in order to grow hydroxyapatite particles on their surface, aiming an application in bone tissue engineering. However, this growth wasn’t detected by XRD and SEM analysis.pt
dc.description.abstractA celulose é o polissacarídeo mais abundante na terra, e é o principal constituinte das paredes celulares das plantas. Contudo, também é produzida por bactérias numa forma mais pura chamada “celulosa bacteriana” (BC). A BC é já bem conhecida e é utilizada em vários campos principalmente devido à sua estrutura 3D que lhe confere excelentes propriedades, nomeadamente elevada capacidade de retenção de água, elevada porosidade e excelente desempenho mecânico. A BC é também, biodegradável e, biocompatível. Em termos de aplicações, a BC é amplamente usada na área biomédica na forma pura ou de nanocompósitos como vaso sanguíneos artificiais, sistemas para libertação controlada de fármacos e na engenharia de tecidos, etc. Este trabalho relata o desenvolvimento de novos nanocompósitos de celulose bacteriana e poli(N-metacriliol glicina) preparados por polimerização radicalar in situ usando N,N-methylenebis(acrylamide) (MBA) como agente reticulante. Foram preparados e caracterizados vários nanocompósitos com quantidades variáveis de polímero e BC. Os materiais nanocompósitos obtidos apresentaram propriedades mecânicas e térmicas melhoradas assim como valores de cristalinidade superiores quando comparados com o polímero puro. A citotoxicidade (teste MTT) dos nanocompósitos em relação às celulas da pele (HaCaT) foi também avaliada e os resultados demonstraram que as membranas não são citotóxicas até 48 horas de exposição. Finalmente, foram testadas duas potenciais aplicações para os materiais obtidos, nomeadamente como sistemas de libertação de fármacos e como suportes para a regeneração óssea. Neste sentido, as membranas foram impregnadas com um fármaco, o diclofenac, e estudada a sua dissolução em condições de pH diferentes (pH 7.4 e 2.1) a 37 ºC durante 24h. No entanto, verificou-se que durante a libertação do fármaco ocorreu também a dissolução do polímero. Em segundo lugar, as membranas foram biomineralizadas com o objectivo de crescer partículas de hidroxiapatite na sua superfície para potencial aplicação na regeneração óssea. Contudo, o crescimento destas nanopatículas não foi confirmado por XRD e SEM.pt
dc.language.isoengpt
dc.publisherUniversidade de Aveiropt
dc.rightsopenAccesspor
dc.subjectCiência dos materiaispt
dc.subjectNanocompósitos - Aplicações biomédicaspt
dc.subjectBiomineralizaçãopt
dc.subjectSistemas de administração de fármacospt
dc.subject.otherBacterial cellulosept
dc.subject.otherpoly(N-methacryloyl glycine)pt
dc.subject.othernanocompositespt
dc.subject.otherin situ polymerizationpt
dc.subject.otherdrug deliverypt
dc.subject.otherbiomineralizationpt
dc.titleBacterial cellulose/poly(N-methacryloyl glycine) nanocomposites prepared by in situ polymerization for biomedical applicationspt
dc.title.alternativeNanocompósitos de celulose bacteriana/poli(N-metacriloil glicina) preparados por polimerização in situ para aplicações biomédicaspt
dc.typemasterThesispt
thesis.degree.levelmestradopt
thesis.degree.grantorUniversidade de Aveiropt
dc.identifier.tid201582880-
Appears in Collections:UA - Dissertações de mestrado
DQ - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Nanocompósitos de celulose.pdf2.73 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.