Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/14645
Title: A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration
Author: Benkhettou, N.
Brito da Cruz, A. M. C.
Torres, D. F. M.
Keywords: Calculus on time scales
Fractional differentiation
Fractional integration
Calculations
Integration
Time measurement
Arbitrary time
Fractional calculus
Local approaches
Order of differentiation
Real number
Time-scales
Differentiation (calculus)
Issue Date: Feb-2015
Publisher: Elsevier
Abstract: We introduce a general notion of fractional (noninteger) derivative for functions defined on arbitrary time scales. The basic tools for the time-scale fractional calculus (fractional differentiation and fractional integration) are then developed. As particular cases, one obtains the usual time-scale Hilger derivative when the order of differentiation is one, and a local approach to fractional calculus when the time scale is chosen to be the set of real numbers.
Peer review: yes
URI: http://hdl.handle.net/10773/14645
DOI: 10.1016/j.sigpro.2014.05.026
ISSN: 0165-1684
Appears in Collections:CIDMA - Artigos
SCG - Artigos

Files in This Item:
File Description SizeFormat 
[296]SIGPRO_Benkhettou_Brito-da-Cruz_Torres.pdf300.98 kBAdobe PDF    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.