Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/11899
Title: Existence and uniqueness of solutions to functional integro-differential fractional equations
Author: Ammi, M.R.S.
El Kinani, E.H.
Torres, D.F.M.
Keywords: Fixed point theorem
Fractional calculus
Lipschitz condition
Riemann-Liouville operator
Issue Date: 2012
Publisher: Texas State University, Department of Mathematics
Abstract: Using a fixed point theorem in a Banach algebra, we prove an existence result for a fractional functional differential equation in the Riemann- Liouville sense. Dependence of solutions with respect to initial data and an uniqueness result are also obtained.
Peer review: yes
URI: http://hdl.handle.net/10773/11899
ISSN: 1072-6691
Publisher Version: http://ejde.math.txstate.edu/
Appears in Collections:CIDMA - Artigos
DMat - Artigos

Files in This Item:
File Description SizeFormat 
[240]EJDE-Sidi-Ammi_El-Kinani_Torres.pdf211.46 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.