Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/14593
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rodrigues, M. M. | pt |
dc.contributor.author | Vieira, N. | pt |
dc.date.accessioned | 2015-09-01T16:45:06Z | - |
dc.date.available | 2018-07-20T14:00:50Z | - |
dc.date.issued | 2015-04 | - |
dc.identifier.issn | 0019-5588 | pt |
dc.identifier.uri | http://hdl.handle.net/10773/14593 | - |
dc.description.abstract | The aim of this paper is to construct a testing function space equipped with the topology generated by the L_{v,p}-multinorm of the differential operator Bx = -4x^2 d^2/dx^2- 1 + x^2 -ux, where u < 1/2, v>0, p in [1, \infinity[, and its k-iterates B^k_x where k = 0, 1,..., and B^0_x \phi=\phi. We also introduce the correspondent dual space for the index Whittaker transform on distributions. The existence, uniqueness, imbedding and inversion properties are investigated. | pt |
dc.language.iso | eng | pt |
dc.publisher | Springer | pt |
dc.relation | info:eu-repo/grantAgreement/FCT/5876/147206/PT | pt |
dc.relation | IF/00271/2014 | pt |
dc.rights | openAccess | por |
dc.subject | Testing-functions spaces | pt |
dc.subject | Distributions | pt |
dc.subject | Index Whittaker transform | pt |
dc.subject | Whittaker functions | pt |
dc.subject | Special functions | pt |
dc.title | Whittaker transform on distributions | pt |
dc.type | article | pt |
dc.peerreviewed | yes | pt |
ua.distribution | international | pt |
degois.publication.firstPage | 229 | pt |
degois.publication.issue | 2 | pt |
degois.publication.lastPage | 237 | pt |
degois.publication.title | Indian Journal of Pure and Applied Mathematics | pt |
degois.publication.volume | 46 | pt |
dc.date.embargo | 2016-03-31T16:00:00Z | - |
dc.identifier.doi | 10.1007/s13226-015-0127-6 | pt |
Appears in Collections: | CIDMA - Artigos FAAG - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MRNV_IJPAM.pdf | 315.19 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.