Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/14733
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastro, L. P.pt
dc.contributor.authorKapanadze, D.pt
dc.date.accessioned2015-10-05T09:30:01Z-
dc.date.issued2015-
dc.identifier.issn2041-3165pt
dc.identifier.urihttp://hdl.handle.net/10773/14733-
dc.description.abstractWe study two wave diffraction problems modeled by the Helmholtz equation in a half-plane with a crack characterized by Dirichlet and impedance boundary conditions. The existence and uniqueness of solutions is proved by an appropriate combination of general operator theory, Fredholm theory, potential theory and boundary integral equation methods. This combination of methods leads also to integral representations of solutions. Moreover, in Sobolev spaces, a range of smoothness parameters is obtained in which the solutions of the problems are valid.pt
dc.language.isoengpt
dc.publisherCambridge Scientific Publisherspt
dc.relationCIDMA/FCT - UID/MAT/04106/2013pt
dc.relationShota Rustaveli National Science Foundation - FR/6/5-101/12, number 31/39pt
dc.rightsrestrictedAccesspor
dc.subjectCrackpt
dc.subjectHelmholtz equationpt
dc.subjectWave diffractionpt
dc.subjectBoundary value problempt
dc.subjectPotential methodpt
dc.subjectFredholm theorypt
dc.subjectOscillating symbolpt
dc.titleCrack impedance-Dirichlet boundary value problems of diffraction in a half-planept
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage551pt
degois.publication.issue3pt
degois.publication.lastPage566pt
degois.publication.titleMESA: Mathematics in Engineering, Science and Aerospacept
degois.publication.volume6pt
dc.date.embargo10000-01-01-
dc.relation.publisherversionhttp://nonlinearstudies.com/index.php/mesa/issue/view/137pt
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
Ca_Ka_MESA2015.pdfMain article93.36 kBAdobe PDF    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.