Please use this identifier to cite or link to this item:
Title: Time scale differential, integral, and variational embeddings of Lagrangian systems
Author: Cresson, J.
Malinowska, A. B.
Torres, D. F. M.
Keywords: Coherence
Difference Euler-Lagrange equations
Discrete calculus of variations
Least-action principle
Arbitrary time
Calculus of variations
Euler-Lagrange equations
Lagrangian system
Coherent light
Equations of motion
Solar cell arrays
Issue Date: 2012
Publisher: Elsevier
Abstract: We introduce differential, integral, and variational delta embeddings. We prove that the integral delta embedding of the Euler-Lagrange equations and the variational delta embedding coincide on an arbitrary time scale. In particular, a new coherent embedding for the discrete calculus of variations that is compatible with the least-action principle is obtained. © 2012 Elsevier Ltd. All rights reserved.
Peer review: yes
DOI: 10.1016/j.camwa.2012.03.003
ISSN: 0898-1221
Appears in Collections:CIDMA - Artigos

Files in This Item:
File Description SizeFormat 
[228]cresson_malinowska_torres.pdf223.59 kBAdobe PDFrestrictedAccess

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.