Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/12867
Title: Multiplicity results for some classes of Schrödinger-Poisson systems
Other Titles: Resultados de multiplicidade para sistemas do tipo Schrödinger-Poisson
Author: Lirong Huang
Advisor: Rocha, Eugénio Alexandre Miguel
Keywords: Matemática
Equação de Schrödinger
Equação de Poisson
Sistemas não-lineares
Defense Date: 2014
Publisher: Universidade de Aveiro
Abstract: In this thesis, we study the existence and multiplicity of solutions of the following class of Schr odinger-Poisson systems: 􀀀 u + u + l(x) u = (x; u) in R3; 􀀀 = l(x)u2 in R3; where l 2 L2(R3) or l 2 L1(R3). And we consider that the nonlinearity satis es the following three kinds of cases: (i) a subcritical exponent with (x; u) = k(x)jujp􀀀2u + h(x)u (4 p < 2 ) under an inde nite case; (ii) a general inde nite nonlinearity with (x; u) = k(x)g(u) + h(x)u; (iii) a critical growth exponent with (x; u) = k(x)juj2 􀀀2u + h(x)jujq􀀀2u (2 q < 2 ). It is worth mentioning that the thesis contains three main innovations except overcoming several di culties, which are generated by the systems themselves. First, as an unknown referee said in his report, we are the rst authors concerning the existence of multiple positive solutions for Schr odinger- Poisson systems with an inde nite nonlinearity. Second, we nd an interesting phenomenon in Chapter 2 and Chapter 3 that we do not need the condition R R3 k(x)ep 1dx < 0 with an inde nite noncoercive case, where e1 is the rst eigenfunction of 􀀀 +id in H1(R3) with weight function h. A similar condition has been shown to be a su cient and necessary condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity for a bounded domain (see e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), or to be a su cient condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity in RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Moreover, the process used in this case can be applied to study other aspects of the Schr odinger-Poisson systems and it gives a way to study the Kirchho system and quasilinear Schr odinger system. Finally, to get sign changing solutions in Chapter 5, we follow the spirit of Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but the procedure is simpler than that they have proposed in their paper.
Nesta tese, estudamos a existência e a multiplicidade de soluções da seguinte classe de sistemas denominada de Schr odinger-Poisson: 􀀀 u + u + l(x) u = (x; u) in R3; 􀀀 = l(x)u2 in R3; onde l 2 L2(R3) ou l 2 L1(R3). Consideram-se não-linearidades que satisfazem um dos seguintes casos: (i) potências que envolvem um expoente sub-cr tico, da forma (x; u) = k(x)jujp􀀀2u + h(x)u, (4 p < 2 ), sendo k uma função com sinal indefinido e h uma função positiva; (ii) caso geral de uma não-linearidade indefi nida, da forma (x; u) = k(x)g(u) + h(x)u, sendo k uma função com sinal indefinido e h uma função positiva; (iii) potências que envolvem o expoente crí tico, da forma (x; u) = k(x)juj2 􀀀2u + h(x)jujq􀀀2u (2 q < 2 ). Convém salientar que esta tese tem três principais inovações, as quais ultrapassam dificuldades geradas pela natureza dos problemas estudados. Primeiro, como um relator anónimo referiu, este é o primeiro trabalho em que se trata a existência de várias soluções de sistemas de Schrödinger- Poisson com não-linearidade indefinida. Segundo, neste estudo encontrou-se um fen ómeno interessante, ver Capítulos 2 e 3, nomeadamente, não ser necess ária a condição R3 k(x)ep 1dx < 0 no caso indefinido e não-coercivo, sendo e1 a função associada ao primeiro valor próprio de 􀀀 + id em H1(R3) com peso h. Note-se que foi demonstrado que uma condi cão semelhante e condição necessária e suficiente na existência de solu cões positivas para equações elíticas semilineares com não-linearidades indefinidas em domínios limitados (ver e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), ou ser uma condição suficiente na existência de soluções positivas para equações elíticas semilineares com não-linearidades indefinidas em RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Adicionalmente, o método utilizado pode ser utilizado para estudar outros aspetos dos sistemas de Schrodinger-Poisson, permite também estudar sistemas de Kirchho e sistemas de Schrodinger quasilineares. Por m, para obter soluções com mudança de sinal no Cap. 5, segue se a ideia de Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, mas o método utilizado é uma versão simplificada do método apresentado no artigo referido.
Description: Doutoramento conjunto em Matemática - Matemática e Aplicações (PDMA)
URI: http://hdl.handle.net/10773/12867
Appears in Collections:UA - Teses de doutoramento
DMat - Teses de doutoramento

Files in This Item:
File Description SizeFormat 
Tese.pdf912.3 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.