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O gene ataxin-3 (ATXN3; 14q32.1) codifica uma proteína expressa 
ubiquamente, envolvida na via ubiquitina-proteassoma e na repressão da 
transcrição. Grande relevância tem sido dada ao gene ATXN3 após a 
identificação de uma expansão (CAG)n na sua região codificante, responsável 
pela ataxia mais comum em todo o mundo, SCA3 ou doença de Machado-
Joseph (DMJ). A DMJ é uma doença neurodegenerativa, autossómica 
dominante, de início tardio. O tamanho do alelo expandido explica apenas 
uma parte do pleomorfismo da doença, evidenciando a importância do estudo 
de outros modificadores. Em doenças de poliglutaminas (poliQ), a toxicidade 
é causada por um ganho de função da proteína expandida; no entanto, a 
proteína normal parece ser, também, um dos agentes modificadores da 
patogénese. O gene ATXN3 possui dois parálogos humanos gerados por 
retrotransposição: ataxin-3 like (ATXN3L) no cromossoma X, e 
LOC100132280, ainda não caracterizado, no cromossoma 8. Estudos in vitro 
evidenciaram a capacidade da ATXN3L para clivar cadeias de ubiquitina, 
sendo o seu domínio proteolítico mais eficiente do que o domínio da ATXN3 
parental.  
O objetivo deste estudo foi explorar a origem e a evolução das retrocópias 
ATXN3L e LOC100132280 (aqui denominadas ATXN3L1 e ATXN3L2), assim 
como testar a relevância funcional de ambas através de abordagens 
evolutivas e funcionais. Deste modo, para estudar a divergência evolutiva dos 
páralogos do gene ATXN3: 1) analisaram-se as suas filogenias e estimou-se 
a data de origem dos eventos de retrotransposição; 2) avaliaram-se as 
pressões seletivas a que têm sido sujeitos os três parálogos, ao longo da 
evolução dos primatas; e 3) explorou-se a evolução das repetições CAG, 
localizadas em três contextos genómicos diferentes, provavelmente sujeitos a 
diferentes pressões seletivas. Finalmente, para o retrogene que conserva 
uma open reading frame (ORF) intacta, ATXN3L1, analisou-se, in silico, a 
conservação dos locais e domínios proteicos da putativa proteína. Ademais, 
para este retrogene, foi estudado o padrão de expressão de mRNA, através 
da realização de PCR de Transcriptase Reversa, em 16 tecidos humanos.  
Os resultados obtidos sugerem que dois eventos independentes de 
retrotransposição estiveram na origem dos retrogenes ATXN3L1 e ATXN3L2, 
tendo o primeiro ocorrido há cerca de 63 milhões de anos (Ma) e o segundo 
após a divisão Platirrínios-Catarrínios, há cerca de 35 Ma. Adicionalmente, 
outras retrocópias foram encontradas em primatas e outros mamíferos, 
correspondendo, no entanto, a eventos mais recentes e independentes de 
retrotransposição. A abordagem evolutiva mostrou a existência de algumas 
constrições selectivas associadas à evolução do gene ATXN3L1, à 
semelhança do que acontece com ATXN3. Por outro lado, ATXN3L2 adquiriu 
codões stop prematuros que, muito provavelmente, o tornaram num 
pseudogene processado. Os resultados da análise de expressão mostraram 
que o gene ATXN3L1 é transcrito, pelo menos, em testículo humano; no 
entanto, a optimização final da amplificação específica dos transcriptos 
ATXN3L1 permitirá confirmar se a expressão se estende a outros tecidos. 
Relativamente ao mecanismo de mutação inerente à repetição CAG, os dois 
parálogos mostraram diferentes padrões de evolução: a retrocópia ATXN3L1 
é altamente interrompida e pouco polimórfica, enquanto a ATXN3L2   
apresenta tratos puros de (CAG)n em algumas espécies e tratos 
hexanucleotídicos de CGGCAG no homem e no chimpanzé. A recente 
aquisição da repetição CGGCAG pode  ter  resultado de  uma mutação inicial 



 

 
 

de CAG para CGG, seguida de instabilidade que proporcionou a expansão 

dos hexanucleótidos.Estudos futuros poderão ser realizados no sentido de 

confirmar o padrão de expressão do gene ATXN3L1 e de detetar proteína 

endógena in vivo. Adicionalmente, a caracterização da proteina ataxina-3 like 

1 e dos seus interatores moleculares poderá povidenciar informação acerca 

da sua relevância no estado normal e patológico. 
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abstract 
 

Ataxin-3 gene (ATXN3; 14q32.1) encodes a ubiquitously expressed protein 
involved in the ubiquitin-proteasome pathway and in transcription repression. 
Much attention has been given to ATXN3 since the identification of an 
expanded (CAG)n tract in its coding region, responsible for the most common 
dominant ataxia worldwide, SCA3 or Machado-Joseph disease (MJD). MJD is 
an autosomal dominant, late-onset neurodegenerative disorder. The size of the 
expanded allele explains only part of the disease pleomorphism, highlighting 
the importance of studying other modifiers. In polyglutamine (polyQ) diseases, 
toxicity is caused by gain of function of the expanded protein; however, the 
normal protein appears to be one of the pathogenesis-modifying agents. 
The gene ataxin-3 has two human paralogues, generated by retrotransposition: 
ataxin-3 like (ATXN3L) on the X chromosome of humans and the yet 
uncharacterized LOC100132280 on chromosome 8. An in vitro study showed 
the ability of ATXN3L to cleave ubiquitin from their substrates, with its 
proteolytic domain even more efficient than the domain of the parental ATXN3.  
The aim of this study was to explore the origin and evolution of ATXN3L and 
LOC100132280 retrocopies (here named ATXN3L1 and ATXN3L2) and to test 
the functional relevance of both human paralogues through evolutionary and 
functional approaches. Thus, to study the evolutionary divergence of ATXN3 
paralogues, we have 1) analysed their phylogeny and estimated the time of the 
retrotransposition events; 2) assessed the selective constraints that have been 
underlying all the three paralogues over primate evolution; and 3) explored the 
evolution of the (CAG)n tracts placed on three different chromosomal 
backgrounds within paralogue genes that have, probably, been under different 
selective pressures. Finally, for the retrogene that conserved the ORF, 
ATXN3L1, we analyzed the protein domain conservation and the mRNA 
expression pattern by performing Reverse Transcriptase-PCR in 16 human 
tissues.  
Our results suggested that two independent retrotransposition events have 
been on the origin of ATXN3L1 and ATXN3L2, the first occurred about 63 
million years ago (MYA) and the second after the Platyrrhini-Catarrhini split, 
about 35 MYA. In addition, several other retrocopies have been found in 
primates and other mammals, but additional independent and younger 
retrotransposition events seemed to be on their origin. Our evolutionary studies 
suggested that ATXN3L1 has been under some selective constrains over 
primate evolution, as the parental ATXN3. ATXN3L2 gained premature stop 
codons that seem to have turned it into a pseudogene. In addition, we 
confirmed that ATXN3L1 is a transcriptionally-active retrogene since we 
observed mRNA expression, at least, in human testis. A refined optimization of 
the methodology to specifically amplify ATXN3L1 cDNA will be, however, 
necessary to assess the complete expression pattern of this retrogene. As for 
the (CAG)n tract, the ATXN3 paralogues presented different evolutionary 
patterns: ATXN3L1 showed a poorly polymorphic and highly interrupted tract 
across the primate lineage, whereas ATXN3L2 presented a pure (CAG)n in 
some species and a polymorphic hexanucleotide repeat in humans and 
chimpanzees. This recent acquisition of a repetitive CGGCAG resulted, 
probably, from a CAG to CGG mutation followed by instability that 
encompassed the six bases instead of the CAG alone.  
Future studies may be performed in order to confirm the expression pattern of 
ATXN3L1 and to detect the endogenous protein in vivo. Further 
characterization of ataxin-3 like 1 and its molecular interactors will give us 
insight into the actual relevance of this protein in normal and/or pathological 
states.  
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Chapter 1 

Introduction 

New genes are thought to contribute to the origin of adaptive evolutionary innovations and, 

thus, to lineage- or species-specific phenotypic traits. Traditionally, the origin of these new genes 

is associated with gene duplication, but other mechanisms have recently received increasing 

attention, such as retrotransposition, which may play an important role in mammal genome 

evolution.1, 2, 3 Retrotransposition consists in the re-integration of reverse transcribed mRNA 

molecules in the genome.4 At the sequence level, retroposed copies (retrocopies) can be intact or 

not, depending on the presence of mutations or premature stop codons. Still, if the open reading 

frame is conserved, retrocopies lack many of the genetic features of their parental genes (such as 

introns and regulatory elements) and, for this reason, they have been considered as confounding 

factors for a long time. Most retrocopies turned into pseudogenes in mammals, but some of them 

have recruited upstream regulatory elements and became functional (these are commonly called 

retrogenes).5 Indeed, many recent studies have shown that a larger part of retrotransposons than 

the previously predicted are functional, and that they can modulate other pre-existing cellular 

factors.1, 5  

This thesis project is focused on the study of two retrocopies of ataxin-3 (ATXN3), a 

ubiquitously expressed gene that codes a protein mainly involved in deubiquitination and in 

transcription repression. ATXN3 is also the gene responsible for Machado-Joseph disease (MJD), 

when its coding repetitive CAG tract is expanded above 61 repeats. MJD or spinocerebellar ataxia 

type 3 (SCA3) is a late-onset neurodegenerative disorder, characterized by a large pleomorphism. 

Thus, the search for disease modifiers has been a major point of interest in this disorder. 

The origin, features and functional relevance of the poorly studied ATXN3 retrocopies, ATXN3L 

and LOC100132280 (here named ATXN3L1 and ATXN3L2, respectively) remain completely 

unexplored until these days. With this project we aimed at characterizing ataxin-3 paralogues in 

the human genome and throughout the evolution to gain insight into the potential roles that they 

have been playing. 
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1.1 - Mechanisms of retroposition 

The key retrotransposition enzyme stems from different types of retrotransposable elements, 

depending on the organism. These elements can be subdivided in two groups, distinguished by 

the presence or absence of long terminal repeats (LTRs). In humans, LTR elements are 

endogenous retroviruses (HERVs), presently with very limited activity, which accounts for only 

~8% of the genome. On the other hand,  human non-LTRs include long interspersed nuclear 

element 1 (LINE 1 or L1), Alu and SVA (an element composed of a short interspersed region, a 

variable number of tandem repeats region and an Alu-like region - SINE/VNTR/Alu) elements, 

which collectively account for approximately one-third of the human genome (Figure 1).6   

 

 

 

L1, widely present in mammals (about 25% of their genome), are responsible for a burst on 

the number of retrocopies in mammalian lineages.2 These retrotransposable elements possess a 

reverse transcriptase and a endonuclease activity that can recognize any polyadenylated mRNA.7
 

After gene transcription, the respective RNA is reverse-transcribed into DNA by the L1 elements, 

and the resulting cDNA is inserted into the genome at a new location (Figure 2).4, 7  

Figure 1 - Transposable and non-transposable element content 
of the human genome. About 33.7% of the human genome can 

currently be recognized as being derived from non-LTR 
retrotransposable elements (Cordaux et al., 2009).6 
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Figure 2 - Retrotransposition mechanism: a) retroposition is initiated with the transcription of a parental 
gene by RNA polymerase; b) a mature mRNA is produced, with the processing of the resulting RNA (by splicing 

and polyadenylation); c) L1 endonuclease domain (pink rectangle) mediates retroposition, by creating a first nick 
(yellow star) at the genomic site of insertion at the TTAAAA target sequence; d) this nick enables the mRNA to be 

primed for reverse transcription by the L1 reverse transcriptase domain (pink oval), which uses the parental 
mRNA as a template; e) second-strand nick generation, f) second DNA-strand synthesis; g) cDNA synthesis in the 

overhang regions created by the two nicks. (adapted from Kaessmann, 2009)1 
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To become expressed at a significant level and in a meaningful way, a new retrogene needs to 

obtain a core promoter and probably other elements, such as enhancers, that regulate its 

expression.1 Generally, the expression of a retrocopy might benefit from: 1) its insertion into 

intronic sequences of host genes, enabling it to be integrated into new splice variants of the host 

gene; 2) its insertion into actively transcribed regions with an open chromatin structure, as this 

increases accessibility for the transcriptional machinery; 3) the recruitment of distant promoters 

in the genomic neighbourhood via the acquisition of a new untranslated exon–intron structure; 4) 

the recruitment of proto-promoters from retrotransposons or CpG island; 5) the inheritance of 

parental promoters through alternative transcriptional start sites used by the parental gene; and 

6) de novo promoter evolution in the upstream flanking region of the insertion site by single 

nucleotide substitutions.1, 5 Since retroposed copies often need to recruit regulatory elements to 

become transcribed, they are prone to accumulate genetic variants and to evolve new expression 

patterns relatively to the traditional gene duplication. As a consequence, novel functional roles 

can emerge from the transcription of new formed retrogenes.1 Studies have revealed that 

retrogenes seem to evolve biased functions related to male functions, but others functions have 

also been described, for example, related to  the brain. 8, 9  

In addition, to be heritable and hence of evolutionary relevance, retrotransposition needs to 

occur in the germ line. The fact that retrotransposition relies on duplication through an mRNA 

intermediate implies that only genes expressed in the germ line can be the source of new 

retrocopies.1  

1.2- Machado-Joseph disease 

1.2.1 - Clinical presentation and epidemiology  

Machado-Joseph disease (MJD, also called spinocerebellar ataxia type 3, SCA3) is the most 

common type of spinocerebellar ataxia. SCAs are a large and complex group of late-onset 

diseases, characterized by progressive cerebellar dysfunction of afferent and efferent pathways, 

variably associated with other symptoms of the central and peripheral nervous systems. Other 

nervous system structures affected include the basal ganglia, brainstem nuclei, pyramidal tracts 

and post superior column and anterior horn of the spinal cord, as well as peripheral nerves.10, 11 

Although there are sporadic forms of ataxia, the term SCA is most often used to refer the 
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hereditary forms, and in particular the autosomal dominant ataxias.8 Nearly 30 subtypes of SCAs 

have been described, differently classified based on the underlying causative mutation. MJD is 

one of the polyglutamine diseases since the causative mutation is a CAG repeat expansion in 

ATXN3 gene, which encodes a stretch of glutamine amino acids in the corresponding protein.12, 13  

In the particular case of MJD, the major signs are the progressive cerebellar ataxia and 

pyramidal signs. Minor, but more specific, features are external progressive ophtalmoplegia, 

dystonia, intention fasciculation-like movements of facial and lingual muscles, as well as bulging 

eyes but these symptoms can vary among patients. The mean age at onset (AO) of the disease is 

around 40 years, although it can vary greatly, with extremes of 4 and 70 years.11 The mean 

survival time is 21 years (ranging from 7 to 29).14 Thus, MJD is characterized by a high degree of 

pleomorphism, not only in the variability of the AO, but also in the neurological signs presented 

and in the resulting degree of incapacity.10, 15  

SCAs are considered rare disorders, with estimated prevalence described as varying from 0.3 

to 2.0 per 100,000 individuals. The relative frequency of MJD among SCAs varies also largely 

among populations. It is higher in Brazil (69-92%),16 Portugal (58-74%),17 Singapore (53%),18 China 

(48-49%),19 the Netherlands (44%),20 Germany (42%)21 and Japan (28-63%)22 but even within each 

country, the geographic distribution pattern of MJD is not homogeneous.  

Haplotype-based studies have suggested that two independent-origin mutations may explain 

the current worldwide geographic distribution of MJD. The first occurred about 6000 years ago in 

Asia (TTACAC or Joseph lineage, observed in the 5 continents); and the most recent, with less than 

2000 years old, is responsible for the presence of MJD in Portugal (together with the most ancient 

mutation) and in a few other populations mostly linked to Portugal (GTGGCA or Machado 

lineage).23  

1.2.2 - Molecular genetics and pathogenesis  

ATXN3 gene 

ATXN3 was located in the long arm of chromosome 14 (14q32.1), by Takiyama in 1993.24 The 

genomic structure of ATXN3 spans about 48 kb, with the most frequent transcript containing 11 

exons.25 Two additional exons, 6a and 9a, have recently been described (Figure 3).26  

 



University of Aveiro – Master’s in Molecular Biomedicine 
IPATIMUP 
2012 
 

12 

 

 

 

 

 

 

 

The expansion of a (CAG)n tract within ATXN3 exon 10 is the causative mutation of MJD.27 

Usually, wild-type alleles range from 12 to 44 CAG repeats, whereas expanded alleles comprise 61 

to 87 CAGs. Intermediate size alleles are rare, and their role in disease presentation is still under 

debate.28, 29  The size of the expansion has been found, until date, the parameter that best 

correlates with the AO of patients; however, it explains only 45-76% of AO variability suggesting a 

major influence of other factors.30, 31 Gender was initially proposed to be one of these factors32, 

but this was later contradicted, as familial factors were suggested to mask the gender effect.33 It 

was demonstrated, instead, that variation in AO accounted for an effect common to a sibship, 

independently of the CAG repeat length. Less controversial is the dosage effect on disease 

presentation: homozygous patients with two mutant alleles show, most frequently, a more severe 

disease phenotype, with earlier onset than those presenting only one mutated allele.34  

The process underlying the (CAG)n instability across successive generations is currently 

thought to involve the generation of abnormal DNA structures in replication slippage, as well as 

DNA repair and recombination, acting either separately or in combination.35 

Mechanisms of ATXN3 mutation  

The ATXN3 gene is present in a large range of living organisms, but the expansion seems to 

have occurred only in the human lineage, after the divergence from other hominids. A recent 

study in human ATXN3 has shown a bimodal distribution of (CAG)n alleles for all most frequent 

stable SNP-defined haplotypes. When flanking STR diversity was compared between modal (CAG)n 

alleles within each lineage, little differences have been noticed while alleles one or two repeats 

apart showed much higher genetic distances. Based on these results, a multistep mutation 

mechanism was suggested for the evolution of this locus in humans.36 Little is known, however, 

Figure 3 - ATXN3 gene structure, representing the first described exons and the two new exons: 6a and 
9a; the (CAG)n tract is localized in the exon 10. Transcribed regions are represented in blue, and not-

transcribed and UTR regions in grey.   (adapted from Bettencourt, 2011)13 
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about the mutation process underlying the evolution and instability over mammalian and even 

primate evolution that led to the currently observed (CAG)n tract configuration and level of 

polymorphism. In Pan troglodytes, Gorilla gorilla, Mus musculus and Gallus gallus, the repetitive 

tract in the ATXN3 gene is conserved, but shorter than in the human homologue.37  

Ataxin-3 protein and its physiologic role  

The ATXN3 gene encodes for ataxin-3, a protein with an approximate molecular weight of 42 

kDa (in its longest form) that is ubiquitously expressed in neuronal and non-neuronal tissues.25, 38  

In the human brain, ataxin-3 is widely expressed in different regions, with variable expression 

levels. Granular layer and purkinje cells of cerebellum, hippocampus, striatum and pyramidal cells 

of motor cortex seems to be the regions of higher expression levels, whereas mesencephalon 

(substantia nigra pars compacta), occipital cortex, globus pallidus (internal and external) and 

white matter of cerebellum present lower expression patterns.25, 38 In the Drosophila model, 

increased levels of the mutant ATXN3 expression have been shown to underlie more severe 

degeneration and earlier onset of protein accumulation, suggesting that abnormal accumulation 

of the mutant protein is central to disease and degeneration.39  

At the cellular level, ATXN3 was found to be present in the cytoplasm (mitochondria included) 

and nucleus, with varying degrees of predominance depending on the cell type.40, 41 In human 

brain cells, ATXN3 is present mainly in the perikarya, but it was also detected on proximal 

processes, axons and nuclei. This heterogeneity suggests that the regulation of ATXN3 expression 

levels and localization may have functional relevance.38 

ATXN3 participates in cellular protein quality control pathways but its biological function has 

not yet been completely understood. Studies in knockout mice for ATXN3 have demonstrated a 

cytoplasmic increase in ubiquitinated proteins, supporting an in vivo role of this protein in the 

ubiquitin/proteasome pathway as a deubiquitinating enzime (DUB).42, 43 The covalent attachment 

of ubiquitin to a protein is a reversible signal that can alter a protein’s function, control its 

trafficking, or mark it for degradation. Once attached, ubiquitin can be removed by DUBs, thereby 

generating a dynamic balance in ubiquitin signaling pathways.44 Ataxin-3 can also regulate its own 

cellular turnover in a ubiquitin-dependent manner; abolition of its catalytic activity disrupts this 

regulation.45 Hence, it is clear that ataxin-3 DUB activity is physiologically relevant. In addition, 

MJD mouse models have shown transcriptional deregulation, confirming a possible important role 

of ATXN3 in transcription.46 
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ATXN3 has a papain-like fold and is essentially composed by a structured globular N-terminal 

domain, followed by a flexible unfolded C-terminal tail. The N-terminal domain, designed Josephin 

domain (JD), displays ubiquitin (Ub) protease activity, while the flexible tail presents two or three 

Ub-interacting motifs (UIMs), depending on the isoform, and a polyQ region of variable length.47, 

48 Notably, the most common isoform found in the human brain has three UIMs in the C-terminal 

region (Figure 4).49  The highly conserved catalytic triad on the Josephin domain possesses the 

predicted catalytic aminoacids found in cysteine proteases: Cys14, His119 and Asn134.50 Two 

other serine residues are important in the UIM regions for the interaction with Ub: Ser232 in 

UIM1 and Ser260 in UIM2.51 

The Josephin domain is shared by three other human proteins (Ataxin-3 like, ATXN3L; 

Josephin-1, JOSD1; and Josephin-2, JOSD2), which together with ATXN3 form the Josephin family 

of DUBs.52  

 

 

 

A total of 56 human alternative splicing variants of ATXN3 have been identified with, at least, 

21 isoforms expected to be translated. The biological relevance of all these variants remains 

unknown.13, 53  

Polyglutamine expansion of ATXN3 and neural cell death  

The expanded ATXN3 gains a neurotoxic function through yet unclear mechanisms. In brains 

of MJD patients, ATXN3 forms nuclear inclusions (NI) present only in neurons, however, more 

recently axonal inclusions have also been observed in fibers known to degenerate.41 It is known, 

however, that this toxicity is linked to abnormal folding and aggregation of the mutant protein to 

itself as to other members of the cell quality control system, like proteasome constituents, 

ubiquitin and molecular chaperones.54, 55 Additionally, intracellular inclusions have been linked to 

the disease pathogenesis as a major means of gain of toxicity  by the expanded protein, through 

several possible mechanisms: a) hindrance of transcription, by direct decrease of gene expression 

regulation or through sequestration of other molecules involved in transcription regulation;56 b) 

transcription alteration via formation of histone-deacetylating repressor complexes on target 

Figure 4 - Ataxin-3 protein structure. UIM – ubiquitin interacting motif; PolyQ – poly-glutamine tract. 
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chromatin regions;57, 58 c) interference in the axonal transport, resulted from motor protein 

titration and physical blocking;59 and d) other disturbances caused by the recruitment of Ub-

binding proteins (since inclusions are heavily ubiquitinated) or other polyQ-containing proteins.60 

In contrast, NI have been recently suggested to play a protective role on MJD by sequestering the 

mutant proteins from the toxic interactions.61 

Although the polyQ expansion appears to be the triggering factor leading to the development 

of MJD, ATXN3 regions outside the polyQ, as well as other protein properties seem also to define 

the development of MJD and its particular aspects.  In animal and cellular models, the C-terminal 

fragment of expanded ataxin-3 alone was shown to be more toxic than the full-length protein, 

suggesting that ataxin-3 cleavage might be a contributor factor for the MJD pathology.62-64 Indeed, 

the ataxin-3 expanded polyQ tract was shown to exhibit several potential cleavage sites for 

caspases.65 Another study has also demonstrated a possible involvement of the N-terminal on 

MJD pathogenesis, since a mutant mouse model with an ATXN3 truncated form, containing only 

its N-terminal, presented typical neurological symptoms.66  

Therefore, clinical variability of MJD is only partially explained by the size of the (CAG)n tract 

and by the ATXN3 protein itself, which leaves a residual variance that should be explained by 

other unknown factors. In addition to the wild-type protein, the three other JD-like containing 

proteins may exert similar functions to ATXN3 and compensate for its absence in knockout 

models.52, 67 In fact, several studies on animal models have shown the importance of the normal 

non-mutated protein in the MJD pathogenesis. An interesting feature of non-expanded ataxin-3 is 

that it is also recruited to NI in several PoliQ diseases.68 In the Drosophila model, for example, 

normal ATXN3 has a neurodegeneration repression effect in vivo (a protective role) by retarding 

and reducing the accumulation of the pathogenic protein. This suppressor activity requires 

ubiquitin-associated activities at the normal protein, since, by mutating the two most important 

serine residues in UIM1 and UIM2 (Ser232 and Ser260, respectively), the ability of ataxin-3 to 

suppress degeneration become compromised.69   

1. 3 – Studies on the relevance of ataxin paralogues in SCAs 

Studies focusing on the modulation of parental genes by the respective expressed paralogues 

may be important to gain insight into the mechanisms by which ATXN3 retrocopies may be 

functional relevant. The gene responsible for spinocerebellar ataxia type 1 (SCA1), ATXN1, has an 
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evolutionary conserved paralogue called ATXN1-like. Recent studies in fly and mouse models have 

shown that the overexpression of ATXN1L partially suppresses the neuropathology caused by the 

polyglutamine-expanded ATXN1, by inducing sequestration of polyglutamine-expanded ATXN1 

into nuclear inclusions.70, 71 Similarly to MJD, molecular and genetic data suggested that SCA1 

pathogenesis is caused by a gain of function mechanism, while other studies have shown, 

however, that the deletion of wild-type protein enhances disease pathogenesis. In SCA1, 

additionally, it has been suggested that increased levels of the ATXN1L retrogene ameliorate the 

clinical phenotype. These data indicated that both gain and partial loss of function may contribute 

to the disease progress, with the partial loss of ATXN1 alone being sufficient to cause some 

transcriptional changes that are pathogenic in the cerebellum.70  

The mechanism underlying the functional relevance of ATXN1L may be related to the shared 

protein interactions by ATXN1 and ATXN1L. The two proteins were shown to share the 

transcriptional regulator Capicua (CIC) that is known to form complexes (Atxn1-CIC and Atxn1L-

CIC) that bind the promoters of target genes, repressing them effectively. Thus, in ATXN1-/- mice, 

the overexpression of ATXN1L rescues the level of stable complexes with CIC, maintaining its 

function as a transcription repressor. This mechanism is an evidence that transcribed paralogues 

can, in some degree, replace the loss-of-function observed in SCA1.70 Additionally, it was 

proposed that, as ATXN1L compete with wild-type and mutant ATXN1 for association with CIC, the 

increased levels of free mutant ATXN1 lead to an increase of aggregation and nuclear inclusions. 

70, 71 This data provide genetic evidence that evolutionary conserved paralogues may have an 

important role in the mechanisms of pathogenesis of neurodegenerative diseases. 

As for ATXN3 and MJD/SCA3, Weeks (2011) performed an in vitro study of the human ATXN3L 

retrocopy (here named ATXN3L1) by analysing the crystal structure of its predicted protein.52 The 

authors found that although ataxin-3 and ATXN3L adopt similar folds, they bind ubiquitin in 

different, overlapping sites. Additionally, by mutating ataxin-3 at selected positions (and 

introducing the corresponding ATXN3L residue), only three mutations were sufficient to increase 

the catalytic activity of ataxin-3. This suggested that ATXN3L Josephin domain could be 

significantly more efficient than the ataxin-3 domain itself, opening a broad road for further 

research concerning the study of this ATXN3 paralogue.  
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Aims  

Two human copies of the ATXN3 gene, formed by retrotransposition events, were recently 

discovered and annotated in databases. However, they remain unexplored as their description 

has not been received much attention. Therefore, we wanted to better characterize these 

retrocopies since, if transcribed, they may play a role in the pathogenesis of MJD.  Additionally, by 

comparing the (CAG)n tracts among the 3 paralogue sequences, we hope to gain insight into the 

repeat expansion mechanism that occurred at ATXN3 in the human lineage.  

Therefore, the aims of this project were: 

1) to estimate the onset of the retrotransposition events that originated the two human 

ATXN3 paralogues;  

2) to compare the rates of evolution and selective constrains underlying the three ATXN3 

paralogues throughout the primate lineage;  

3) to gain insight into the mechanisms that led to the human-specific (CAG)n expansion and 

tract configuration  of  ATXN3; and 

4) to investigate if the human ATXN3 paralogues are transcribed and, if so, their mRNA 

transcription pattern. 
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Chapter 2 

Material and methods  

To achieve the aims of this project, an evolutionary approach (Part 1) was firstly performed, 

followed by functional assays (Part 2).  We have done evolutionary studies to compare the rates 

of evolution and selective constrains among ATXN3, ATXN3L1 and ATXN3L2 genes, and to date 

the onset of the retrotransposition events. We started by aligning homologous sequences from 

several primate species (followed by more distant mammals) available in databases. Afterwards, 

we calculated genetic distances and determined both the origin of ATXN3 retrocopies and the 

underlying selective pressures throughout evolution. In Part 2, we started by comparing the Open 

Reading Frames (ORFs) among ataxin-3 paralogues. For ATXN3L1, which showed a conserved ORF, 

we assessed the mRNA expression pattern in different human tissues, by Reverse Transcriptase-

PCR (RT-PCR). The two approaches, Part 1 and Part 2, are described below in detail. As it was 

previously referred, ATXN3 paralogues, described as ATXN3L and LOC100132280, will be named 

as ataxin-3 like 1 (ATXN3L1) and ataxin-3 like 2 (ATXN3L2), respectively, for easier reading. 

Subjects 

We analysed a total of 49 healthy human subjects from European (n=6) and Asian (n=43) 

origins. DNA samples were available at our lab, previously coded to ensure confidentiality. 

Informed consent was provided by all individuals. 

As for non-human primate species, we analysed DNA samples from Pan troglodytes 

(chimpanzee) (n=2), Gorilla gorilla (gorilla) (n=3), Pongo abelii (orangutan) (n=2), Macaca mulatta 

(rhesus monkey) (n=5), Macaca fascicularis (cynomolgus monkey) (n=3), Callithrix jacchus 

(marmoset) (n=3) and Papio (baboon) (n=3). DNA was quantified with NanoDrop 

spectrophotometer (Thermo Scientific) to further make work aliquots with a DNA concentration 

of approximately 30 ng/µL.  
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Part 1 – Evolutionary approach  

Compilation and alignment of ATXN3L1 and ATXN3L2 sequences  

To study the origin of the retrotransposition events, we first needed to identify ATXN3 

paralogues in public databases. We started by searching for annotated ATXN3L1 and ATXN3L2 

orthologues in primates and other mammalian species. Sequences of ATXNL1 were available in 

Ensembl database (http://www.ensembl.org/) for Homo sapiens, Pan troglodytes, Pongo abelii, 

Macaca mulatta, Callithrix jacchus and Nomascus leucogenys. The sequence from human 

ATXN3L2, termed LOC100132280, was obtained from the National Center for Biotechnology 

Information (NCBI) database (http://www.ncbi.nlm.nih.gov/), but no other annotated orthologues 

were found in either Ensembl or NCBI Gene databases. Therefore, we performed BLAT and BLAST 

algorithms provided by University of California, Santa Cruz (UCSC) Genome Browser 

(http://genome.ucsc.edu/) and NCBI databases, respectively. This way, we obtained not yet 

annotated homologous sequences of ATXN3L2 in the genome of several primate species. 

Following the same strategy, we searched for additional ATXN3L1 sequences of primate species 

not retrieved from Ensemble. The same approach was also applied to search for ATXN3L1 and 

ATXN3L2 orthologues in other mammals; in this case, however, we used mostly the Trace 

Archives specialized search of BLAST algorithm (NCBI).  

 The alignment of the collected sequences (coding regions for ATXN3) was performed in 

Geneious Pro, 5.5.6 software and the homology (percentages of pairwise identity and identical 

sites) between sequences was obtained among paralogues of primate species. This allowed to 

discern whether two independent retrotransposition events occurred or, alternatively, one of the 

copies duplicated from the most ancient retrocopy. 

 Next, to identify the transcript(s) of the parental gene involved in the retrotransposition 

events, we aligned ATXN3L1 and ATXN3L2 with the 21 protein coding transcripts described for 

ATXN3. Transcripts were retrieved from Ensembl: ATXN3-001, ATXN3-003, ATXN3-004, ATXN3-

005, ATXN3-008, ATXN3-015, ATXN3-017, ATXN3-019, ATXN3-020, ATXN3-026, ATXN3-029, 

ATXN3-032, ATXN3-201, ATXN3-202, ATXN3-203, ATXN3-204, ATXN3-205, ATXN3-206, ATXN3-

207, ATXN3-208 and ATXN3-209. In humans, ATXN3-001 has been described as the most common 

transcript, followed by ATXN3-003, 004 and 005. 
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Phylogenetic trees and genetic distances   

 Based on the aligned sequences, we calculated genetic distances among orthologues and 

paralogues, and constructed phylogenetic trees for all species, by using the same software, 

Geneious Pro 5.5.6. To build the trees, we applied the Neighbor-Joining method and the Tamura-

Nei genetic distance model (chicken, Gallus gallus, was included as outgroup). This approach was 

performed to identify ATXN3L1 and ATXN3L2 orthologues. Since the Josephin domain is the most 

conserved region of ATXN3 and the (CAG)n region is usually a source of much variation, we 

assessed genetic distances and built phylogenetic trees for all three paralogues by using: 1) the 

entire sequences; 2) the sequences without the (CAG)n tract; and 3) the Josephin domain alone. 

Synteny of ATXN3, ATXN3L1 and ATXN3L2  

We analysed the genes flanking ATXN3, ATXN3L1 and ATXN3L2 in a region of, at least, 600000 

base pairs (bp) to elucidate if these regions were conserved along the primate lineage, confirming 

thus gene orthologies. This was performed by using NCBI Gene database, UCGC Genome Brower 

genomes and Ensembl Synteny analyses. If two flanking regions of a given gene have obvious 

collinear genomic features, they are syntenous. From this information, therefore, we can 

conclude that predicted orthologue genes having syntenous flanking regions have higher 

probability to be real orthologues. In addition, the same approach was applied to analyse 

sequences of non-primate mammals: their flanking regions were compared to those retrieved 

from primates in order to identify if they were ancestral retrocopies of ATXN3L1 and/or ATXN3L2, 

or alternatively, originated from independent retrotransposition events.  

dN/dS ratio (omega) calculations 

Evolutionary pressures on proteins can be quantified by the ratio of substitution rates at non-

synonymous and synonymous sites. We calculated dN/dS values (omega) of ATXN3 and ATXN3L1 

genes for different primate species, using the DnaSP v5 software. The dN value represents the 

rate of non-synonymous substitutions (nucleotide changes that result in amino acid alterations) 

per site, whereas dS is the rate of synonymous substitutions (silent alterations that do not change 

the amino acid residue). Thus, a dN/dS ratio (omega) is expected to exceed unity if substitutions 

are equally frequent at all three codon positions, indicating that no constrains have been 

underlying the gene. On the other hand, omega less than unity is expected if selection suppresses 

protein changes, suggesting that the gene function has been kept in check. These calculations 
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allowed us to compare the selective constrains that have been underlying ATXN3 paralogues in 

several lineages of primates. As ATXN3L2 presented a disrupted ORF, with the start codon 

mutated and several premature stop codons, we did not proceed with this calculation for this 

retrocopy.  

Primer design, DNA amplification and sequencing 

Based on the alignment of gene orthologues, primers were designed to specifically amplify 

ATXN3 (exonic regions), ATXN3L1 and ATXN3L2 in all primate species. Exons of ATXN3 annotated 

in NCBI database represent only those included in the most frequent transcript (11 exons). When 

analysing all ATXN3 protein coding transcripts represented in Ensembl data base, we retrieved 

other exons transcribed only in some transcripts (protein coding) and others only predicted to be 

transcribed. As reference, in this study, we used all ATXN3 exons annotated in Ensemble (21 in 

total), although for primer design, we selected only exons known to be transcribed. Figure 5 

summarizes this information. 

 

Figure 5  – Exons of the ATXN3 protein coding transcripts, according to Ensemble database. As some transcripts do not 
contain the entire exon sequence, percentages of coding sequences relatively to the total number of nucleotides of the exon 

were calculated and represented with different colors. Color legend is on the right side of the figure. 
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 For primate species that lacked the annotated sequence of one or more ATXN3 paralogues 

(namely chimp, gorilla, orangutan, gibbon, marmoset, cynomolgus monkey and baboon), we 

performed sequencing; the same PCR conditions and oligo pairs were used, regarding the 

sequence conservation of the selected primers for most of the primates. 

 For primer design, we selected the following criteria: 20 to 24 base pairs; a percentage of GC 

between 45 and 60%; and a melting temperature comprised between 56 and 64°C. The OligoCalc 

algorithm (http://www.basic.northwestern.edu/biotools/oligocalc.html) was used to calculate 

melting temperatures and GC percentages, as well as to predict the formation of hairpins and 

primer dimers. Primers predicted to form these structures were rejected. In addition, to avoid the 

formation of primer-dimmers, we used the AutoDimmer software to select primers with no such 

predicted structures. Finally, to analyze primers’ specificity for each species, we performed an 

UCSC Genome Browser In-Silico PCR (http://genome.ucsc.edu/cgi-bin/hgPcr?command=start). 

The list of selected primers is shown in Tables 1 and 2.  

Table 1 – Primers designed to specifically amplify ATXN3 exons. 

ATXN3 

Reaction Tannealing Exons Amplicon Primer sequence Species 

Pentaplex 57°C 

Part of 2 and 3 F2-R3 
F2  – GTGGTAAGCTGAGATTGCTCC             
R3 – CCAGCTGATGTGCAATTGAGG 

H. sapiens         
P. troglodytes  
G. gorilla            
P. abelii 

Part of 6 F6-R6 
F6  – CACAACTAACATAGCTACACTTCC    
R6 – AAGGCTACAGGGCAGATGCT 

9 F9-R9 
F9 – CCTGGCCAATGTGGCAAATG              
R9 – CACTGTCATCTAATGTGCCTG 

12 F12-R12 
F12 – GGTTGCAGTTATTACCAGTGC      
R12 – GAAATCTAAAGGGAAAGCCCAC 

16 F16-R16 
F16 – CTGATCCTAGGTCAGAAAACAGA 
R16 – GGCCGTGTGCTAGTATTTGTTG 

Hexaplex 60°C 

4 F4-R4 
F4 – GCACGCTAATGACAGTTTGTATCC         
R4 – GGTGAAACCCCACTATCTCTAC 

H. sapiens         
P. troglodytes  
G. gorilla            
P. abelii 

Part of 6 and 7 F6'-R7 
F6’– CAACAGTCCAGAGTATCAGAGGC    
R7 – GACAGGACCTCCCTTTGTTGCC 

11 F11-R11 
F11 – TCCAGTGTTCTGTGCTGCCTTTT  
R11 – AGTCGCCAACAACACAAGGACC 

17 F17-R17 
F17 – GGAAAGGCATCTCTGGGGAG     
R17 – GAAGTTTGACACGAGCCTGGAC 

18,19 and part of 20 F18-R20 
F18  – CCACTCCTGGCCATGATAGGT     
R20  – GAATGGTGAGCAGGCCTTACC 

21 F21-R21 
F21 –CTGGTGGCTATCTGGGATTAGGA   
R21 – GGACCCTATGCTGTAATCACACAG 

Duplex 1 64°C 
1 F1-R1 

F1 – CGTGTCCCCGGCGTTCACTC               
R1 – AGATCGGCATGGGGGCGACT                  
F3 – GCAAGAAGGCTCACTTTGTGCTC    
R3’ – CAAGGGTGGGGGTGGGGAAA 

H. sapiens         
P. troglodytes  
G. gorilla            
P. abelii 3 F3-R3' 

Duplex 2 64°C 
13 and 14 F13-R14 

F13 – ACGCCCAGCCAGAAGAGTAG           
R14 – CTCCTGACCTCAGGCAATCTG           
F20 – GGCCAGCCACCAGTTCAGGAG 
R20’ – TCCTCTCCTGCCTTGGTTTCCC 

H. sapiens         
P. troglodytes  
G. gorilla            
P. abelii Part of 20 F20-R20 
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Table 2 - Primers designed to specifically amplify ATXN3L1 and ATXN3L2 genes. 

* As the ATXN3L2 sequence of Callithrix jacchus differed more than 25% from the other sequences, different primers were 
designed for this species. 

We optimized polymerase chain reactions (PCRs) with the designed primers described above. 

PCRs were done in a final volume of 10 µL, with 1x of Taq polymerase 2x (MyTaq;  BIOLINE) and 

0.25 µM (in singleplex reactions) or 0.125 µM (in multiplex reactions) of each primer. PCR 

conditions are described in Figure 6.  

 

 

 

 

 

 

To confirm specificity of DNA amplification, PCR products were submitted to electrophoresis 

in a polyacrylamide gel prepared with 0.375M Tris/HCl gel buffer (pH=8.8). The gel was obtained 

by mixing 3 mL T9C5 (9% acrylamide, 5% N-N-metileno-bis-acrylamide), 170 µL of 1% ammonium 

persulfate and 7 µL of TEMED as catalysis agent. Glass supports, with one side covered by a 

hydrophilic gel-bond film, were used to obtain a 3 mm thick gel. After loading the samples in the 

ATXN3L1 and ATXN3L2 

 Reaction  Tannealing  Gene  Amplicon   Primer sequence  Species 

Singleplex 1 59°C ATXN3L1 L1F1-L1R1 
L1F1 – CTCTAACTAGGATACCAGCAAAG   
L1R1 – GGAAAAAGTTCTATGGCAAGAGC 

H. sapiens              
P. troglodytes        
G. gorilla               
P. abelii               
M. mulatta         
N. leucogenys      
C. jacchus 

Singleplex 2 57°C ATXN3L2 L2F1-L2R1 
L2F1 – CATTAACCAAAGAAAGTGGGATAC    
L2R1  – GGAATCCTATGCTGTAATCACAC 

H. sapiens              
P. troglodytes        
G. gorilla               
P. abelii               
M. mulatta         
N. leucogenys   

Singleplex 3 57°C ATXN3L2 cL2F1-cL2R2 
L2F1 – CATTAACCAAAGAAAGTGGGATAC    
L2R1  – GGAATCCTATGCTGTAATCACAC 

C. jacchus* 

Hold 3 
1x Hold 2 

zx 

Hold 1 
1x 

95°C 

15’ 

94°C 

1’30’’ 

30’’ 
Y’ 

72°C 

x°C 
10’ 

70°C 

Figure 6 – General PCR protocol with time (‘- minutes; ‘’ – seconds) and temperatures (°C) for the amplification of ATXN3, 
ATXN3L1 and ATXN3L2 loci. X, Y and Z vary according to the multiplex/singleplex reaction: X (annealing temperature) – 

described in Tables 1 and 2; Y (extension time) – 2 minutes for singleplex, and 1 minute for multiplexes; Z (number of cycles) - 
30 for ATXN3; 35 for ATXN3L1; and 40 for ATXN3L2. 
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gel, two paper strips soaked in buffer were used at both anode and cathode to allow the 

horizontal run. To monitor the process of electrophoresis, we added bromophenol blue dye to the 

anode strip. The electrophoretic system was submitted to refrigeration at 4°C, and to a voltage 

between 220 and 250 V. The gel was then submitted to silver staining. The coloration method 

comprised (1) a fixation step of the DNA, with 10% ethanol for 10 minutes followed by 1% nitric 

acid for 5 minutes; (2) two washes with deionized water, of about 20 seconds each; (3) a 

coloration step with 0,2% silver nitrate solution, for 20 minutes; (4) two washes again with 

deionized water, for 20 seconds each; and finally, (5) a revelation step of the DNA fragments with 

a solution of 0,28 M sodium carbonate and 0,02% formaldehyde. The revelation reaction was 

stopped with 10% acetic acid for approximately 30 seconds. The resulting gels were washed with 

water and dried at room temperature.  

After optimizing PCR reactions, we proceeded with sequencing. Products were first purified 

with ExoStar (GE Health Care), for 15 minutes, at 37°C, followed by 15 minutes at 80°C to 

inactivate the enzyme. ExoStar contains a mix of Alkaline Phosphatase and Exonuclease 1, 

formulated to remove unincorporated primers and nucleotides from de resulting PCR products.  

For sequencing procedures, we used Big Dye Terminator Cycle Sequencing Ready Reaction kit 

(Applied Biosystems) as mix containing normal deoxynucleotides, dye dideoxynucleotides, buffer 

and AmpliTaq DNA Polymerase. For each reaction of 5 µL, we combined 1 µl of Big Dye mix, 

sequencing buffer 2.5x, and 0.5 µM of primer with 2.5 µL of purified PCR product. Cycling 

conditions are described in Figure 7. 

 

 

 

 

 

Finally, sequencing products were purified using Sephadex columns, a cross-linked dextran-gel 

used to separate the low (unincorporated nucleotides and primers) from high molecular weight 

molecules of DNA (sequencing products); formamide was then added to the final product to 

increase the stability of single-stranded DNA for the capillary electrophoresis run in an ABI 3130 

Hold 3 
1x Hold 2 

35x 

Hold 1 
1x 

96°C 

2’ 

96°C 

5’’ 

15’’ 
2’ 

60°C 

55°C 
10’ 

60°C 

Figure 7 - General protocol with time (‘- minutes; ‘’ – seconds) and temperatures (°C) for 
sequencing ATXN3, ATXN3L1 and ATXN3L2 PCR products 
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Genetic Analyzer. Sequences were analysed with Sequencing Analysis v5.2 software (Applied 

Biosystems). 

Nucleotide diversity of human ATXN3 retrocopies 

To evaluate the nucleotide diversity underlying ATXN3L1 and ATXN3L2 human retrocopies, we 

aligned sequences obtained from the previous step and annotated all variations relative to the 

reference sequence.  We calculated frequencies of variants and predicted the alterations in the 

respective putative coding sequences. 

 (CAG)n tract analysis in ATXN3, ATXN3L1 and ATXN3L2   

We compared the (CAG)n tract configuration among the three paralogues for all species based 

on (1) sequences collected from NCBI, Ensembl and UCSC Genome browser, and (2) results 

obtained from sequencing (Pan troglodytes, Gorilla gorilla, Pongo abelii, Macaca mulatta, Macaca 

fascicularis and Papio). 

Part 2 – Functional approach 

ORF prediction for ATXN3L1 and ATXN3L2  

Since little was known regarding the functional relevance of ATXN3L1 and ATXN3L2, we 

started by predicting the respective ORFs. Predictions were performed by using NCBI Open 

Reading Frame Finder (ORF Finder - http://www.ncbi.nlm.nih.gov/projects/gorf/) graphical 

analysis tool.  

Conservation of the ATXN3L1 putative protein  

The expected protein coding sequence of ATXN3L1 was aligned and compared to the most 

common coding sequence of the parental gene, the ATXN3-001 transcript. The Josephin domain, 

UIMs and polyQ tract were annotated in sequences, as well as other important sites/amino acids 

such as the nuclear export signals NES77 and NES141, the nuclear localization signal NLS273, and 

the catalytic amino acid triad. With this comparative study, we were able to determine if ATXN3L1 

conserved the most important functional components of the parental protein and, thus, a 
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potential similar functional activity. As ATXNL2 presented premature stop codons and is unlikely 

to be translated, we did not proceed with further analysis in this retrocopy. 

mRNA expression of ATXN3L1 

To evaluate if ATXN3L1 is transcribed, primers were designed to specifically amplify ATXN3L1 

cDNA. The cDNA of 16 different human tissues was previously obtained by conversion from 

mRNA, using reverse transcriptase PCR (RT-PCR). Analysed tissues included: ovary, bladder, 

trachea, esophagus, thymus, thyroid, colon, kidney, skeletal muscle, testis, small intestine, heart, 

spleen, prostate, liver and brain. 

We started by aligning the ATXN3L1 sequence with the concatenated exons of parental 

ATXN3; this way, we annotated the exons’ limits of the parental gene in the retrocopy. Then, 

primers were designed in regions flanking the exon junctions of the corresponding ATXN3 exons. 

Primers are listed in Table 3. 

Table 3 - Primers designed to specifically amplify ATXN3L1 in human cDNA. 

 

PCR conditions were similar to those used for sequencing described above (Figure 1), using 

58°C as annealing temperature, 1 minute for extension time, and 35 cycles. To confirm 

amplification, we have done an electrophoresis run, followed by silver stained, as described 

above. The expected product sizes are approximately 110 bp for UTR-E2, 140 bp for E7-8, 130 bp 

for E8-9 and 110 bp for E10-11 amplicon. 

 

 

 

 

cDNA ATXN3L1 primers 

 Reactions  Tannealing (°C) ATXN3 exons Amplicon   Primer sequence  

ATXN3L1 
 cDNA 

58 

UTR, 1 and 2                   

7 and 8                              

8 and 9                                

10 and 11  

UTR-E2F - UTR-E2R                                    

E7-8F - E7-8R                                

E8-9F - E8-9R                              

E10-11F - E10-11R 

UTR-E2F - GCATACAACATCTTCCGGCATACC   
UTR-E2R - CAGACAGTGCTGAGCACACAGGA        
E7-8F - CAGTGTCGAAGAGATGGATAC              
E7-8R -  CCTCATCTTGGTCTGATGTTCCAGACT                              
E8-9F - GAACTAAGCCGCCAAGAAACC               
E8-9R -   GCAGGAGTTACACATGATGTCTTTGGA                            
E10-11F - GGGCCACAGTTCATACCTACAC       
E10-11R - TGTCGACAGCGGCCTGTACTG 
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Chapter 3 

Results  

Part 1 – Evolutionary history of ATXN3 paralogues  

1. Onset of ATXN3 retrocopies 

1.1. Identification of ATXN3L1 and ATXN3L2 orthologues in the primate lineage 

We retrieved the coding sequence of ATXN3 for several primates (Table 4). Although the size 

and location of the collected sequences varied among species, we found homogeneity on both 

parameters for great apes: humans, chimpanzees, gorillas and orangutans. Notably, when 

compared to the human sequence, differences were found in ATXN3 sequences of 1) gorilla, in 

which exon 2 is not annotated as being translated; 2) orangutang, which does not possess a 

complete annotated transcription for exon 2; and 3) tarsier, for which databases do not display 

the complete sequence.  

As for ATXN3 retrocopies, a high homology to the human ATXN3L1 and ATXN3L2 sequences 

was found in Pan troglodytes, Gorilla gorilla, Pongo abelii, Macaca mulatta, Callithrix jacchus, 

Nomascus leucogenys, Tarsius syrichta and Otolemur garnettii. Based on the percentages of 

homology to human retrocopy sequences, calculated through NCBI-BLAST analysis, we designated 

the collected sequences as ATXN3L1 or ATXN3L2 (Tables 5 and 6). Tarsier and bushbaby 

sequences (found to be aligned with the human ATXN3L1, by using the “comparative genomics” 

tool of Ensembl) presented a high divergence from both human ATXN3L1 and ATXN3L2. For this 

reason, the alignment performed by Ensembl did not give us a reliable hint on the origin of these 

copies in the tarsier and bushbaby species; we, thus, named them as “ATXN3L?” at this point of 

the project. One other sequence for tarsier was retrieved from trace archives specialized BLAST of 

NCBI (Table 7). No sequence homologies were found in other primate species with genomes 

included in trace archives, such as Pan paniscus (bonobo), Pongo pygmaeus (bornean orangutan), 

Lemur Catta (ring-tailed lemur), Aotus nancymaae (Nancy Ma's night monkey), Callicebus moloch 

(red-bellied Titi), Chlorocebus aethiops (grivet or green monkey), Hylobates concolor (black 
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crested gibbon),  Ateles geoffroyi (Geoffroy's spider monkey), and others. This might be partially 

explained by the fact that trace archives contain highly fragmented sequences and that these data 

files are not official entries of the GenBank database, thus, with no associated feature 

annotations.  

Additionally to the ATXN3L1 and ATXN3L2 sequences retrieved above, other less homologous 

sequences (displaying, even though, more than 80% sequence identity to human ATXN3 coding 

sequence) were found in Ensembl data base for Macaca mulatta and Callithrix jacchus (Table 7). 

These sequences, here classified also as ATXN3L?, were aligned with all ATXN3, ATXN3L1 and 

ATXN3L2 (Figure A1 of the Appendix section) to next calculate genetic distances among them in 

topic 1.3 of the Results section. 

 

Table 4 – ATXN3 genomic and coding sequences compiled for 9 primate species. a) Genomic location of Macaca mulatta 
ATXN3 was assessed through the UCSC Genome Browser; b) Incomplete annotated sequence. 

 

 

Table 5 – ATXN3L1 sequences compiled for 7 primate species.  

 

 

 

ATXN3        

Species Source Location 
Size of genomic/coding 

sequences (bp) 

Homo sapiens  Ensembl chr14: 92,524,896-92,572,965 48070/1113 

Pan troglodytes  Ensembl chr14: 91,609,895-91,656,494 46600/1086 

Gorilla gorilla Ensembl chr14: 73834975-73877125:-1 42151/937 

Pongo abelii Ensembl chr14: 93360787-93404545:-1 43759/996 

Nomascus leucogenys Ensembl GL397280.1: 29388208-29433598:-1 45391/1080 

Macaca mulatta Ensembl Scaffold 1099553000000: 10,051-45,764 (Chr7)a 35714/1059 

Callithrix jacchus Ensembl chr10: 117,483,688-117,689,710 206023/1101 

Otolemur garnettii Ensembl GL873539.1: 18068653-18100321:-1 31669/867b 

Tarsius syrichta Ensembl GeneScaffold_567: 5192-20314:-1 15123/1089 b 

ATXN3L1 

  Species  Source  Location  Size (bp) 

Homo sapiens  Ensembl chrX: 13336770-13338518:-1 1068 

Pan troglodytes  Ensembl chrX: 13251386-13252912:-1 1062 

Gorilla gorilla UCSC chrX: 13240248-13241315 1068 

Pongo abelii Ensembl chrX: 13230000-13231067:-1 1069 

Nomascus leucogenys Ensembl GL397281.1: 10,640,111-10,641,175 1065 

Macaca mulatta Ensembl chrX: 11,016,157-11,017,194 1065 

Callithrix jacchus Ensembl chrX: 11,295,476-13,523,142 1062 
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Table 6 - ATXN3L2 sequences compiled for 7 primate species, mainly by using BLAST and BLAT algorithms, from NCBI and UCSC 
Genome Browser, respectively.  

 

   

 

Next, to undoubtedly classify ATXN3L1 and ATXN3L2 orthologues in primates and distinguish 

them from other independent-origin copies, we started by assessing the synteny of all ATXN3, 

ATXN3L1 and ATXN3L2 (Table 8 – A, B and C). For Tarsius syrichta and Otolemur garnettii, this 

search over flanking regions was not possible in any database. To assess their origin, we 

compared genetic distances and constructed phylogenetic trees in the next topic (1.2 of the 

Results section).  

By analysing the synteny of ATXN3 genomic regions, we noticed that up and downstream 

genes were constant throughout the primate lineage. Upstream genes include, mainly, CPSF2 

(cleavage and polyadenylation specific factor 2) and NDUFB1 (NADH dehydrogenase 1 beta 

subcomplex), whereas downstream genes include TRIP11 (thyroid hormone receptor interactor 

11) and FBLN 5 (fibulin 5). The sodium/potassium/calcium exchanger gene was only detected 

upstream to ATXN3 of some primates (Homo sapiens, Pongo abelii and Otolemur garnetii); 

however, it may be also present in other species since some genes may have currently not been 

annotated for all species. The same applies to PTMAP7 (prothymosin, alpha pseudogene 7), only 

detected downstream to ATXN3 in humans and chimps.  

ATXN3L2 

   Species  Source  Location  Size (bp) 

Homo sapiens  NCBI (Gene ID: 100132280) 8q23.2   1109 

Pan troglodytes  BLAST/BLAT search chr8: 109011629-109012743 1115 

Gorilla gorilla BLAST/BLAT search chr8: 109925669-109926225 1084 

Pongo abelii BLAST/BLAT search chr8: 117579303-117579866 1075 

Nomascus leucogenys BLAST/BLAT search GL397267:24598565-24599123 1075 

Macaca mulatta BLAST/BLAT search chr8:112963801-112964361 1079 

Callithrix jacchus BLAST/BLAT search chr19:6218140-6218664 1056 

 
ATXN3L?   

Species Source Location/Accession 

Callithrix jacchus Ensembl chr20: 28,630,500-28,631,553 

Macaca mulata Ensembl chr11: 122178105-122178311 

Tarsius syrichta (seq1) Ensembl - Comp. genomics Unknown 

Tarsius syrichta (seq2) BLAST - Trace Archives Unknown 

Otoloemur garnettii Ensembl - Comp. genomics Unknown 

  

Table 7 - Additional ATXN3 paralogues found in primates. 
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When we analysed the synteny of ATXN3L1, we have found a conserved upstream region 

across the 7 primates, which included TCEANC (transcription elongation factor A N-terminal and 

central domain containing) and EGFL6 (epidermal growth factor-like protein 6) genes. In addition, 

downstream sequences contained typically two or three of the following genes:  FAM9C (family 

with sequence similarity 9, member C), TMSB4X (thymosin beta 4, X-linked) and TLR8 (toll receptor 

9 precursor, CD289 antigen).  

As for ATXN3L2, the majority of primate species presented KCNV1 (potassium channel, 

subfamily V, member 1) in the 5’ flanking region and CSMD3 (CUB and Sushi multiple domains 3) 

downstream. Human 3’ genes were distinct from all other primates: two pseudogenes were  

present, one of them, with the respective parental gene located upstream of ATXN3 in humans 

(NADH dehydrogenase 1 beta subcomplex pseudogene). Upstream regions are, however, 

conserved, supporting this retrocopy is the human ATXN2 orthologue. Therefore, from this 

analysis, we confirmed that the majority of collected sequences had been correctly classified 

based on sequence homology. In the case of the marmoset retrocopy, however, previously 

classified as ATXN3L2, synteny did not favour our first hypothesis of a common origin shared with 

other ATXN3L2 orthologues. We, therefore, reclassified this Callithrix jacchus sequence as 

ATXN3L?2 and performed additional analyses to identify its origin (ATXN3L?1 denotes the first 

detected independent-origin retrocopy for Callithrix jacchus). 
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Table 8 - Synteny of ATXN3 (A), ATXN3L1 (B) and ATXN3L2 (C) through evidence based on collinearity of genes in primates. Two or three genes were retrieved within an interval of 600000 bp, except 
those marked with an asterisk (*) which were found outside this interval.  a, b and c next to the species name represent the source of the information: Ensembl, NCBI and UCSC Genome Browser, 

respectively. When information for a specific gene or location was retrieved from a source different from the indicated at species name, a, b or c specify the source.  

 

A - ATXN3       

Species Flanking 5'   Gene location Flanking 3' 

Homo sapiensa  
NM_153648.3 (sodium/potassium/calcium exchanger 4 isoform 3) 

 CPSF2 (cleavage and polyadenylation specific factor 2)                                                                                 
NDUFB1 (NADH dehydrogenase (ubiquinone) 1 beta subcomplex)                                                   

Chr.14q32.1 
 PTMAP7 (prothymosin, alpha pseudogene 7)

b
                                                                               

TRPIP11 (thyroid hormone receptor interactor 11)                                                                                          
FBLN5 (fibulin 5)                                                                                                  

Pan troglodytes
a 

 
 CPSF2 (cleavage and polyadenylation specific factor 2)                                                                              

NDUFB1 (NADH dehydrogenase (ubiquinone) 1 beta subcomplex)                                                   
Chr.14: 91,609,895-91,656,494 

 LOC100614355 (prothymosin alpha-like)b                                                                            
TRPIP11 (thyroid hormone receptor interactor 11)                                                                                         

FBLN 5 (fibulin 5)        

Gorilla gorilla
a
  

 CPSF2 (cleavage and polyadenylation specific factor 2)                                                                                 
NDUFB1 (NADH dehydrogenase (ubiquinone) 1 beta subcomplex)                                                   

Chr.14: 73,834,975-73,877,125 
 TRIP11 (thyroid hormone receptor interactor 11)                                                                                                            

FBLN 5 (fibulin 5)                                                

Pongo abeliia 
LOC100443929 (cleavage and polyadenylation specific factor 2)b 
NDUFB1 (NADH dehydrogenase (ubiquinone) 1 beta subcomplex)                                                                                              

LOC100446268 (Retinal Na+/ Ca2+/K+ Exchanger) 
Chr.14: 93,360,787-93,404,545 

  LOC100441607 (thyroid hormone receptor interactor 11)                                                                                      
FBLN 5 (fibulin 5)                   

Macaca mulatta ? 
Chr.7 b                                                     

(Scaffold 1099553000000: 10,051-45,764)a 
  LOC100423180 (uncharacterized)

b
  

Callithrix 
jacchusb 

 CPSF2 (cleavage and polyadenylation specific factor 2)                                           
LOC100414432 (uncharacterized)    

Chr.10: 117,483,688-117,689,710a 
TRPIP11 (thyroid hormone receptor interactor 11)                                                                               

FBLN 5 (fibulin 5)a                                                                                                

Nomascus 
leucogenysa  

 CPSF2 (cleavage and polyadenylation specific factor 2)                                                                                 
NDUFB1 (NADH dehydrogenase (ubiquinone) 1 beta subcomplex)                                                   

(GL397280.1: 29,388,208-29,433,598) 
 TRIP11 (thyroid hormone receptor interactor 11)                                                                                                            

FBLN 5 (fibulin 5)                                                

Otolemur 
gametiia 

SLC24A4 (Solute carrier family 24 (sodium/potassium/calcium 
exchanger), member 4)                                                                                                                                  

ENSOGAG00000032385 (cleavage and polyadenylation specific 
factor 2)  

(GL873539.1: 18,068,653-18,100,321) 
 TRIP11 (thyroid hormone receptor interactor 11)                                                                                                            

FBLN 5 (fibulin 5)                                                
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B - ATXN3L1 
 

  

  
 
 
 

Species Flanking 5'    Sequence location Flanking 3' 

Homo sapiensa  
 TCEANC (transcription elongation factor A (SII) N-terminal and central domain containing)                                    

       GPX1P1 (glutathione peroxidase pseudogene 1 provided)b                                                                            
EGFL6 (epidermal growth factor-like protein 6)     

Xp.22.2 
FAM9C (family with sequence similarity 9, member C)                                          

TMSB4X (thymosin beta 4, X-linked)                                                                                                                                                                                  
TLR8 (Toll Receptor 9 Precursor,  CD289 Antigen) 

Pan troglodytes
a
 

 TCEANC (transcription elongation factor A (SII) N-terminal and central domain containing)                                 
    EGFL6 (epidermal growth factor-like protein 6)                                

ChrX: 13,251,386-13,252,912 
LOC735851 (family with sequence similarity 9, member C)                                                                                                 

LOC465493 (uncharacterized)                                                                                                                            
B3Y655_PANTR  (Toll Receptor 9 Precursor,  CD289 Antigen) 

Gorilla gorillac  
 TCEANC (transcription elongation factor A (SII) N-terminal and central domain containing)                                   

  EGFL6 (epidermal growth factor-like protein 6)                                                                                 
ChrX: 13240776-13241315 

FAM9C (family with sequence similarity 9, member C)                                                             
TMSB4X (thymosin beta 4, X-linked)            

Pongo abeliia 
TCEANC (transcription elongation factor A (SII) N-terminal and central domain containing                                               

  LOC100461104  (uncharacterized)                                                                                                                  
LOC100460736 (epidermal growth factor-like protein 6)                                     

ChrX: 13,230,000-13,231,067 
LOC100452699 (protein FAM9C-like)                                                                                               

TYB4_PONAB  (thymosin beta 4, X-linked)                                                                                                        
TLR8 (Toll Receptor 9 Precursor,  CD289 Antigen) 

Macaca 
mulatta

c
 

 LOC711362  (transcription elongation factor A (SII) N-terminal and central domain 
containing)                                  

   EGFL6 (epidermal growth factor-like protein 6)                                
ChrX: 11,016,157-11,017,194 

LOC711039  (family with sequence similarity 9, member C)                                                
LOC710959  (Unknown)                                                                                                           

ENSMMUG00000032533 (Unknown)                                                                                                          
ENSMMUG00000032532 (Unknown)                                                                        

B6CK00_MACMU (Toll Receptor 9 Precursor,  CD289 Antigen) 

Callithrix 
jacchusa 

 LOC100388682  (transcription elongation factor A (SII) N-terminal and central domain 
containing)                          

           EGFL6 (epidermal growth factor-like protein 6)                                
ChrX: 11,295,476-13,523,142 

          LOC100415563  (thymosin beta 4, X-linked)                                                                                  
TLR8 (Toll Receptor 9 Precursor,  CD289 Antigen) 

Nomascus 
leucogenysa 

 TCEANC (transcription elongation factor A (SII) N-terminal and central domain containing)                                
     EGFL6 (epidermal growth factor-like protein 6)                                

  GL397281.1: 10,640,111-10,641,175 
FAM9C (family with sequence similarity 9, member C)                                                                 

TLR8 (Toll Receptor 9 Precursor,  CD289 Antigen) 

C - ATXN3L2 
   Species Flanking 5'  Sequence  location Flanking 3' 

Homo sapiensb  
KCNV1 (potassium channel, subfamily V, member 1)c                                                                                               

RPSAP48 (ribosomal protein SA pseudogene 48)* 
Chr8q23.2                                                    

(Chr8: 111567628-111568736) 
LOC100129370 (NADH dehydrogenase (ubiquinone) 1 beta subcomplex) - pseudogene 

EEF1A1P37 (eukaryotic translation elongation factor 1 alpha 1 pseudogene 37) 

Pan troglodytes  unknown   unknown 

Gorilla gorillac  
KCNV1 (potassium channel, subfamily V, member 1)                                                    

ENSGGOG00000022520 (40S Ribosomal) 
Chr8: 109925669-109926225 

ENSGGOG00000023880 (Unknown)                                                                                                                          
ENSGGOG00000035637 (U4 spliceosomal RNA)*                                                                                               

CSMD3 (CUB and Sushi multiple domains 3)*        

Pongo abeliic KCNV1_PONAB  (potassium channel, subfamily V, member 1)*                                      Chr8: 117579303-117579866                           CSMD3 (CUB and Sushi multiple domains 3)*        

Nomascus 
leucogenysc 

ENSNLEG00000024811 (U2 spliceosomal RNA)*                                                                                                   
KCNV1 (potassium channel, subfamily V, member 1)                                          

GL397267:24598565-24599123 
7SK (7SK RNA)                                                                                                                                

ENSNLEG00000022484 (U4 spliceosomal RNA)*                                                                                      
CSMD3 (CUB and Sushi multiple domains 3)*                   

Macaca mulattac 
ENSMMUG00000034903 (U2 spliceosomal RNA)                                                                                              

KCNV1 (potassium channel, subfamily V, member 1)                                       
Chr8:112963801-112964361 

LOC700556 (unknown)                                                                                                                       
LOC699756 (Nucleophosmin)                                                                                                                       

CSMD3 (CUB and Sushi multiple domains 3)* 

Callithrix 
jacchusc 

 5S_rRNA  (5S ribosomal RNA)                                                                                                 
LOC100389980  (Lysophospholipase 1)* 

Chr19: 6218140-6218664 
U3 (Small nucleolar RNA U3)                                                                                                                                 

C1orf143 (Unknown)                                                                                                                             
TGFB2 (Transforming Growth Factor Beta 1 Precursor) 
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1.2. Phylogeny of ATXN3 paralogues in primates 

To assess the phylogenetic relationships of ATXN3 paralogues identified in primates, we 

calculated the genetic distances among them (Table A1 of the appendix section). Based on these 

distances, a phylogenetic tree was constructed (Figure 8).  Although we could not reproduce the 

phylogenetic tree of species for each one of the paralogues, we could observe that ATXN3L1 and 

ATXN3L2 orthologues clustered to each other, confirming their conservation along the primate 

lineage. 

 

 

 

 

 

Marmoset ATXN3L?2 was shown to be similar to its ATXN3 coding sequence by sharing a 

recent node on the phylogenetic tree. This fact confirmed our reclassification of marmoset 

ATXN3L2 into ATXN3L?2 in the previous topic. 

ATXN3L?1 sequence of Tarsius syrichta was found to cluster next to ATXN3L1 orthologues and 

to share more similarity with these orthologues than with the parental or ATXN3L2 gene; for this 

reason, we reclassified it as ATXN3L1. On the other hand, the other Tarsier sequence, ATXN3L?2, 

shared a more recent ancestor with its parental sequence; therefore, its classification as ATXN3L? 

was maintained. As for Otolemur garnettii, ATXN3L? sequence did not seem to be orthologue of 

Figure 8 – Phylogenetic tree of ATXN3, ATXN3L1 and ATXN3L2 for primates, based on the genetic distances 
presented on Table A1 of the Appendix section. Gallus gallus was used as outgroup. 
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ATXN3L1 or ATXN3L2; instead, and as it  displayed also less genetic distance to its parental gene, 

ATXN3L? classification was maintained.  

The obtained phylogenetic tree was compared to others built based on ATXN3, ATXN3L1 and 

ATXN3L2 sequences (1) without the (CAG)n tract, and (2) containing the Josephin domain alone 

(Figures A2 and A3 of the Appendix section). No differences were found on the main clusters and 

nodes previously analysed to identify the origin of ATXN3L1 and ATXN3L2.  

After identifying ATXN3L1 and ATXN3L2 orthologues in primates, we wanted to gain insight 

into the events underlying their birth, namely the gene source. We, thus, calculated percentages 

of pairwise identities and identical sites by using aligned sequences of primates in which both 

retrocopies had previously been identified (Table 9). 

Table 9 - Pairwise identities and identical sites between ATXN3 paralogues of several primate species. The coding sequence of 
the parental gene and the corresponding aligned sequences of ATXN3L1 and ATXN3L2 were used in these calculations. A single 

value is shown when both percentages are identical.  

 
Pairwise identity (%)/identical sites (%) 

 
H. sapiens P. troglodytes G. gorilla P. abelii N. leucogenys M. mulatta 

ATXN3 vs 
ATXN3L1 

77.8 78.2 75.6/79.2 77.7/79.6 76.5 80.0/80.5 

ATXN3 vs 
ATXN3L2 

83.5 83.4 78.1/81.3 80.9/82.5 80.7 80.5/80.9 

ATXN3L1 vs 
ATXN3L2 

71.1 69.8 74.1 70.7/70.8 73.0 71.2 

 

A common pattern was observed for all species considered in this analysis: ATXN3L2 

presented a higher sequence identity to the ATXN3 coding sequence than ATXN3L1. In addition, 

both ATXN3L1 and ATXN3L2 shared a higher sequence identity to the parental gene than between 

them, suggesting that two independent events of retrotransposition have occurred, instead of 

one event followed by duplication.  

1.3. Identification of ATXN3 retrocopies in other mammals 

 After clarifying the origin of ATXN3 retrocopies in primates, we performed similar analyses for 

non-primate mammals to estimate the onset of the two most ancient retrotransposition events. 

Sequences homologous to ATXN3L1 and ATXN3L2 were obtained for Pteropus vampyrus 

(macrobat), Cavia Porcellus (guinea pig), Oryctolagus cuniculus (rabbit), Canis familiaris (dog), 

Cloloepus hoffmanni (sloth), Bos taurus (cow) and Monodelphis domestica (opossum). As none of 

these sequences was assigned as ATXN3L1 or ATXN3L2, we named them as ATXN3L?. Table 10 

resumes the main features of these sequences.  
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Table 10 – Additional ATXN3 paralogues found in 7 non-primate mammals. 

ATXN3L? 

  Species  Source  Location/Accession 

Pteropus vampyrus (seq1) BLAST - Trace Archives  gnl | ti:1371399947 

Pteropus vampyrus (seq2) BLAST - Trace Archives  gnl | ti:1328204199 

Cavia porcellus  BLAST - Trace Archives  scaffold_33: 11,426,907-11,427,913 

Oryctolagus cuniculus BLAST - Trace Archives  gnl | ti:1979192258 

Canis familiaris (seq1) Ensembl chr3: 10550724-10551819 

Canis familiaris (seq2) BLAST  NW_003726057.1 (chr5) 

Cloloepus hoffmanni (seq1) BLAST - Trace Archives  gnl | ti:1361780914 

Cloloepus hoffmanni (seq2) BLAST - Trace Archives  gnl | ti:1314261250 

Bos taurus (seq1) BLAST chr8: 63086126-63086972 

Bos taurus (seq2) BLAST chr10: 8893215-8893754 

Bos taurus (seq3) BLAST chr4: 3842581-3843107 

Monodelphis domestica  BLAST chr5: 24707322-24707854 

 

For the majority of the copies, here named ATXN3L?, size and location were not 

homogeneous among them. As for their syntenies, we could not determine chromosomal location 

in cases where searches were done in the trace archives of NCBI since only scaffolds were 

available (Pteropus vampyrus, Oryctolagus cuniculus and Choloepus hoffmanni). For species 

annotated in the UCSC Genome Browser, however, sequences were localized through BLAT 

algorithm to obtain the chromosomal region and further analysed for the respective neighbouring 

genes. Therefore, in addition to the previous referred ATXN3L? of rhesus monkey and marmoset, 

synteny was analysed for dog, guinea pig, cow and opossum retrocopies (Table 11). None of these 

copies shared any flanking genes with ATXN3, ATXN3L1 or ATXN3L2; instead, they differed also 

from each other. This data suggested that ATXN3L? sequences found in these mammalian species 

are in fact independent-origin rectrocopies of ATXN3, and that none of the non-primate mammal 

sequences is orthologue of ATXN3L1 or ATXN3L2. 
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Table 11 - Synteny of ATXN3L? copies through evidence based on collinearity of genes in non-primate mammals. Two or three genes were retrieved within an interval of 600000 bp, except those 
marked with an asterisk (*) which were found outside this interval.  a, b and c next to the species name represent the source of the information: Ensembl, NCBI and UCSC Genome Browser, respectively. 

When information for a specific gene or location was retrieved from a source different from the indicated at species name, a, b or c specify the source. 

 

 

 

 

 ATXN3L? 
    

Organism Flanking 5'  Sequence location Flanking 3' 
Human homologues of 

flanking genes
a
 

Callithrix 
jacchus

a
 

FA2H (fatty acid 2-hydroxylase)                                                                                                                                
MLKL (mixed lineage kinase domain-like) 

Chr20: 28,630,500-28,631,553 
WDR59 (WD Repeat containing 59)                                                                         

ENSCJAG00000014388 (Class I antigen) 
Chr16 

Macaca 
mulata

a
 

 P2RX7 (P2X Purinoceptor 7)                                                                                      
ENSMMUG00000031514 (Unknown) 

Chr11: 122178105-122178311 
SNORA70 (Small nucleolar RNA SNORA70)                                                                                
OASL (2'-5'-oligoadenylate synthetase-like)                                                                          

LOC701243 (Hepatocyte nuclear factor 1 alpha)  
Chr12 

Canis 
familiaris

a
 

NUDT12 (Peroxisomal NADH pyrophosphatase)                                                                                                   
GIN1 (Gypsy Retrotransposon Integrase 1)                                                                                                                              

ENSCAFG00000024608 (Unknown)  
Chr3: 10550724-10551819 

ENSCAFG00000002024  (Heterogeneous Nuclear 
Ribonucleoprotein)                                      

 CDH1 (chromodomain helicase DNA binding protein 1) 
Chr5 

Cavia 
porcellus

c
 

ENSCPOG00000026477 (miRNA) 
    ENSCPOG00000016622 (5S_rRNA)                    

scaffold_33: 11,426,907-11,427,913 
ENSCPOG00000021308 (Scavenger Receptor Cystein Rich 

Type 1 M130 Precursor)                                 
ENSCPOG00000009339 (Unknown)* 

Unknown 

Organism Flank Sequence location Flank 
Human homologues of 

flanking genesa 

Canis 
familiarisc 

ELAC2 (ElaC homolog 2 - Zinc phosphodiesterase)*                                                                  
5S_rRNA  (5S ribosomal RNA)                                                                                   

ENSCAFG00000017903 (Heparan sulfate glucosamine 3-O-
sulfotransferase) 

Chr5: 40677963-40679029 

COX10 (COX10 homolog, cytochrome c oxidase assembly 
protein)                                                        

ENSCAFG00000017893 (Heparan sulfate glucosamine 3-O-
sulfotransferase) 

Chr17 

Bos taurusc  
C9orf174 - Chromosome 9 open reading frame 174 

(uncharacterized)                                                           
hypothetical protein LOC507550 (uncharacterized)  

Chr8: 63086126-63086972 
TDRD7_BOVIN  (Tudor domain-containing protein 7)                                                                                   

TMOD1_BOVIN (Tropomodulin-1)  
Chr9 

Bos taurusc  SNORA31 (small nucleolar RNA, H/ACA box 31) Chr4: 3842581-3843107 
A0JNG1 (Cordon Bleu Gene)                                                                                                                    

Q6U8D5_Bovin (Growth Factor Receptor Bound Adapter) 
Chr7 

Bos taurus
c
 

OTP (Orthopedia Homeobox)                                                                                                                                    
TBCA (Tubulin-specific chaperone A) 

Chr10: 8893215-8893754 
AP3B1 (AP-3 complex subunit beta-1)                                                                                              

Q3T0D2_Bovin (Secretory Carrier-Associated Membrane 
Protein 1) 

Chr5 

Monodelphis 
domesticac  

C4orf37 (Chromosome 4 open reading frame 379                                                                                                                       
PPM1K (protein Phosphatase, Mg2+/Mn2+ dependent, 1K)* 

Chr5:24707322-24707854 XM_001376187.1 (Casein Kinase I)* Chr4 
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In order to confirm the origin of ATXN3L? copies, sequences were aligned with the  coding  

regions of the respective parental gene, as well as with paralogue sequences previously identified 

for primates. From this overall alignment (Figure A1 of Appendix section), we calculated genetic 

distances (Table A4 of the Apendix section) and constructed a phylogenetic tree (Figure 9). Results 

showed all ATXN3L? sequences more similar to the respective parental genes than to primate 

ATXN3L1 or ATXN3L2 sequences. Indeed, they seemed to have originated independently and 

more recently after species divergence, instead of sharing common ancestral origins. In addition, 

the extra paralogue sequences found for M. mulatta (ATXN3L?) and C. jacchus (ATXN3L?1 and 

ATXN3L?2) also showed a most common recent ancestor with their parental sequences than with 

the other paralogues. This suggests that all sequences classified as ATXN3L?resulted, most likely, 

from additional retrotransposition events originated, more recently, from the respective parental 

genes.  

 

Figure 9 - Phylogenetic tree for ATXN3, ATXN3L1, ATXN3L2 and ATXN3L? retrocopies of mammals, based on the genetic 
distances represented on table A4 of the Appendix section. Gallus gallus was used as outgroup. 
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To confirm these results, we constructed phylogenetic trees of these three genes for all 

mammalian species (1) without the (CAG)n tract (usually a source of much variation), and (2) for 

the high conserved  Josephin domain alone (Figures A4 and A5). For the first, a similar tree was 

obtained, whereas the phylogenetic tree based exclusively on the sequence that encodes the 

Josephin domain (in ATXN3 and homologous sequences in its paralogues), has shown ATXN3L1 

genetically closer to the parental ATXN3 than ATXN3L2, suggesting that both have very similar 

Josephin domains, with most of the variation accumulated in the unstructured C-terminal. 

Finally, after performing all previous studies, we were able to estimate the time for the origin 

of ATXN3 paralogues (Figure 10), based on the tree of species and respective divergence times, in 

Figure A6 of the appendix section.    
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Figure 10 – Phylogenetic tree of primates. The presence of ATXN3L1 and ATXN3L2 is marked in each species 
with a red star and a blue circle, respectively. For ATXN3L1, the absence of the red star in Haplorrhines may be 
explained by incomplete gene annotation in databases. The same applies to blue circles marking ATXN3L2 in 

Catarrhines (adapted from http://whozoo.org/mammals/Primates/primatephylogeny.htm). 

 

http://en.wikipedia.org/wiki/Simian
http://en.wikipedia.org/wiki/Simian
http://en.wikipedia.org/wiki/Simian
http://en.wikipedia.org/wiki/Simian
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ATXN3L1 is present in the entire clade of Haplorrhines but absent in Strepsirrhines, indicating 

that the retrotransposition event on its origin occurred about 63 million years ago (MYA). As for 

ATXN3L2, since orthologues are present in the entire clade of Catarrhines but absent in 

Platyrrhines, the retrotransposition event is likely to have occurred about 35 MY ago.79 

2. ATXN3 transcripts involved in the retrotransposition events 

The alignment of ATXN3L1 and ATXN3L2 with the 21 human protein coding transcripts 

annotated in Ensembl has shown both paralogues more similar to ATXN3-001 than to any other 

transcript. Based on these results, both events of retrotransposition on the origin of ATXN3L1 and 

ATXN3L2 seemed to have involved this transcript, since they all share exons 1, 3 (part), 4 (part), 6 

(part), 7, 9, 11, 12, 13 (part), 20 (part) and 21 (based on Ensembl exon classification).  

3. Selective signatures underlying ATXN3L1 and ATXN3L2 

Evolutionary pressures on proteins were quantified by calculating the omega ratio, or the 

ratio of substitution rates at non-synonymous and synonymous sites, for ATXN3 and ATXN3L1 

genes, for different primate species (Table 12). 
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Omega values were always less than unity, for both ATXN3 and ATXN3L1 in all species 

comparisons. However, the rate of variance of these values were higher in the parental gene 

(from approximately 0.06 to 0.80) than in the ATXN3L1 paralogue, which showed less different 

values (mainly varying from 0.10 to 0.50). The fact that parental genes presented higher variance 

can be partly explained by the sequence differences found in gorilla, orangutan and tarsier. Still, 

as omega is less than unity in all calculations, our results suggested that selective constrains are 

suppressing protein changes, indicating that, as ATXN3, also the function of ATXN3L1 has been 

kept in check. 

Table 12 – dN/dS (omega) ratio calculations for ATXN3 and ATXN3L1, to illustrate the 
selective signatures underlying their evolution. 

dN dS ω dN dS ω

Hsap Ptro 0,0026 0,0094 0,2766 0,0291 0,0549 0,5301

Hsap Ggor 0,1146 0,1613 0,7105 0,0100 0,0246 0,4065

Hsap Pabe 0,0026 0,0190 0,1368 0,0163 0,0601 0,2712

Hsap Nleu 0,0051 0,0287 0,1777 0,0252 0,0979 0,2574

Hsap Mmul 0,0051 0,0686 0,0743 0,0323 0,2266 0,1425

Hsap Cjac 0,0129 0,1004 0,1285 0,1431 0,3902 0,3667

Hsap Tsyr 0,6000 0,8995 0,6670 0,2099 0,5639 0,3722

Ptro Ggor 0,1175 0,1500 0,7833 0,0304 0,0396 0,7677

Ptro Pabe 0,0051 0,0094 0,5426 0,0389 0,0730 0,5329

Ptro Nleu 0,0077 0,0191 0,4031 0,0421 0,1142 0,3687

Ptro Mmul 0,0077 0,0585 0,1316 0,0507 0,2388 0,2123

Ptro Cjac 0,0103 0,0900 0,1144 0,1605 0,4522 0,3549

Ptro Tsyr 0,6270 0,8730 0,7182 0,2335 0,5919 0,3945

Ggor Pabe 0,1146 0,1613 0,7105 0,0163 0,0345 0,4725

Ggor Nleu 0,1160 0,1678 0,6913 0,0233 0,6830 0,0341

Ggor Mmul 0,1190 0,1792 0,6641 0,0278 0,1919 0,1449

Ggor Cjac 0,1174 0,2500 0,4696 0,1378 0,3792 0,3634

Ggor Tsyr 0,1414 1,1120 0,1272 0,2022 0,5319 0,3801

Pabe Nleu 0,0026 0,0287 0,0906 0,0291 0,0867 0,3356

Pabe Mmul 0,0026 0,0483 0,0538 0,0375 0,1940 0,1933

Pabe Cjac 0,0103 0,1004 0,1026 0,1501 0,3617 0,4150

Pabe Tsyr 0,0572 0,8694 0,0658 0,2183 0,5221 0,4181

Nleu Mmul 0,0051 0,0792 0,0644 0,0355 0,1980 0,1793

Nleu Cjac 0,0129 0,0900 0,1433 0,1398 0,3840 0,3641

Nleu Tsyr 0,0572 0,8745 0,0654 0,2126 0,5783 0,3676

Mmul Cjac 0,0129 0,1561 0,0826 0,1334 0,4354 0,3064

Mmul Tsyr 0,0614 0,7724 0,0795 0,1979 0,7145 0,2770

Cjac Tsyr 0,0627 0,9714 0,0645 0,2529 0,7266 0,3481

ATXN3 ATXN3L1

vs.
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Variation ID Base position

Number of 

chromosomes 

analysed 

Ancestral 

allele 
Base change

Absolute 

frequencies 

Relative 

frequencies 

Annotated 

frequencies

Amino acid 

change

rs17847278 160 (Intron 4) 20 G A/G 7/13 0.35/0.65 0.29/0.71 NA

rs1997920 194 (Exon 6) 48 T T/C 24/24 0.50/0.50 0.31/0.69 NA

rs1997919 340 (Exon 6) 42 G G/A 22/20 0.52/0.48 0.69/0.31 NA

rs1997918 417 (Exon 6) 42 A G/A 3/39 0.07/0.93 0.01/0.99 NA

rs1997917 434 (Exon 6) 44 G G/A 23/21 0.48/0.52 0.27/0.73 NA

rs4904834 524 (Intron6) 42 C* G/C 24/18 0.57/0.53 0.45/0.55 NA

rs8003520 1081 (Intron 8) 16 G G/A 3/13 0.19/0.81 0.30/0.70 NA

rs12590497 129 (Intron 10) 16 T G/T 10/6 0.63/0.37 0.68/0.32 NA

rs16999141 17 (Exon 11) 12 T C/T 6/6 0.50/0.50 0.47/0.53 V/V

rs1048755 26 (Exon 12) 16 G A/G 6/10 0.31/0.69 0.26/0.74 M/V

rs761553 1220 (Intron 12) 16 C G/C 6/10 0.38/0.62 0.68/0.32 NA

rs761552 31 (Exon 14) 14 C T/C 7/7 0.50/0.50 0.32/0.68 M/Ta

rs761551 24 (Intron14) 14 C A/C 7/7 0.50/0.50 0.31/0.69 NA

rs10467858 127 (Intron 17) 12 G* A/G 6/6 0.50/0.50 0.27/0.73 NA

rs7158733 201 (Exon20) 18 C* C/A 13/5 0.72/0.28 0.68/0.32 Y/Stopb

rs3092822 261 (Exon 20) 22 A* A/C 14/8 0.64/0.36 0.68/0.32 E/Db

c.2926A>G 319 (Exon20) 22 A* A/G 8/14 0.36/0.64 undetermined K/Eb

c.939G>A 939 38 G* A/G 2/36 0.05/0.95 undetermined R/R

c.995A>G 995 37 A* A/G 6/31 0.16/0.84 undetermined D/G

c.230T>C 230 68 T* C/T 2/66 0.03/0.97 undetermined NA

c.398G>A 398 76 G* A/G 1/74 0.01/0.99 undetermined NA

c.752G>A 752 64 G* A/G 3/61 0.04/0.96 undetermined NA

ATXN3L2                

(Chr. 8)

ATXN3                    

(Chr. 14)

ATXN3L1                

(Chr. X)

4. Nucleotide diversity of ATXN3L1 and ATXN3L2 

We have assessed genetic variation of all ATXN3 paralogues by sequencing a total of 49 

human DNA samples (Table 13). For ATXN3, we have found a total of seventeen variations, mostly 

in intronic regions (or in regions that can be transcribed only by less common alternative splicing), 

according to the Ensemble exon/intron sequence annotations. This is consistent with the fact that 

transcriptionally active regions of the genome are more prone to be conserved. In exonic regions, 

we have found six variations: five non-synonymous and one synonymous coding. From these six 

variations, however, only two (one synonymous and one non-synonymous) were common to all 

transcripts; the other four were present only in three or fewer transcripts, none of them on the 

four most common ATXN3 transcripts.  

 

For ATXN3L1, only two variations were detected, both near the end of the putative coding 

sequence: one synonymous and the other non-synonymous, but both relatively rare, varying from 

0.05 to 0.16%, respectively. Considering ATXN3L2, three variations were observed along the 

sequence; however, these variants were rare, among our analysed samples, with percentages 

lower than 0.04%. We have notice, however, that not all SNPs annotated in databases were 

detected by us, in the resulting sequences, probably due to the low number of chromosomes 

analysed.  

Table 13 – ATXN3, ATXN3L1 and ATXN3L2 nucleotide diversities. Base positions of ATXN3 were determined based on the 
sequence annotation of Ensembl; for ATXN3L1 and ATXN3L2, the A nucleotide of the initiation codon (the corresponding first 

AAG codon in the case of ATXN3L2) is base number 1. a – in exonic regions of ATXN3-206, 207 and 209 transcripts; b - in exonic 
regions of ATXN3-015 transcript; *ancestral alleles  determined from primate orthologues alignments; Amino acids: V -  Valine; T 

– Threonine; E - Glutamic acid; R – Arginine; M- Methionine; K – Lysine; Y – Tyrosine; D - Aspartic acid; G – Glycine; NA – Not 
applicable.  
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ATXN3 ATXN3L1 ATXN3L2

(CAG)2 CAA AAG CAG CAA (CAG)17 (CAG)2 GAA CAG AAG (CAG)2 (CAA)2 CAG (CAG)3  (CGG CAG)n

    Q2        Q     K      Q      Q     Q17          Q2       E      Q      K       Q2         Q2     Q

 CAG CAA (CAG)12 (CAG)2 GAA CAG AAG (CAG)2 CAA CAC CAG CAG (CGG CAG)9  

    Q      Q     Q12          Q2       E      Q     K       Q2       Q     H     Q

(CAG)2 CAA AAG CAG CAA AAG (CAG)n (CAG)2 GAA CAG AAG (CAG)2 (CAA)2 CAG (CAG)10 

    Q2        Q     K      Q      Q      K        Qn          Q2       E      Q      K       Q2         Q2     Q

(CAG)2 CAA AAG CAG CAA (CAG)8 (CAG)2 GAA CAG AAG CTG (CAG)4 (CAG)6  

    Q2        Q     K      Q      Q     Q8         Q2       E       Q      K      L       Q4     

(CAG)3 CAA (CAG)9 (CAG)2 GAA CAG AAG (CAG)2 (CAA)2 CAG (CAG)8

    Q3       Q       Q9         Q 2      E      Q      K        Q 2        Q2      Q

(CAG)2 CAA (CAG)2 AAG (CAG)7 (CAG)2 GAA CAG AAG (CAG)2 (CAA)2 CAG (CAG)6 CAC CAG

     Q2       Q       Q2      K        Q7         Q2        E      Q      K       Q2         Q2       Q

CAG CAA (CAG)5 CAA (CAG)3 [GAG (CAG)3]2 CAA GAA CAA (CAG)2 Not described

   Q      Q       Q5       Q       Qn       (E      Q3)2    Q      E      Q      Q2

Not completly sequenced CAG CAA  (CAG)2 Not described

   Q     Q       Q2

(CAG)5 CAA (CAG)5 AGG Not described Not described

    Q5       Q       Q5       K     

Homo sapiens 

Otolemur garnetii

Callithrix jacchus 

Pan troglodytes 

Gorilla gorilla

Pongo abelii

Nomascus leucogenys

Macaca mulatta

Tarsius syrichta

5. Evolution of the (CAG)n tract in ATXN3, ATXN3L1 and ATXN3L2  

To gain insight into the processes by which the (CAG)n tracts have been accumulating variation 

throughout each paralogue evolution, we analysed sequences from all primates obtained from 

databases (Table 14). However, this analysis involved mainly a single sequence from each species, 

which did not allow us to study loci diversity. To analyse the level of polymorphism, ATXN3L1 and 

ATXN3L2 from 6 primate species were sequenced (Table 15) and data gathered with the reference 

ones. 

  

 

Analysing the compiled sequences alone, (CAG)n tract was found to be more conserved in the 

parental gene along the primate lineage, mainly in human, gorilla and orangutan, with a (CAG)2 

CAA AAG CAG CAA tract, followed by AAG and/or (CAG)n. This configuration gives rise to an 

almost pure polyQ tract, with a single K (lysine) interruption (two in gorilla). Chimp, on the other 

hand, presents a more simple CAG CAA (CAG)n configuration, encoding a pure glutamine stretch. 

The (CAG)n tract in gibbon, rhesus monkey, marmoset and bushbaby has a (CAG)n CAA (CAG)n, 

followed by a variable end.  The protein tract is pure (in gibbon) or interrupted only by a lysine in 

rhesus monkey and bushbaby, or a glutamic acid in marmoset. For ATXN3L1, the (CAG)n is also 

conserved among primates, having a (CAG)2 GAA CAG AAG (CAG)2 stretch followed  by a small 

variable end with CAA, CAG or CAC triplets. The resulting putative protein sequence is 

interrupted, generally with the Q2 E Q K Qn configuration. Marmoset and tarsier have a different 

configuration, with a smaller tract: CAA GAA CAA (CAG)2 and CAG CAA (CAG)2, respectively. If 

translated, these tracts give rise to a smaller pure (for tarsier) or almost pure (for marmoset) 

Table 14 – ATXN3, ATXN3L1 and AtXN3L2 (CAG)n tracts of several primates collected from NCBI, Ensembl and UCSC 
Genome Browser databases. 
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Chr.
Number of 

chromossomes
Sequence Chr.

Number of 

chromossomes
Sequence

1 (CAG)3 (CGG CAG)11  

4 (CAG)3 (CGG CAG)9

38 (CAG)3 (CGG CAG)8

3 (CAG)3 (CGG CAG)6

2 (CAG)3 (CGG CAG)5

10 (CAG)3 (CGG CAG)4

     Q2       E      Q      K       Q2         Q2     Q

3 CAG (CGG CAG)9  

X 8 1 CAG (CGG CAG)6  

    Q2       E       Q      K      L     Q      Q2      Q

1 (CAG)16

1 (CAG)10

X 8 2 (CAG)7 

2 (CAG)6

    Q2       E       Q      K      L     Q      Q2      Q

1 (CAG)7

X 8 1 (CAG)6  

    Q2       E       Q      K      L     Q      Q2      Q

1* (CAG)8 CAC CAG

2* (CAG)7 CAC CAG

? ? 1* CAG CAT (CAG)5 CAC CAG

4 (CAG)8 CAC CAG     

4 (CAG)6 CAC CAG     

    Q2        E      Q      K       Q2         Q2       Q

2* (CAG)2 GAA CAG AAG (CAG)2 (CAA)2 CAG 3* (CAG)6 CAC CAG     

    Q2        E      Q      K       Q2         Q2       Q

Macaca mulatta X
2

Papio

Gorilla gorilla
2 (CAG)2 GAA CAG AAG CTG CAG (CAA)2 CAG 

Pongo abelii
2 (CAG)2 GAA CAG AAG CTG CAG (CAA)2 CAG 

ATXN3L1 ATXN3L2

Pan troglodytes
3 (CAG)2 GAA CAG AAG CTG CAG (CAA)2 CAG 

Homo sapiens X 8
(CAG)2 GAA CAG AAG (CAG)2 (CAA)2 CAG 36

(CAG)2 GAA CAG AAG (CAG)2 (CAA)2 CAG 
8

Macaca fascicularis ? ?

polyglutamine stretches, which may suggest that ATXN3L1 CAG repeat has expanded and gained 

interruptions along the primate lineage. As for ATXN3L2, the (CAG)n tract is more variable. For 

gorilla, orangutan and gibbon, the (CAG)n tract is pure, whereas for  human and chimp it is highly 

interrupted by CGG codons. For the first time, a hexanucleotide repeat is observed associated 

within ataxin-3 paralogues, instead of a trinucleotide pattern. These results suggested that 

ATXN3L1 acquired interruptions in its CAG repeat region that may turn it more stable. On the 

other hand, in the case of ATXN3L2, the almost pure (CAG)n in species which diverged earlier in 

primate evolution, and the polymorphic (CGG CAG)n in humans and chimps has shown the highest 

instability associated to this locus.  

 

Table 15 - ATXN3, ATXN3L1 and ATXN3L2 (CAG)n tracts obtained by sequencing for several primates.* mark the minimum 
number of chromosomes analysed taking into account that we ignored whether the respective gene location in these species were 
in autosomal or sex chromosomes (which, in case of homozygous regions could result in different number of alleles analysed: n vs 

2n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing the complied sequences with those obtained by us through sequencing (Table 15), 

we noticed that ATXN3L1 sequences of some species may not be correctly described in databases. 

For chimp, gorilla and orangutan, observed CAG repeat configurations differed from those 

described in Table 14. This could be simply explained by the level of polymorphism associated to 

these tracts; nevertheless, all repeat tracts sequenced by us for individuals from these 3 species 

presented no variation, all sharing the same configuration and length: (CAG)2 GAA CAG AAG CTG 
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CAG (CAA)2 CAG, possibly encoding a Q2 E Q K L Q4 protein stretch. This means that this region 

may be even more conserved along the primate lineage than it has been described. For ATXN3L2, 

the (CAG)n tract of all sequenced primate samples showed a similar configuration to reference 

sequences available in databases, illustrated in Table 14; the repeat size showed, however, to be 

more variable. 

Part 2 – Insights into ATXN3L1 and ATXN3L2 functional relevance  

1. ORF predictions for ATXN3L1 and ATXN3L2 

To explore the possibility of ATXN3L1 and ATXN3L2 paralogues being transcribed, the analysis 

of the respective ORFs was performed; the obtained results are illustrated in Figure 11. ATXN3L1 

showed a complete and intact ORF that is maintained in the 7 primate species previously analysed 

by us. These results confirmed the hypothesis that this paralogue is likely to be subjected to 

selective constrains that are keeping its sequence on check and almost intact along the primate 

lineage. On the other hand, for ATXN3L2, there are no intact ORFs predicted in any of the primate 

sequences; instead, only short ORFs of approximately 200 bp or less are expected.  
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Figure 11 - Predicted ORFs for ATXN3L1 and ATXN3L2 primate sequences, calculated by NCBI ORF finder. Obtained ORF 
predictions are illustrated in blue and the corresponding sizes are described on the right side of each illustration.  
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ATXN3 

ATXN3L1 

2. Analysis of ATXN3L1 putative protein domains in comparison to the 

parental ATXN3 

To understand how differences on the ATXN3L1 sequence relatively to the parental gene 

could possibly alter its putative coding protein, the principal domains and regions important to 

ataxin-3 functions were compared between the two sequences (Figure 12). 

 

 

 

 

 

 

 

 

 

 

 

 

The catalytic Josephin domain was found to be highly conserved in ATXN3L1, with the 

important catalytic triad, composed of C14, H119 and N134, totally preserved. In addition, NES77 

and NES141 are composed mostly by the same amino acids. Additionally, UIM1 of ATXN3L1 is 

quite similar to the parental protein, although the same cannot be observed for UIM2 and UIM3, 

which possess more amino acid changes and some gaps. The NLS273 is highly different when 

compared to the parental protein. Finally, the polyQ tract, as described above, has some 

alterations that turned it more interrupted in ATXN3L1. It is important to understand that despite 

these two protein sequences present some amino acid divergences, these small alterations may 

not correspond to a significant change on the protein conformation and/or function. To better 

understand this divergence features will be necessary to proceed with more functional studies to 

characterize the putative ATXN3L1 protein sequence.  

Figure 12 – Comparison between ATXN3 and ATXN3L1 protein coding sequences. Dots show conserved 
amino acids and letters show the amino acid changes. The main functional Josephin domain, the ubiquitin 

interacting motifs (UIMs) and polyQ tract are highlighted.  Other important sites of the protein are also 
represented, as the nuclear export signal (NES) and the nuclear localization signal (NLS). marks amino acids 

composing the catalytic triad; 0 marks the conserved serine-232 and serine-260 in UIM1 and UIM2, respectively. 
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3. mRNA expression profile of ATXN3L1 in humans 

We tested for the presence of ATXN3L1 in cDNA from different human body tissues by using 

primers designed to specifically amplify this putative transcript. First, to overview the 

transcriptional pattern among the 16 selected tissues, two of the four planned amplifications 

were done at a lower temperature (56°C). Primers for the amplification of actin cDNA were used 

as control (Figure 13).  

 

 

 

 

 

 

  

With these conditions, we have found discordant results for the two amplifications tested. By 

using E8-9 primers, amplification was obtained in only two tissues (prostate and testis), whereas 

for E10-11, amplified products were observed in brain, liver, testis, colon and ovary. In both cases, 

testis cDNA was the tissue for which we observed more amplified product, allowing the formation 

of a clearly visible gel band (a similar amplification pattern for actin cDNA in all tissues discarded 

the possible heterogeneity among different tissue samples). Sequencing of each band showed 

that all amplified bands were specific human ATXN3L1 sequences. Additionally, E10-11 primers 

amplified a longer fragment (180 bp) than the expected 110 bp on brain cDNA; we still need to 

clarify the reason for this difference on fragment sizes.  

To increase the specificity of ATXN3L1 cDNA amplification, the experiment was repeated by 

applying new different condition of amplification. We increased the annealing temperature to 

58°C on the PCR reaction and tested the amplification with the four designed pairs of primers, on 

the 8 cDNA samples for which we had previously observed amplification (Figure 13). 

 

 

Size  

150bp 

130bp 

110bp 

180bp 

 
Prostate  

Heart  Testis   Colon  Esophag

e   

Brain  Liver Spleen S. intestine  
S. muscle  Kidney  Thyorid   Thymus  Thraquea  Bladder  

Ovary  Neg. control  

Primer pair 

Actin 

E8-9 

E10-11 

Figure 13 – ATXN3L1 transcriptional pattern of 16 human tissues using E8-9 and E10-11 primers. The 
human tissues used are listed at the bottom of the image and the sizes of obtained bands are labeled on the 

right side. Actin cDNA was amplified as a control. 
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After applying the new conditions, testis was the only tissue where products were constantly 

and clearly amplified. To clarify the transcription pattern of ATXN3L1, a better optimization of the 

amplification protocol must be performed.  

 

 

 

 

 

 

Figure 14 - ATXN3L1 transcriptional pattern for the 4 designed pairs of primers for 8 human 
tissues. Actin cDNA was amplified as control. 
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Neg. control 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 

Discussion 

  



 

 

 

 

 

 

 

 

 

 

 

 

 



Evolution and Functional Relevance of Ataxin-3 Paralogues 
Maria Inês Martins  

 

57 
 

 

Chapter 4 

Discussion  

Retrotransposition and retrogenes are gaining increasing attention as recent studies have 

shown that they may play an important role in genome evolution and in the formation of new 

genes.1, 72  

This project allowed us to investigate the evolution of ataxin-3 paralogues formed by 

retrotransposition events, and to shed light on the functional relevance of these copies. Our 

results showed that ATXN3 gene has been on the origin of many different retrocopies along 

the mammalian lineage. Two of these retrocopies, ATXN3L1 and ATXN3L2, were found to have 

orthologues in several species from the primate lineage. The remaining copies, all diverging 

from each other, resulted from independent-origin retrotransposition events occurred after 

the speciation of several mammalian species. These observations are compatible with studies 

performed by Pan and Zhang (2007 and 2009) where they explain that a burst of young and 

independent retrogenes has recently arisen in several species branches, mainly in mammalian 

genomes. 2, 73 The key factor underlying this important active process, that has been shaping 

the dynamics of mammalian genomes, might have been the recruitment of specific L1 

retrotransposons in mammals.2, 73  

In the case of ATXN3L1 and ATXN3L2, the identification of several orthologues in the 

primate lineage suggested an ancestral origin for each one of these copies, before the split of 

several primate clades, with their evolution until these days. Our results suggested that the 

two retrocopies have independent origins, with ATXN3L1 as the most ancient copy (63 MYA), 

followed by the birth of ATXN3L2, about 35 MYA. Across their evolution, these copies had the 

chance to become functional or remain as non-relevant pseudogenes, having consequently 

more or less influence in the respective genomes of the considered species. Our results have 

shown some evidences that ATXN3L1 is being conserved and its ORF kept in check. In addition, 

our results suggested that ATXN3L1 is more likely to be transcribed than ATXN3L2. This 

difference may have resulted from the genomic background where copies were inserted. A 

study by Emerson et al. (2004) claims that retrogenes are not randomly located on 

chromosomes, but that genes are more likely to be retroposed into and/or out-of the X 

chromosome in mammals.74 The authors demonstrated that, during evolution of human and 
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mouse genomes, the mammalian X chromosome has generated and recruited a 

disproportionately high number of functional retroposed genes, whereas the autosomes 

experienced lower gene turnover. 8, 74 Therefore, it is interesting to notice that the most 

conserved ATXN3 retrocopy, ATXN3L1, is located on the X chromosome, whereas ATXN3L2 

(suggested by our results to be, most likely, a processed pseudogene) resides in an autossome.  

As it was previously described, to become fixed in a given species genome, retrocopies 

must arise in the germ line and the gene source must be expressed at that time.1 ATXN3 is 

ubiquitously present in human tissues and cell types however, the retropositions of ATXN3L1 

and ATXN3L2 occurred, not in the human species, but in an ancestor of Haplorrhines and 

Catarrhines, respectively. 25, 38 Thus, to be feasible the occurrence of retrotransposition events 

from ATXN3, this gene must have been transcribed in the germ line of these ancestral species. 

The analysis of the (CAG)n tract of ATXN3, among different primate species, is a key factor 

to understand the process of repeat instability over the primate lineage until reaching the 

expanded/pathogenic range  in humans. In the parental gene, the repeat tract configuration 

has been maintained stable along the primate lineage, varying mainly on the repeat size, which 

increased over time. Most of the studies have described a range between 14-40 in humans, 14-

20 in chimps, 8-11 in gorillas and 24-25 in orangutans.75 According to Andrés et al. (2004), 

humans show, not only a higher mean number of repeats than other species, but also a higher 

variance and coefficient of variation, with a decreasing trend observed as more anciently 

diverged primates are analysed. Thus, a relationship has been suggested between variability 

levels and expansion potential. In addition, the authors hypothesized the existence of some 

balancing selection favouring the existence of different alleles in human populations that 

would maintain the high (CAG)n diversity currently observed in our species.75  

As for ATXN3L1, the CAG repeat showed a poorly polymorphic and highly interrupted tract 

across the primate lineage, whereas ATXN3L2 presented a pure (CAG)n in some species, and a 

polymorphic hexanucleotide repeat in humans and chimpanzees. This recent acquisition of a 

repetitive CGGCAG resulted, probably, from a CAG to CGG mutation followed by instability 

that encompassed the six bases instead of the CAG alone. 

In addition, studies on the CAG region of both parental and ATXN3 paralogues can be 

important to gain insight into the involvement of these repetitive tracts in both pathological 

and non-pathological states of the protein. In fact, Schaefer et al. (2012) have claimed that 

(CAG)n tracts are not randomly distributed in the genome.76 Also, recent studies have 
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demonstrated that the polyQ tract may actually have a function in repeat-containing proteins. 

In fact, we can observe a biased involvement of these proteins towards functions related to 

transcriptional regulation and nuclear localization.77, 78 Moreover, recent studies have 

suggested the involvement of polyQ repeats in protein-protein interaction networks, by 

stabilizing structural changes to facilitate the interaction between own coiled-coil regions with 

coiled-coil regions of other proteins (Figure 14).76 These facts suggest that (CAG)n tracts can 

actually be subjected to selective pressures, in order to maintain a possible functional role in 

the protein context.  

 

 

 

 

Analysing ORF predictions for both ATXN3L1 and ATXN3L2, it was evident that the first 

copy, although more ancient, maintained its intact putative coding sequence. In opposition, 

the most recent retrocopy ATXN3L2 displayed a disrupted ORF, with maximum length 

fragments of 200 bp predicted as alternative ORFs. These facts come to reinforce that both 

copies have accumulated genetic differences relatively to the parental gene along their 

evolution; nevertheless, ATXN3L1 seems to be under selective constrains that might be 

keeping its sequence in check whereas ATXN3L2 has accumulated premature stop codons that 

interrupted its original sequence. Yet, the short ORF of ATXN3L2 may be transcribed into 

mRNA and play a trans-regulatory role in the expression of the parental gene. Indeed, it was 

recently found that some mammalian retropseudogenes have evolved the capacity to encode 

small interference RNAs, important for the regulation of their parental source genes.   

Concerning the analysis of ATXN3L1 expression in human tissues, our results have 

demonstrated that this paralogue is expressed, at least, in human testis. Results for other 

human tissues, such as brain, prostate, colon, liver and ovary, were less clear and, thus, need 

to be confirmed with further analyses. By comparing our results with expression data available 

in NCBI (EST profile) and in the Human Protein Atlas (http://www.proteinatlas.org/, updated at 

Figure 14 – Possible role for the polyQ stretch in protein-protein interactions: upon 
interaction with a protein partner, the polyQ region adopts a coiled-coil structure. (adapted 

from Schaefer, 2012)76 
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11/11/2011), data is not consensual. Figure 15 shows a summary of the ATXN3L1 expression 

levels, and Figure A7 of the appendix section a more complete version of these data.  

 

 

 

Figure 15 – ATXN3L1 expression levels in different human organs/tissues. (data from the Human Protein Atlas: 
http://www.proteinatlas.org/ENSG00000123594) 

 

  It is important, however, to notice that expression patterns annotated in The Human 

Protein Atlas are based on antibody assays classified as “Low Reliability” in the case of 

ATXN3L1. On the other hand, ATXN3L1 expression patterns consulted in the NCBI – UniGene – 

EST Profile are illustrated in Figure A8 of the appendix section. Here, the expression levels 

were measured by EST counts in unbiased cDNA libraries. Testis and brain are the only human 

body tissues where ATXN3L1 is shown to be expressed, with higher levels of expression in 

testis. These data are, in fact, more similar to our results, but no further conclusions can be 

taken before confirming the obtained results 

By comparing the principal domains of ATXN3 and ATXN3L1 proteins, we observed a 

conserved Josephin domain (catalytic domain), NES77, NES141 and UIM1, whereas less 

similarity was found for the remaining regions NLS273, UIM2 and UIM3. As the catalytic 

domain is the most conserved one (with intact catalytic sites: C14, H119 and N134), it can be 

hypothesized that ATXN3L1 is likely to exert an ubiquitin protease activity as the parental 

ATXN3. The two other important residues in UIMs (serine-232 and serine-260 in UIM1 and 
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UIM2), as well as the UIM1 itself, are also conserved in ATXN3L1 suggesting that ubiquitin 

interactions can also be carried out by this retrocopy. However, possible functions of ATXN3L1 

cannot be speculated based only on its conserved domains. More functional studies must be 

performed, for example, in order to explore common binding partners to the parental protein.   
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Chapter 5 

Final remarks and future perspectives 
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Chapter 5 

Final remarks and future perspectives   

The general aims traced for this project were accomplished, but still, there are techniques 

here developed that can be optimized, as well as the enlargement of sample sizes in order to 

enrich and reinforce the obtained results.  

From our study, it was possible to conclude that the analysis of paralogue genes involved in 

neurodegenerative diseases can be of great importance to gain insight into the mechanisms of 

pathogenesis. Namely, on Machado-Joseph disease, the ATXN3L1 was observed to be transcribed 

in human tissues; expression patterns will be assessed next through the optimization of specific 

amplifications of ATXN3L1 cDNA. At the protein level, ATXN3L1 possesses a highly conserved 

catalytic domain. Next, to detect the endogenous protein in human tissues, an anti-ATXN3L1 

specific antibody can be generated to perform Western blot and immunohistochemistry. 

Additionally, future studies on the protein characterization will allow us to evaluate if this 

retrocopy has evolved towards functional diversification (neofunctionalization or 

neosubfunctionalization) relatively to the parental protein. To test if ATXN3L1 shares some of the 

most important molecular interactors (common binding partners) with ATXN3, one could detect 

common binding partners by co-immunoprecipitation with the transcriptional coactivators and 

DNA repair proteins that interact with the parental ataxin-3. 

 

Further studies can be made, also, to confirm if the small ATXN3L2 ORFs predicted in this 

study are transcribed or not. This can be done by following the same approach we used here for 

ATXN3L1: the design of specific primers to amplify concatenated regions corresponding to ATXN3 

exons, in gene-specific nucleotides with highly conserved sites across species within orthologues. 

If the transcription of ATXN3L2 occurs, one could explore the possibility of them being encoding 

small interference RNAs and acting as trans-regulatory factors of ATXN3. 
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Figure A1 – Alignment of all sequences searched on Ensembl, NCBI and UCSC Genome Browser databases. From top to bottom: Gallus 
gallus as outgroup; ATXN3 coding sequences for primates; ATXN3 coding sequences for non-primate mammals; ATXN3L1 for primates; 

ATXN3L2 for primates; ATXN3L? of primates and non-primate mammals. The human exons present in transcript ATXN3-001 were annotated in 
the ATXN3 coding sequence to serve as reference. Green annotations correspond to sequence portions added to those sequences obtained 

from trace archives.  
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 Table A1– Matrix of genetic distances among ATXN3, ATXN3L1 and ATXN3L2 of several primates. Cells with darker background represent higher 
similarity between two sequences, whereas lighter cells show lower similarity. Notably, a lighter gray means further apart while darker means closer 

together. The longest distance in the tree is white and the shortest distance is black (may not be zero).  
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Table A2 -– Matrix of genetic distances among ATXN3, ATXN3L1 and ATXN3L2 of several primates, without the CAG tract. Cells with darker background represent higher similarity 
between two sequences, whereas lighter cells show lower similarity. Notably, a lighter gray means further apart while darker means closer together. The longest distance in the tree is 

white and the shortest distance is black (may not be zero). 

Table A3 - Matrix of genetic distances among ATXN3, ATXN3L1 and ATXN3L2 Josephin domain of several primates. Cells with darker background represent higher similarity between two 
sequences, whereas lighter cells show lower similarity. Notably, A lighter gray means further apart while darker means closer together. The longest distance in the tree is white and the shortest 

distance is black (may not be zero) 
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Figure A2 –Phylogenetic tree of ATXN3, ATXN3L1 and ATXN3L2 for primates, without the GAG tract, based on the genetic 
distances presented on Table A2. Gallus gallus was used as outgroup. 

 

 

Figure A3 – Phylogenetic tree of ATXN3, ATXN3L1 and ATXN3L2 Josephin domain for primates, based on the genetic distances 
presented on Table A3. Gallus gallus was used as outgroup.  
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Table A4 - Matrix of genetic distances among ATXN3, ATXN3L1 and ATXN3L2 complete sequences of several mammals. Cells with darker background represent higher similarity between 
two sequences, whereas lighter cells show lower similarity. Notably, a lighter gray means further apart while darker means closer together. The longest distance in the tree is white and the 

shortest distance is black (may not be zero). Continue on the next page. 
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Table A4 - Continuation 
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Table A5 - Matrix of genetic distances among ATXN3, ATXN3L1 and ATXN3L2 of several mammals, without the (CAG)n tract. Cells with darker background represent higher 
similarity between two sequences, whereas lighter cells show lower similarity. Notably, a lighter gray means further apart while darker means closer together. The longest 

distance in the tree is white and the shortest distance is black (may not be zero). Continue on the next page. 
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Table A5 - Continuation 
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Table A6 - Matrix of genetic distances among ATXN3, ATXN3L1 and ATXN3L2 Josephin domain of several mammals. Cells with darker background represent higher similarity  
between two sequences, whereas lighter cells show lower similarity. Notably, a lighter gray means further apart while darker means closer together. The longest distance 

 in the tree is white and the shortest distance is black (may not be zero). Continue on the next page. 
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Table A6 - Continuation 
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Figure A4 – Phylogenetic tree of ATXN3, ATXN3L1 and ATXN3L2 for mammals, without the GAG tract, based on the genetic 
distances presented on Table A5. Gallus gallus was used as outgroup. 

 

 

Figure A5 – Phylogenetic tree of ATXN3, ATXN3L1 and ATXN3L2 Josephin domain for mammals, based on the genetic distances 
presented on table A6. Gallus gallus was used as outgroup.  
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Figure A6 – Phylogeny of extant primate groups and corresponding date of branching splits.79 
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Figure A7 - ATXN3L1 expression levels in different human organs/tissues. (data from the Human Protein Atlas: 
http://www.proteinatlas.org/ENSG00000123594) 
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Figure A8 - ATXN3L1 expression levels in different human 
organs/tissues. (data from NCBI – UniGene – EST Profile data base: 
http://www.ncbi.nlm.nih.gov/UniGene/ESTProfileViewer.cgi?uglis

t=Hs.382641) 
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