Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/14178
Title: Harmonic analysis on the Einstein gyrogroup
Author: Ferreira, Milton
Keywords: Einstein gyrogroup
Generalised Helgason-Fourier transform
Spherical functions
Hyperbolic convolution
Eigenfunctions
Laplace-Beltrami-operator
Issue Date: 2014
Publisher: JGSP
Abstract: In this paper we study harmonic analysis on the Einstein gyrogroup of the open ball of R$^n$, $n \in N,$ centered at the origin and with arbitrary radius $t \in R^+,$ associated to the generalised Laplace-Beltrami operator $$ L_{\sigma,t} = \disp \left( 1 - \frac{\|x\|^2}{t^2} \right) \!\left( \Delta - \sum_{i,j=1}^n \frac{x_i x_j}{t^2} \frac{\partial^2}{\partial x_i \partial x_j} - \frac{\kappa}{t^2} \sum_{i=1}^n x_i \frac{\partial}{\partial x_i} + \frac{\kappa(2-\kappa)}{4t^2} \right)$$ where $\kappa=n+\sigma$ and $\sigma \in {\mathbb R}$ is an arbitrary parameter. The generalised harmonic analysis for $L_{\sigma,t}$ gives rise to the $(\sigma,t)$-translation, the $(\sigma,t)$-convolution, the $(\sigma,t)$-spherical Fourier transform, the $(\sigma,t)$-Poisson transform, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the resulting hyperbolic harmonic analysis tends to the standard Euclidean harmonic analysis on $R^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.
Peer review: yes
URI: http://hdl.handle.net/10773/14178
DOI: 10.7546/jgsp-35-2014-21-60
ISSN: 1312-5192
Appears in Collections:CIDMA - Artigos

Files in This Item:
File Description SizeFormat 
Harmonic_analysis_Einstein_gyrogroup_MFerreira.pdfAccepted Author's manuscript 484.52 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.