Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/11900
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOdzijewicz, T.pt
dc.contributor.authorMalinowska, A.B.pt
dc.contributor.authorTorres, D.F.M.pt
dc.date.accessioned2014-02-27T13:15:29Z-
dc.date.issued2012-11-
dc.identifier.issn0898-1221pt
dc.identifier.urihttp://hdl.handle.net/10773/11900-
dc.description.abstractWe study operators that are generalizations of the classical Riemann-Liouville fractional integral, and of the Riemann-Liouville and Caputo fractional derivatives. A useful formula relating the generalized fractional derivatives is proved, as well as three relations of fractional integration by parts that change the parameter set of the given operator into its dual. Such results are explored in the context of dynamic optimization, by considering problems of the calculus of variations with general fractional operators. Necessary optimality conditions of Euler-Lagrange type and natural boundary conditions for unconstrained and constrained problems are investigated. Interesting results are obtained even in the particular case when the generalized operators are reduced to be the standard fractional derivatives in the sense of Riemann-Liouville or Caputo. As an application we provide a class of variational problems with an arbitrary kernel that give answer to the important coherence embedding problem. Illustrative optimization problems are considered.pt
dc.language.isoengpt
dc.publisherElsevierpt
dc.relationPEst-C/MAT/UI4106/2011pt
dc.relationFCOMP-01-0124-FEDER-022690pt
dc.relationSFRH/BD/33865/2009pt
dc.relationS/WI/02/2011pt
dc.relationPTDC/MAT/113470/2009pt
dc.rightsrestrictedAccesspor
dc.subjectCalculus of variationspt
dc.subjectCoherent embeddingpt
dc.subjectFractional operatorspt
dc.subjectGeneralized fractional calculuspt
dc.subjectIntegration by partspt
dc.subjectNecessary optimality conditionspt
dc.subjectCoherent embeddingpt
dc.subjectFractional calculuspt
dc.subjectDifferentiation (calculus)pt
dc.subjectCalculationspt
dc.titleGeneralized fractional calculus with applications to the calculus of variationspt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage3351pt
degois.publication.issue10pt
degois.publication.issue10
degois.publication.lastPage3366pt
degois.publication.titleComputers and Mathematics with Applicationspt
degois.publication.volume64pt
dc.date.embargo10000-01-01-
dc.identifier.doi10.1016/j.camwa.2012.01.073pt
Appears in Collections:CIDMA - Artigos
DMat - Artigos

Files in This Item:
File Description SizeFormat 
[226]Generalized_frac_cal.pdf281.34 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.