Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/11912
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCresson, J.pt
dc.contributor.authorMalinowska, A. B.pt
dc.contributor.authorTorres, D. F. M.pt
dc.date.accessioned2014-02-28T14:43:47Z-
dc.date.issued2012-
dc.identifier.issn0898-1221pt
dc.identifier.urihttp://hdl.handle.net/10773/11912-
dc.description.abstractWe introduce differential, integral, and variational delta embeddings. We prove that the integral delta embedding of the Euler-Lagrange equations and the variational delta embedding coincide on an arbitrary time scale. In particular, a new coherent embedding for the discrete calculus of variations that is compatible with the least-action principle is obtained. © 2012 Elsevier Ltd. All rights reserved.pt
dc.language.isoengpt
dc.publisherElsevierpt
dc.relationCIDMA/FCTpt
dc.relationBUT Grant S/WI/2/11pt
dc.relationFCTr - PTDC/MAT/113470/2009pt
dc.rightsrestrictedAccesspor
dc.subjectCoherencept
dc.subjectDifference Euler-Lagrange equationspt
dc.subjectDiscrete calculus of variationspt
dc.subjectEmbeddingpt
dc.subjectLeast-action principlept
dc.subjectArbitrary timept
dc.subjectCalculus of variationspt
dc.subjectEmbeddingspt
dc.subjectEuler-Lagrange equationspt
dc.subjectLagrangian systempt
dc.subjectTime-scalespt
dc.subjectCoherent lightpt
dc.subjectEquations of motionpt
dc.subjectSolar cell arrayspt
dc.titleTime scale differential, integral, and variational embeddings of Lagrangian systemspt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage2294pt
degois.publication.issue7pt
degois.publication.issue7
degois.publication.lastPage2301pt
degois.publication.titleComputers and Mathematics with Applicationspt
degois.publication.volume64pt
dc.date.embargo10000-01-01-
dc.identifier.doi10.1016/j.camwa.2012.03.003pt
Appears in Collections:CIDMA - Artigos

Files in This Item:
File Description SizeFormat 
[228]cresson_malinowska_torres.pdf223.59 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.