Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/11901
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Odzijewicz, T. | pt |
dc.contributor.author | Malinowska, A.B. | pt |
dc.contributor.author | Torres, D.F.M. | pt |
dc.date.accessioned | 2014-02-27T13:20:38Z | - |
dc.date.issued | 2013 | - |
dc.identifier.issn | 1311-0454 | pt |
dc.identifier.uri | http://hdl.handle.net/10773/11901 | - |
dc.description.abstract | We study three types of generalized partial fractional order operators. An extension of Green's theorem, by considering partial fractional derivatives with more general kernels, is proved. New results are obtained, even in the particular case when the generalized operators are reduced to the standard partial fractional derivatives and fractional integrals in the sense of Riemann-Liouville or Caputo. | pt |
dc.language.iso | eng | pt |
dc.publisher | Springer Verlag | pt |
dc.relation | PEst-C/MAT/UI4106/2011 | pt |
dc.relation | FCOMP-01-0124-FEDER-022690 | pt |
dc.relation | SFRH/BD/33865/2009 | pt |
dc.relation | S/WI/02/2011 | pt |
dc.relation | PTDC/MAT/113470/2009 | pt |
dc.rights | restrictedAccess | por |
dc.subject | fractional calculus | pt |
dc.subject | generalized operators | pt |
dc.subject | Green's theorem | pt |
dc.title | Green's theorem for generalized fractional derivatives | pt |
dc.type | article | pt |
dc.peerreviewed | yes | pt |
ua.distribution | international | pt |
degois.publication.firstPage | 64 | pt |
degois.publication.issue | 1 | pt |
degois.publication.issue | 1 | |
degois.publication.lastPage | 75 | pt |
degois.publication.title | Fractional Calculus and Applied Analysis | pt |
degois.publication.volume | 16 | pt |
dc.date.embargo | 10000-01-01 | - |
dc.identifier.doi | 10.2478/s13540-013-0005-z | pt |
Appears in Collections: | CIDMA - Artigos DMat - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
[250]Odzijewicz_Malinowska_Torres.pdf | 501.94 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.