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resumo 
 
 

O transporte de cálcio pelas vesículas sinápticas regula a duração da neurotransmissão: 
Como partir de uma actividade para chegar a uma função biológica e à identificação 
da proteína que a confere. 
 
A neurotransmissão rápida ocorre na escala de tempo do milisegundo. Esta inclui  
I) A entrada rápida de Ca2+ para dentro da célula através dos canais de cálcio sensíveis  
a voltagem. 
II) A activação do mecanismo de libertação de neurotransmissor sensível a cálcio. 
III) A difusão através da fenda sináptica  
IV) A activação dos receptores pós-sinápticos 
V) A terminação da sinalização 
Um dos acontecimentos chave neste processo é que a elevação da concentração de 
Ca2+ no terminal sináptico tem de ser transitória, suficientemente elevada para garantir 
que a secreção ocorra num ápice e não perdure no tempo de modo a comprometer a 
“janela de tempo” da secreção (< 300 µs). 
A necessidade de um mecanismo de sequestração rápida de Ca2+ de baixa afinidade foi 
postulado no passado como pressuposto teórico para garantir uma elevação da [Ca2+]i 
> 100  µM durante menos de 300 µs. 
No nosso laboratório foi identificada uma tal actividade de transporte de Ca2+ 
energizada pelo gradiente de protões vesicular. Um trocador de Ca2+/H+ em vesículas 
sinápticas de córtex cerebral de carneiro, activo para uma gama de concentrações de 
Ca2+ relativamente elevada, entre os 100 e os 800 µM (máxima actividade aos 500 
µM). 
A velocidade do transporte de Ca2+ por este antiporta depende do gradiente de H+ 
através da membrana vesicular que é mantido pela actividade da H+-ATPase do tipo V 
e passível de ser inibida especificamente pela bafilomicina A1. Também o ião Sr2+ 
inibe o trocador de Ca2+/H+ (sem afectar o gradiente de H+ vesicular). Estes dois 
inibidores foram utilizados para por em evidência a participação do trocador de 
Ca2+/H+ vesicular na regulação da secreção da acetilcolina (ACh) nas sinapses do 
órgão eléctrico de Torpedo marmorata. Quer o Sr2+,  prevenindo a sequestração 
vesicular de iões, quer a bafilomicina, que dissipa o gradiente de H+, induziram um 
aumento no tempo de resposta pós-sináptica de 2 ms para até ~10 ms, devido à 
persistência da libertação de ACh. 
Os electrócitos do órgão eléctrico de Torpedo permitiram acompanhar esta libertação 
de ACh em tempo real através da medição da corrente eléctrica gerada pelo órgão 
eléctrico em resposta à ACh. Esta preparação permitiu simultaneamente a marcação da 
ACh libertada com 14C, evidenciando assim a natureza pré-sináptica do aumento da 
libertação de ACh. Este aumento foi ainda confirmado em sinaptossomas isolados a 
partir do mesmo órgão, desta vez utilizando a quimioluminescência como técnica de 
visualização da libertação de ACh.  
 

 
 



 

 
  

  
 
 
 
 
 
 
 
 
 
 
 

 
 

Ficou demonstrado que a principal função do antiporte de Ca2+/H+ vesicular é a de 
restringir, no tempo, a libertação de neurotransmissor. Não se exclui, contudo, que 
essa mesma sequestração participe igualmente na homeostasia do Ca2+ “ajudando” a 
acção da Ca2+-ATPase vesicular a manter os níveis basais de Ca2+. 
Agora que sabíamos o que o antiporte faz queríamos saber qual a proteína que o 
codificava. Para tal partimos da hipótese que a sinaptotagmina I codificava o nosso 
transportador. Usámos clones de células PC-12 em cultura que não exprimiam a 
sinaptotagmina (-/-) e comparámos a actividade de antiporte vesicular dessas células 
com a actividade nas células exprimindo a proteína (+/+). A perda de actividade nas 
células -/- foi de 100% relativamente às +/+. De modo a certificarmo-nos deste 
resultado usámos células -/- transfectadas  com o gene da sinaptotagmina I ao qual foi 
fusionada uma sequência tetracisteínica (Cis-Cis-Arg-Glu-Cis-Cis) na proteína de 
fusão. Esta sequência é capaz de reconhecer uma sonda biarsénica, fluorescente 
quando ligada à proteína de fusão, e passível de criar radicais livres de alta 
reactividade (singletos de oxigénio) quando exposta a luz ultravioleta de alta 
intensidade. Técnica conhecida por “fluorescein-assisted light inactivation” ou FlAsh-
FALI. Por este método pudemos verificar que a actividade de antiporte de Ca2+/H+ 
vesicular requer uma sinaptotagmina I funcional, usando ensaios de transporte de 
45Ca2+ e uma sonda fluorescente sensível a protões. 
 
 
 

 



 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

keywords 
 

Neurotransmission, Neurosecretion, Calcium, Ca2+/H+ exchanger, Torpedo 
marmorata electric organ; Synaptic vesicles; PC12 cells, Rat hippocampus 
mossy fibre synaptosomes 
 

abstract 
 

Calcium transport by synaptic vesicles shapes neurotransmission timing: 
From an activity to the biological function and the identification of it’s encoding 
protein. 
 
Rapid neurotransmission occurs in the millisecond timescale. This includes: 
I) Fast Ca2+ entry into the cell through voltage operated calcium channels 
II) Activation of the Ca2+-sensitive neurotransmitter release mechanism 
III) Diffusion through the synaptic cleft 
IV) Post-synaptic receptor activation 
V) Signalling termination 
One of the key features in this process is that the Ca2+ concentration rise in the 
synaptic terminal must be transitory in nature. Rise above threshold level to guarantee 
flash-like secretion and don’t endure in time as to compromise the time window for 
release (< 300 µs). 
The need for a rapid Ca2+-sequestering mechanism was postulated in the past as a 
theoretical pre-requisite to guarantee [Ca2+]i> 100 µM in less than 300 µs. 
We identified one such activity of Ca2+-transport, energized by the vesicular proton 
gradient. A Ca2+/H+ exchanger in synaptic vesicles of sheep brain cortex. Active for 
rather high Ca2+ concentrations ranging from 100 to 800 µM (maximum activity at 500 
µM). 
The speed of Ca2+ transport by this antiport depends on the H+ gradient existent across 
the vesicular membrane. This is maintained by the activity of a V-type-H+-ATPase 
specifically inhibited by bafilomycin A1. Also, Sr2+ can inhibit the Ca2+/H+ exchange 
(without affecting the vesicular H+ gradient). These two inhibitors were used to put in 
evidence the participation of this Ca2+/H+ exchanger in the tight control of 
acetylcholine secretion (ACh) in Torpedo marmorata electric organ synaptic vesicles. 
Both Sr2+, by preventing vesicular ion sequestration, and bafilomycin, able to 
annihilate the H+ gradient, induced an increase in time of the post-synaptic response 
from 2  ms up to ~10 ms, due to the persistence of ACh release. 
Torpedo marmorata’s electric organ electrocytes enabled us to follow ACh release in
real time by registering the electric current generated by the electric organ in response
to ACh. This preparation allowed the simultaneous marking of the ACh being released 
with 14C, putting in evidence, in this way, the pre-synaptic nature of ACh release
increase. This ACh rise was also confirmed in synaptosomes isolated from the same
organ, this time using the technique of chemiluminescence to visualize ACh release. 

 
 
 



 

 
 
 
 
  

  
 
 
 
 
 
 
 
 

 
 

It was demonstrated that the main function of the vesicular Ca2+/H+ antiport is to 
restrain in time neurotransmitter release. However, we cannot exclude that such 
sequestration participates equally in Ca2+ homeostasis by “helping” the action of 
vesicular Ca2+-ATPases to maintain basal Ca2+ low. 
Now that we knew what the antiport does, we aimed at identifying the protein that 
codes for it. To do so, we started from the hypothesis that synaptotagmin I coded for 
our transporter. We cultured PC12 cell clones that did not expressed synaptotagmin I 
(-/-) and compared the vesicular antiport activity of those cells against that of positive 
control cells (+/+). To be certain of the result we used -/- cells to be transfected with 
the gene for protein synaptotagmin I fused with a tetracysteine sequence (Cis-Cis-
Arg-Glu-Cis-Cis) in the resulting fusion protein. This sequence is responsible for the 
recognition of a biarsenical probe, able to fluoresce when bound to the fusion protein 
and liable to generate high reactivity free radicals (oxygen singlets) when exposed to 
intense UV light. That is, the fluorescein-assisted light inactivation or FlAsh-FALI. 
This method enabled us to conclude that the Ca2+/H+ antiport activity requires a 
functional synaptotagmin I, as assessed by 45Ca2+ transport assays and a fluorescence 
probe sensitive to protons. 
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1.1. Calcium-dependent secretion: a historical sketch 

 
The involvement of calcium ions in excitation-secretion (or contraction) coupling goes 

back to the time when brain cells were still believed by many to work as a syncytium 

(Reviewed by Shepherd, 1991), more than a century ago. It happens almost by chance in the 

course of the pioneer work of Sidney Ringer, while developing a formula for a physiological 

saline solution, subsequently named after him. He started describing the role of each 

component of the blood on the contraction of the frog heart ventricle in 1882 (Ringer, 1882). 

Soon after, he failed to reproduce his previous experiment and realized he had missed a key 

component in his “physiological” solution simply because he “discovered that the saline solution 

which I had used had not been prepared with distilled water, but with pipe water supplied by 

the New River Water Company (in London)”, and after thorough analysis of that pipe water he 

revealed that it contained a significant amount of calcium, that was required for muscle 

contraction in the heart (Ringer, 1883).  

A decade later, Locke stimulated frog sartorius muscle nerves with a platinum 

electrode and registered muscle contraction in normal Ringer (with calcium) while calcium 

removal resulted in no contractions (Locke, 1894). In the same work, Locke reported that 

excitation could be recuperated by substituting calcium with strontium, but not magnesium, or 

potassium.  

The next landmark in the history of the role of calcium at the synapse came after a 

long Hiatus, into modern day’s neuroscience. Harvey and MacIntosh (1940) established that 

calcium removal implicated failure of Acetylcholine (ACh) release from the pre-synaptic 

terminal rather than a failure of ACh to induce a post-synaptic effect. Later, Del Castillo and 

Stark (1952) showed that changing extracellular Ca2+ concentration varies the size of 

endplate potential at the neuro-muscular junction (NMJ), and if all Ca2+ was removed the 

potential disappeared. Similarly, Douglas & Rubin (1961) proposed that intracellular Ca2+ 

controls stimulus-secretion coupling in endocrine cells. This happened at the same time that 

Hodgkin, Huxley and Katz (1952) described the ionic basis of the action potential in the axon 

of the squid while, at this time, Del Castillo and Katz (1954) described the quantal nature of 

ACh release as well as miniature endplate potential at the neuro-muscular junction. 

Meanwhile, De Robertis and Bennett (1955) observed synaptic vesicles in the synaptic region 

for the first time. 
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At that time it was not known if Ca2+ participated in the spread of a depolarizing wave 

arriving at synaptic terminals or instead by activating the mechanisms leading to sudden 

increase in release probability of quantal transmitter release.  

Katz and Miledi addressed this question in a pair of papers describing that nerve 

impulse was perfectly capable of invading the terminal in 0 Ca2+, and if Ca2+ is applied 

iontophoretically it allowed to elicit ACh release locally, evoking a focal end plate potential 

(Katz and Miledi, 1965).  

Later they demonstrated that local calcium concentration had to be raised 

extracellularly during the depolarization phase; “if one delays the calcium pulse until the end 

of depolarization, no release occurs” (Katz and Miledi, 1967a). At the same time, Dodge and 

Rahamimoff (1967) reported that the relation between [Ca2+]ext and the excitatory 

postsynaptic potential (e.p.p.) is highly non-linear and establish that a co-operative action of 

about four calcium ions is necessary for the release of each quantal packet of transmitter by 

the nerve impulse in the frog NMJ.  

These findings paved way to the formalization of the calcium hypothesis (Katz and 

Miledi, 1967b) saying that the: “inward movement of a positively charged Ca compound, or of 

the calcium ion itself, constitutes one of the essential links in the “electro-secretory” 

coupling process of the axon terminal”, in a paper where the pre-synaptic potential of the 

squid giant synapse was step raised up close to the Ca2+ equilibrium potential, with no 

postsynaptic response occurring until the end of that pulse.  

This was the first demonstration of the theory proposed by Katz (1969) that 

“depolarization opens  a gate to calcium ions (or –what amounts to the same thing- that 

depolarization makes available specific carriers for calcium ions in the membrane)” and that 

“as a consequence of this increased “calcium conductance”, Ca ions can move -down a very high 

concentration gradient- towards the inside of the axon membrane and thus reach the critical 

sites of release reaction” and concluded “we are suggesting that, at these sites, calcium is 

essential for the process which causes a transient fusion of axon and vesicular membranes 

and which leads to the release of a quantal packet of transmitter”.   

The calcium theory was proposed by Katz as part of a wider view over “The release of 

neural transmitter substances”, where he also hypothesized the so-called vesicular theory of 

transmitter release, which is part of the mainstream thinking in the field of secretion, 

nowadays. 
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Even though the calcium theory was proposed in 1967-1969, it would be somewhat 

unfair not to include in this section a reference to Miledi (1973), who contributed to the 

consolidation of the calcium theory by attributing an intracellular, near membrane, location to 

the Ca2+ site of action, by injecting CaCl2 (0.1-0.5 mM) iontophoretically, directly into the 

cytosol of small squid giant synapses. This was his second report (first one was in 1966 with 

Slater, but somewhat failed) where he also proved that intracellular injection of strontium 

ions could substitute for calcium.  

 

1.2. Calcium desensitization or “fatigue” of transmitter release 
 
 Katz and Miledi’s studies had already given some indications that calcium activation of 

the secretory apparatus did not resume to some dicothomic “on signal” in the presence of 

calcium and “off signal” in the absence of the ion. It had to be brief also.  

The intracellular calcium injection experiments of Miledi are a good example of this 

since he could not reproduce the very intense postsynaptic response obtained by calcium 

entry after depolarization of the terminal (in presence of extracellular calcium). Instead, he 

was able to induce a slower postsynaptic potential, with some faster components 

superimposed (especially with extra calcium) as calcium diffused away from delivery sites, 

promoting asynchronous release rather than synchronous in this way (Miledi 1973), and 

thereby explaining why he had missed that experiment the first time due to a weak calcium-

dependent signal and Ca2+ buffering in the terminal. 

 Synaptic fatigue, or calcium induced desensitization of release is another important 

(even if not explored) Ca2+-dependent effect that was first reported in 1969 by Katz and 

Miledi after the formulation of the calcium hypothesis.  

They reported that if a squid pre-synaptic terminal sustains long-lasting 

depolarization, fatigue of synaptic transfer process will occur and this fatigue (or pre-

synaptic inactivation) probably results from prolonged influx and accumulation of calcium on 

the inside of the membrane. Similarly, removing all NaCl from the extracellular medium 

resulted in the complete blockade of release process, possibly by blocking calcium extrusion 

and allowing calcium accumulation inside the terminals (Blaustein and Hodgkin, 1969; Katz and 

Miledi, 1969). Substituting extracellular NaCl (i.e., with LiCl) or using other calcium extrusion 

blockers, like cyanide (Baker et al., 1971), ruthenium red (RuR) (Alnaes and Rahamimoff, 
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1975), or FCCP (Adams et al., 1985) results in the progressive elevation of intra-terminal 

calcium above 1 micromolar.  

This progressive intra-terminal calcium rise was dependent on both [Ca2+]ext and 

synaptic terminal stimulation, resulting in the blockade of evoked transmission within 20-40 

min (Adams et al., 1985).  

More importantly, Adams et al. (1985) asserted a role for ionized calcium in this 

process of calcium-induced pre-synaptic desensitization by recuperating transmission with 

the injection of the calcium chelator EGTA directly into squid giant pre-synaptic terminals.  

The molecular nature of the dual calcium effect on synaptic transmission was 

evidenced by Israël at al. (1987) by showing that calcium ions can both activate a calcium-

sensor of transmitter release or desensitize it to further Ca2+-dependent activation, 

depending on the Ca2+ concentration and time of exposure to elevated Ca2+. They used both 

synaptosomes, and proteoliposomes endowed with the calcium-sensor of ACh release present 

in Torpedo marmorata neuro-electric synapse, the mediatophore.  

Calcium binds to the mediatophore with an apparent affinity of ~25 µM which is in 

accordance with half maximal desensitization of ACh release attained at ~30 µM calcium for 

Ca2+ exposures lasting 3 to 5 min. Conversely, rapid Ca2+-induced ACh release was half 

maximally activated at 500 µM Ca2+ leading to the conclusion that desensitization and release 

capacities co-inhabit within the same molecule and are functionally related. 

Partial Ca2+-induced desensitization of the release machinery has been functionally 

addressed in squid nerve terminals with repetitive Ca2+-uncaging protocols. Consecutive 25 ms 

Ca2+-uncaging pulses, separated by 100 ms between pulses, resulted in decreased postsynaptic 

response up to ~1/3 of the highest E.P.P. within 500 ms (Hsu et al., 1996). Even though named 

adaptation, it follows the same Ca2+-dependent characteristics of “fatigue” or the 

desensitization of pre-synaptic release machinery.  

Calcium-induced desensitization might also participate in a form of synaptic plasticity 

named paired pulse depression (PPD) obtained by stimulating Calyx of Held synapses at 150 

ms intervals (Bellingham and Walmsley, 1999). 

This form of depression is sensitive to pre-synaptic calcium and strontium levels and 

can be reversed by early application of cyclothiazide, a drug normally used to prevent post-

synaptic AMPA receptor desensitization (Vyklicky et al., 1991; Yamada and Tang, 1993). 
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 The frequency of MEPPs also increased during PPD, which is consistent with a 

sustained increase in intra-terminal calcium or strontium (Bellingham and Walmsley, 1999). In 

keeping with this strontium effect is the report that zinc substitutes for calcium both on 

Torpedo synaptic transmission and on desensitization, only this time with greater affinity 

(100-250 µM Zn2+) than calcium (Dunant et al., 1996)  

It seems then that, pre-synaptic Ca2+-induced desensitization of the release 

mechanism occurs gradually within milliseconds up to minutes time scale and that it might be 

involved in the fine-tuning of synaptic function and/or in prevention of neurotransmitter 

exhaustion. 

 

1.3. Calcium signal has to be transient 
 
 A corollary arises from the features presented above. The need for speed! 

Calcium signals directed at activating the release machinery need to be very fast, sharply 

defined in space and in time to guarantee the necessary acuity for activating the calcium 

sensors of secretory apparatuses without incurring into undesirable desensitization. On the 

other hand, desensitization should be able to prevent the unsynchronized release of 

transmitter packets from release sites not coupled to the calcium source.  

In line with this, transmitter release is a highly cooperative process with Hill 

coefficients varying from ~3 to ~5 (Dodge and Rahamimoff, 1967; Dunant et al., 1980a; 

Yazejian et al., 2000).  

This means that calcium sensitivity for transmitter release is highly non-linear with 

both the amount and kinetics of transmitter release varying exponentially with the calcium 

concentration.  

It means also that binding of a Ca2+ ion to its sensor is facilitated by previous 

allosteric binding of another Ca2+, working cooperatively (up to 3-5 ions per sensor molecule) 

to activating the Ca2+-dependent release apparatus.  

If calcium activation does not occur as fast and intense as provided by calcium entry 

through calcium channels, cooperativity will be lost, even though the calcium affinity remains 

practically unaltered (Birman at al,. 1986; Cavalli, A et al., 1991; Bollmann and Sakmann, 2005). 

Similarly, Ca2+-induced membrane accretion resulting from vesicular fusion can be activated 

by rising calcium to only a low intra-terminal micromolar concentration, but rather slowly and 

with low intensity.  
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Fusion rates increase exponentially when calcium rises suddenly into the hundreds of 

micromolar calcium (Heidelberger et al., 1994; Mennerick and Mathews, 1996; Beutner et al., 

2001).  

    

1.4. Ca-dependent secretion rides off the back of fast calcium current 
transients  
 

Calcium signal does not occur uniformly throughout the terminal. There are precise 

spots of Ca2+ elevation near the membrane resulting from transient membrane barrier breach 

to calcium.  

These spots correspond to the so-called pre-synaptic active zones where the release 

apparatus clusters at well defined spaces forming a “pre-synaptic web” (Couteaux and Pécot-

Dechavassine, 1970; Zhai and Bellen, 2004; Girod et al, 1993). 

Upon opening of voltage operated calcium channels (VOCC’s) Ca2+ streams into the 

active zone, energized by the summation of a huge chemical Ca2+ gradient (15,000-100,000 

fold) and an electric gradient mostly favouring Ca2+ entry.  

In a couple of breakthrough papers Llinás et al. (1981a; 1981b) described pre-synaptic 

calcium currents (ICa) and their relationship with the post-synaptic response in the squid 

stellate ganglion synapse. There, calcium conductance change displays a rather late onset 

(~800 µs) after the beginning of depolarization and a sigmoidal time course. The ICa rate of 

rise and “bell”-shaped amplitude curve are voltage-dependent. Maximum rate of rise was 

reached at -8 mV and maximum amplitude at -10 mV (the resting potential was -70 mV). The 

current displayed no fast (i.e., <100ms) voltage-dependent deactivation.  

Importantly, the time course of the calcium current is independent of [Ca2+]ext  while 

the amplitude of ICa is clearly dependent on [Ca2+]ext (maximum at 10 mM), this means that the 

rate of ICa increase with voltage is also dependent on [Ca2+]ext . There is also a voltage shift of 

peak ICa to the right with increased [Ca2+]ext.  

By applying a depolarizing pulse near Ca2+ equilibrium potential (ECa) Llinás et al. were 

able to demonstrate that ICa decreases exponentially with a time constant of ~630 µs after 

returning to the holding potential (-70mV). These, so-called “tail-currents” increase sharply 

with depolarization and are capable of generating brief and robust Ca2+ influx.  

Similarly, the generation of excitatory post-synaptic potentials (EPP’s) in the squid 

synapse (Llinás et al., 1981b) increased in amplitude and rate of rise, while synaptic delay 
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decreased to a minimum, by applying depolarization steps to  -10 up to + 10 mV (from -70 mV), 

where ICa was maximal. Under these conditions the synaptic delay between the onset of the 

depolarizing stimulus varied from 633 µs up to 1.27 ms (averaging ~800 µs).  

When release was elicited by a Ca2+ “tail-current” however, the delay varied from 133 

and 233 µs (averaging 192 µs). This setted an upper limit of 200 µs for the activation of the 

release machinery, diffusion of transmitter into the synaptic cleft and binding and opening of 

post-synaptic receptors. These findings meant that most of the synaptic delay is due to the 

activation kinetics of calcium channels, while the delay between calcium entry and post-

synaptic response is extremely brief.  

This extraordinary finding was seconded by several reports confirming the tight 

onset of post-synaptic responses following calcium entry. Hence, similar activation kinetics 

for ACh release (<300 µs) were reported at Torpedo marmorata (Dunant and Muller, 1986) 

neuro-electrocyte synapse, recorded at 18-20 ºC (like with the squid).  

Xenopus nerve-muscle cultures took ~160 µs at 22-24 ºC to activate an EPC (Yazejian 

et al., 2000). A similar value (150 µs) was reported by Sabatini and Regehr (1996) using rat 

cerebellar granule cell to stellate cell synapses at 18 ºC.  

Interestingly, the delay between the onset of the depolarizing stimulus and the 

beginning of EPC was ~2.5 ms (at 18 ºC), but when the same experiment was repeated at 38 ºC 

it took only 150 µs, and the lag between the calcium entry and beginning of EPC decreased to 

mere 60 µs. To achieve this, a significant amount of calcium has to enter during the upstroke 

of the action potential, reducing the delay between depolarization and calcium entry to 90 µs.  

It seems then that factors controlling synaptic delays, like the activation of calcium 

currents (Sabatini and Regehr, 1996; Mennerick and Mathews, 1996) are of critical 

importance for secretory systems working at high speed.  

While some neurons seem to require also rather short deactivation time constants of 

calcium currents to sharpen Ca2+-signaling, like sensory neurons of chick (~160 µs) (Swandulla 

and Armstrong, 1988) or retinal bipolar cells (<120 µs) (Mennerick and Mathews, 1996), 

others, like squid giant synapse, manage to decrease the post-synaptic response after a 

depolarizing pulse in less than 200 µs (Simon and Llinás 1985) even if the ICa deactivation time 

constant there surpasses 600 µs.  

This degree of synchronization is participated by an exquisite architectural 

arrangement of calcium channels in pre-synaptic active zones facing post-synaptic arrays of 
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receptors (Harlow et al.,2001; Zhai and Bellen, 2004), as demonstrated by an almost perfect 

match between pre-synaptic N-type calcium channels (labelled with fluorescent ω-conotoxin-

GVIA) and post-synaptic cholinergic receptors (labelled with fluorescent α–bungarotoxin) 

(Robitaille et al., 1990; Cohen et al, 1991; Robitaille et al., 1993; Haydon et al., 1994).  

Calcium channel labelling revealed a disposition of ca. 40 nm between neighbouring 

channels, irrespective of total channel density (Haydon et al., 1994). These authors 

correlated their findings with large transmembrane particles seen at release sites by freeze-

fracture electron microscopy at a density of ca. 1500 µm-2, corresponding to a channel every 

10-30 nm (Heuser et al., 1974; Pumplin et al., 1981). A value that can accommodate other 

transmembrane channels known to be in close proximity to calcium channels like the Ca2+-

activated potassium channels (KCa), with a density of ~½ that of calcium channels (Roberts et 

al., 1990; Robitaille et al.,1993; Naoum and Hudspeth, 1994) and a set of large particles (10-15 

nm) evoked by nerve impulse, that correspond to multimers of the Ca2+-activated, ACh-

release competent transmembrane channel - the mediatophore - present at least at 200 units 

µm-2 (Israël et al., 1986; Muller et al., 1987; Brochier et al., 1992; Dunant and Israël, 2000; 

Morel et al., 2003).  

This regular distance between calcium channels is also consistent with the predicted 

separation determined by direct binding of calcium channels to synaptic vesicle protein 

synaptotagmin I (Sheng et al., 1998; Harlow et al., 2001; Evans and Zamponi; 2006), and 

plasma membrane proteins neurexin (Missler et al., 2003) syntaxin, as well as the 

synaptosome associated protein of 25 kDa (SNAP25) (Sheng et al., 1998; Harlow et al., 2001; 

Evans and Zamponi; 2006) and KCa channels (Müller et al., 2007).  

The mediatophore ends up being physically linked to calcium channels through 

secondary binding to syntaxin (Shiff et al., 1996) and to the syntaxin binding partner 

synaptobrevin (VAMP), or other vesicular proteins like synaptophysin and its binding partner 

physophiline (Siebert et al., 1994; Galli et al., 1996).  

Otoferlin is another protein arising as the putative calcium sensor involved in stimulus 

secretion coupling at mammalian auditory inner hair cell ribbon synapse, where no 

synaptotagmin I or II are expressed (Safieddine and Wenthold, 1999; Roux et al., 2006). It 

also binds syntaxin and SNAP25 in a Ca2+-dependent manner, like synaptotagmin I does 

(Chapman, 2002; Roux et al., 2006).  
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Most of these proteins are not only physically linked, but in fact, functionally 

attached. For instance, syntaxin and SNAP25 down-modulate calcium channels. Synaptotagmin 

I removes this down-modulation after interacting with syntaxin (Sheng et al., 1998; 

Bezprozvanny et al., 2000; Harlow et al., 2001; Evans and Zamponi; 2006). On the contrary, 

neurexin seems to be fundamental for calcium channel function, as well as serving as a 

receptor for the Ca2+/transmitter pore forming toxin α-latrotoxin (Missler et al., 2003). 

Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor 

(SNARE) proteins like syntaxin, VAMP or SNAP25 cleavage with botulilnum and tetanus 

toxins seems to result in the disorganization of pre-synaptic active zone proteins (Dunant et 

al., 1995; Humeau et al., 2000). Toxin poisoning results in the uncoupling of calcium entry from 

transmitter release and vesicular fusion, blocking evoked secretion while maintaining 

spontaneous transmission (Dunant et al., 1995; Humeau et al., 2000).    

Calcium channels seem to unify Ca2+-secretion coupling machinery, interlinking the 

different preparatory, modulatory and executory partners involved in a response to a calcium 

transient streaming at the active zone. 

 

1.5. Nanometre and micrometer domains of high calcium  
 

The temporal profile of the onset and offset of rapid secretion seems to implicate a 

strategic location of the calcium sensor near calcium entry sites where local calcium 

concentrations could approach the millimolar range (Llinás et al., 1981b; Simon and Llinás 

1985; Roberts et al., 1990; Llinás et al., 1992; Roberts, 1993; Roberts, 1994).  

These very high concentrations were predicted to occur only in close proximity of 

calcium channel mouths. Ca2+ ions flowing into the cell though a channel are assumed to 

diffuse radially and thus, for a constant ion influx a steady state is reached (Parsegian, 

1977), within microseconds (Pumplin and Reese, 1978). Llinás et al. (1981b) calculated that for 

a ICa of 200 nA the Ca2+ concentration reached near channel mouth after 200 µs was ~800 µM 

and decreased steeply to ½ at ~39 nm, being almost unaltered (at the mM scale) at 150 nm 

from the source. The calcium concentration reached at channel mouths was predicted to 

climb to 1 mM or 1.5 mM if ICa climbed to 300 nA or 400 nA respectively. 

These predictions were borne out by experimental demonstrations of such domains of 

calcium elevation near release sites, a decade later, by the hand of Llinás et al. (1992). They 

injected squid giant synapses with a low Ca2+-affinity derivative of aequorin, a protein 
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extracted from Aequorea forskolea that emits light upon Ca2+ binding. By monitoring 

continuously the intensity and number of quantum emission domains (QEDs) within the 

terminals they were able to identify small domes of increased [Ca2+] with 0.313 µm2 arising 

near calcium entry sites up to ~200-300 µM and decaying sharply within 10-20 nm and 

participating synergistically in larger elevation of Ca2+ in the active zone. They were named 

microdomains and correlated with active zones determined by electron microscopy (Pumplin 

and Reese, 1978; Pumplin et al., 1981). 

In this first experimental demonstration of localized calcium microdomains, 

represented in figure 1 (A and B), it is shown the sharp calcium rise within the calcium 

microdomain profiles arising as spirals erected above open calcium channels next to low 

resting calcium areas of bulk cytoplasm, buffered below 100 nM (Dipolo et al., 1976). They 

also showed the synergistic effect of having several nearby calcium channels contributing for 

broader calcium elevation at release sites.  

 

 

 

 

 

 

  

 

Figure 1. Calcium microdomains localized by QEDs produced in a terminal bulb of a pre-
synaptic fibre. Panel A: before stimulation. Panel B: during stimulation. Light intensity levels 
range from white (maximum) to black (zero), with intermediate levels ranging from high (red) 
through intermediate (yellow and green) to low (blue) probabilities that a particular 
microdomain would be active. Adapted from Llinás et al. (1992).  
 

Llinás et al. noticed that once a microdomain is activated, it displays a low probability 

of being reactivated, as compared to a resting active zone, due to calcium channel inactivation 

by high [Ca2+]int
 (Young et al., 1984; Xu and Wu, 2005). This Ca2+-induced channel 

desensitization was named “lateral inhibition” whereby a given channel would be temporarily 

depressed by calcium arising from the previous activity of a neighbouring channel. Yet to fully 

characterise the calcium transient that drives secretion within microseconds QEDs were not 

appropriate (they lasted ca. 200 ms due to the detection technique).  
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Roberts et al. (1990) developed a method for determining local [Ca2+]int using KCa 

channels as reporters in frog hair cells. These cells depend on the interplay of KCa and calcium 

channel activities to produce fast calcium-dependent electrical resonance.  

Resonance transduces very high frequency signals, typically above 1000-2000 Hz that 

phase-locks to the stimulus frequency (Roberts et al., 1990; Avissar et al., 2007). In order to 

keep the temporal precision required for the, some times extreme rate of transmission - i.e., 

in the cochlear nucleus of the barn owl phase locking was observed for frequencies up to 

9000 Hz. (Sullivan and Konishi, 1984)- these synapses need to reduce their temporal jitter 

<80 µs (Avissar et al., 2007). Therefore, it is not surprising that some KCa channels locate 

next to calcium channels so that signalling is not limited by the time of Ca2+ diffusion from 

the channel mouth (Roberts et al., 1990; Roberts, 1993, 1994; Müller et al., 2007).  

 The intracellular calcium concentrations “sensed” by KCa in frog hair cells varied 

between 10 µM to 1 mM, over the physiological range of membrane potentials (Roberts et al., 

1990), indicating that, at least some KCa channels had to be located within 10-20 nm from 

calcium channel mouths (Roberts et al.,1990, Roberts, 1993; Müller et.al., 2007). Moreover, 

KCa currents lag behind the rising phase of the calcium current by 39 µs, peaking within 50-

100 µs and lagging behind the falling phase of ICa by 50-300 µs (Yazejian et al., 2000), making 

these channels the most accurate tools to follow quantitatively the time course of Ca2+-

buildup and decay during Ca2+-transients that evoke neurotransmitter release (onset of 

release some 130 µs after KCa). 

Such temporal acuity implies that KCa sensing high [Ca2+]int are located within 20 nm of 

the calcium source. But it also implies the existence of fast calcium removal or buffering 

mechanisms to lower [Ca2+]int  immediately after calcium channel closure.  

Roberts (1993) showed that native buffers reduced KCa activity in the frog saccular 

hair cells similarly to 1.6 mM concentration of the rapid calcium buffer, BAPTA, while EGTA 

was without effect, concluding that spatial buffering reduces the pre-synaptic free Ca2+ 

within the microdomain by up to 60% and restrict elevated [Ca2+]int  exceeding 1 µM under 250 

nm of each synaptic site. Buffering can thus influence both electrical resonance and synaptic 

transmission by confining the large calcium transient to a very narrow zone of axoplasm in the 

immediate vicinity of the plasma membrane.  

 

1.6. Buffering participates in local calcium transient definition: The nanodomain 
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The answer to how close are Ca2+-sensors to the calcium source and how can a 

terminal evidence such temporally defined microdomains was demonstrated by the use of 

BAPTA. This calcium chelator was able to attenuate transmission whereas EGTA could not 

(Adams et al., 1985; Adler et al., 1991.; Roberts, 1993). These two calcium chelators have 

similar affinity for calcium (Kd~100 nM) and similar diffusional mobility (~20 µm2 sec-1). 

However, they markedly differ (~500 fold) in their activation kinetics (Kon) with BAPTA being 

faster (Kon= 6 x 108 M-1 s-1) than EGTA (Kon= 1.5 x 106 M-1 s-1) (Tsien, 1980). This results in a 

reduction by 60-95% in [Ca2+]int from 1 mM within 100 nm with BAPTA (Roberts, 1993,1994; 

Müller et al., 2007), whereas an attenuation of only 10 % would occur without any buffer, or 

with EGTA at those distances (Roberts, 1993). This difference is enhanced by the fact that 

Ca2+ ions have a diffusion mobility of ca. 200-300 µm2 sec-1 and need only ~30 µs to reach 

~90% steady-state concentration at ~10-50 nm but take >1ms to reach equilibrium at 200-

550 nm, where EGTA is an effective buffer (Roberts, 1993; 1994; Yazejian et al., 2000; 

Müller et al., 2007). This difference in the spatio-temporal definition of [Ca2+]int profiles gave 

rise to the definition of the nanodomain (<20nm), corresponding to a calcium signal provided 

by a single channel and where BAPTA is somewhat an effective buffer (at high 

concentrations). While the microdomain represents a broader signal arising from several 

nearby channels in the same active zone (~200nm), where EGTA can effectively hinder Ca2+ 

action (reviewed in: Neher, 1998; Augustine et al., 2003). 

Parvalbumin and calbindin-D28K are common endogenous mobile buffers. While 

parvalbumin binds Ca2+ and diffuses more slowly than BAPTA or EGTA (Schmidt et al., 2003), 

calbindin binds Ca2+ ~2 times slower than BAPTA and have similar diffusion kinetics as EGTA 

or BAPTA (Nägerl et al.,2000; Burrone et al., 2002; Müller et al., 2007). Mobile buffers act 

by binding Ca2+ thereby inactivating it. Ca2+-bound buffers diffuse away from calcium entry 

and in the reverse reaction will unbind calcium. This process is called buffered diffusion. 

Endogenous mobile buffer concentration ranges from ~50 µM in hippocampal neurons to 1 mM 

in low frequency turtle cochlear hair cells hair and 3 mM in high frequency cells.  

Roberts (1994) modelled the action of fix and the mobile buffer, calbindin-D28K. He 

considered an initial concentration of Ca-binding sites of 2 mM (~0.5 mM Calbindin), bearing a 

mean time capture for calcium of ~3.3 µs considering a Kd for Ca2+ ~1 µM. 
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Low calcium entry (ICa= 0.8 pA) can be substantially buffered (<10 µM from ~200 µM) 

within the first 50 µs of Ca2+ entry by fix or mobile buffers, without depletion. After calcium 

channel closure however, while the mobile buffer reduces calcium <1 µM in 10 µs, a fix buffer 

would actually maintain 10 µM Ca2+ by slow unbinding for as much as 10 ms. 

High calcium entry (ICa= 8 pA) cannot be buffered by either fix or mobile buffer, 

depleting either one within 100 µs. After channel closure the mobile buffer maintains 

buffering capacity to <1 µM but only within 1 ms while the fix buffer also maintains the ability 

to keep [Ca2+]int >10 µM for 100 ms. 

In keeping with these predictions, Kreiner and Lee (2006) described some paradoxical 

effect of buffers in preventing or potentiating calcium-dependent Ca2+ channel inactivation 

(CDI). Low concentrations of EGTA (0.5 mM) induced CDI, while 10 mM BAPTA prevented it. 

But if 0.5 mM BAPTA was used inactivation was significantly greater. Similarly, HEK 293T 

cells transfected with either parvalbumin or calbindin were submitted to stimulation. At low 

frequency, both parvalbumin and calbindin prevented channel inactivation. But at higher 

frequency, parvalbumin induced more inactivation than without transfection. Slower kinetics 

and diffusional mobility seem to take part in this calcium induced inactivation 

(desensitization) of calcium channels. 

These results argue to functional differences between active zones endowed with 

either parvalbumin or calbindin. For instance, while hair cells seem to prefer rather high 

concentrations of calbindin to keep ~19 active zones releasing at rates that often exceed 

1000 Hz. The downstream calyx of Held synapse seems to prefer parvalbumin to reduce the 

time course of [Ca2+]int and paired pulse facilitation (Müller et al., 2007). Interestingly, this 

synapse is strongly depressed after high frequency firing (Forsythe et al., 1998), while low to 

intermediate frequencies (2-30 Hz) were shown to induce calcium current inactivation and 

consequent short-term synaptic depression. Curiously, the calyx of Held holds hundreds of 

small active zones synapsing onto a single, large neuron (Moser et al., 2006), and needs 

particularly low [Ca2+]int to activate secretion (Schneggenburger and Forsythe, 2006). 

Parvalbumin arises as an important participant in synaptic integration in cerebral cortex since 

its expression in the course of development in cerebellum synapses adds a slow phase that 

summates during bursts of action potentials (Collin et al., 2005). 

 Roberts (1994) modelled also different [Ca2+] landscapes according to intra-terminal 

conditions. Figure 2 shows steady state calcium concentrations at 5 nm distance from 
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individual channels [Ca2+]ss in a microdomain. Figure 2 (A) shows all 85 calcium channels in an 

active zone (projected in the plane as closed symbols next to KCa channels with open symbols) 

where ~12 % of single channel current was assigned to each one ~0.094 pA. In figure 2 (B) the 

same total current (8 pA) was assigned to 10 channels only (0.8 pA each) in the presence of 

mobile buffer (figure 2, B). Notice that the KCa channels (open symbols) are subjected to 

much higher local [Ca2+]int.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2. Steady state calcium concentration landscape within 5 nm of the membrane (97 x 
97 array of 5 nm cubes) occurring within microdomains under different conditions. A total of 
8 pA calcium current was divided by all 85 Calcium channels (black dots projected in the plane 
in (A) consisting of the “time-averaged” calcium topography (in A, C and D); alternatively, the 
8 pA current was divided by 10 channels only and consisted of the “frozen” calcium 
topography in (B). Open circles represent the local [Ca2+] concentration sensed by KCa channels 
depending on their relative position to calcium channels within a microdomain (projected in the 
plane in (A). Simulations in (C) and (D) consider the existence of a barrier placed 40 nm away 
from plasma membrane behaving like a diffusion-limiting (to Ca2+ and buffer) barrier in (C) or 
like an unsaturable buffer in (D). Adapted from Roberts (1994). 
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Most interestingly still was the result of the model when the effect of having placed 

at 40 nm away from the membrane a diffusional barrier (figure 2, C) or an unsaturable sink 

(figure 2, D). This barrier or sink could represent the pre-synaptic body present in hair cells, 

like retinal photoreceptors, frog sacculus or some pineal neurons (Roberts, 1994). 

Alternatively, it could represent synaptic vesicle(s) found in close opposition to the calcium 

channel cluster(s) that could serve as a barriers as suggested by Shahrezaei and Delaney 

(2005). 

  In presence of a diffusional barrier (figure 2,  C) for the buffer and for Ca2+ there 

was a generalised rise of [Ca2+]int (~420 µM), and complete decrease in unbound mobile buffer 

concentration. On the contrary (figure 2, D), placing a sink permeable to Ca2+ and 

“transparent” to the buffer, so close to the cluster had major effects on the calcium 

concentration, even though calcium concentration 5 nm away from the membrane still reached 

105 µM with an unsaturable sink 40 nm away. Such a sink could represent Ca2+ binding sites in 

the synaptic body (Roberts, 1994), or the action of putative high-speed calcium transport 

systems in synaptic vesicles. Interestingly, the actual calcium concentration reported by KCa 

channels for 8 pA ICa was 520 µM (Roberts, 1993), which goes in the direction of the effects 

of a barrier.  

  

1.7. Synaptic vesicles in active zones 
 

Despite some variability in active zone structures (Zhai et al., 2004) all synapses are 

characterised by having an array of synaptic vesicles in close proximity to the membrane. 

Even secretory neuroendocrine, chromaffin or neuropeptidergic secreting cells without 

specialized synaptic contacts, have vesicles and granules  placed at larger intervals (300-600 

nm) with calcium channels, as indicated by the sensitivity of secretion (Klingauf and Neher, 

1997) or KCa activity to EGTA (Prakriya et al.,1996). Yet, there seems to be a population of 

~10% of calcium sensors near calcium entry sites, responding with faster fusion of the ready 

releasable pool of vesicles (Voets et al., 1999) or ~10-20% KCa capable of reporting local 

[Ca2+]int 6 times higher than that reported when all KCa channels are activated (Prakriya et al., 

1996). This is in accordance with small near-synchronous transmitter release by a single 

action potential whereas a train of action potentials leads to large, desynchronized release 

(Fulop et al., 2005). These results are compliant with longer latency for most vesicles and 
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slow decay of Ca2+ transients in the order of the tens of milliseconds for calcium channels 

disposed 300-600 nm apart (Klingauf and Neher, 1997; Voets et al., 1999). 

There is a clear distinction between fast synchronous neurotransmission and slow 

asynchronous secretion that points toward diversity in the geometric arrangement of calcium 

channels, vesicles, and Ca2+-sensors, leading to the wide spectrum of Ca2+-signals and kinetic 

components of release and exocytosis. For instance, in the calyx of Held the Ca2+-sensor for 

transmitter release distances between 30 nm-300 nm (average is 100 nm) from the calcium 

source, with local [Ca2+]int varying from 0.5 to 40 µM between those distances, and release 

probability ranging from <0.01 to 1, respectively (Klingauf and Neher, 1997; Voets et al., 

1999).  

On the other hand, other phasic synapses working at higher rates, like those of 

cochlear hair cells, or with low affinity Ca2+-sensors for transmitter release, like the 

mediatophore at the neuro-electrocyte junction of the electric organ of Torpedinae seem to 

relate far more closely with calcium entry sites to produce synchronous responses. 

Synapse geometry integrates with other factors affecting the space-time definition 

of transmitter release like the affinity of the Ca2+-sensor, mobile buffer capacity, 

desensitization or inactivation of transmitter release or calcium entry apparatuses and 

calcium extrusion capability.  

 Calcium enters the cell through channels at a rate that is considered to be much 

higher than rates attainable by pumps and exchangers. Calcium extrusion at the plasma 

membrane is achieved through Na+/Ca2+ antiporters in conjunction with Ca2+-ATPases in plasma 

membrane or in the endoplasmic reticulum (maximum rate at 37 ºC ~1 µM/s (Villalobos et al., 

2002) which is close to the rates reported for endoplasmic reticulum Ca2+-ATPase alone 

(Villalobos et al., 2002). Under low frequency stimulation, these are the main responsible for 

keeping low resting [Ca2+]int. Under stronger stimulus, mitochondria also participates in Ca2+ 

extrusion (Friel and Tsien, 1994; Herrington et al., 1996; Zenisek and Mathews, 2000; 

Villalobos et al., 2002; Kim et al., 2005), through the action of a high capacity Ca2+-uniport, 

with exponential [Ca2+] dependencies and maximal Ca2+-transport rates of 160 µM/s (for 

[Ca2+]=100 µM). This uniport seems to work as an ion channel selective for Ca2+=Sr2+ >> Mn2+= 

Ba2+ (Kirichok et al., 2004). Mitochondria have also a Na+/Ca2+ exchanger capable of releasing 

Ca2+ from loaded mitochondria at ~20 µM/s (Villalobos et al., 2002). The rather high calcium 

concentrations reached near mitochondria seem to derive from “privileged” interplay between 
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mitochondria and the endoplasmic reticulum, rather than active zones (Rizzuto and Pozzan, 

2006). The same happens with plasma membrane Na+/Ca2+ antiport localised away from active 

zones near endoplasmic reticulum, while the plasma membrane Ca2+-ATPase co-localizes with 

the vesicular marker synaptotagmin (Juhaszova et al., 2000).   

Synaptic vesicles are the hallmark structures of synaptic active zones (Couteau and 

Pécot-Dechavassine, 1970, 1974) occupying a larger volume fraction than any other organelle 

(Oheim et al., 2006). Their volume was estimated by electron microscopy in tissue and in 

synaptosomes to be ~20% of total volume (Israël, 1972; Morel et al., 1980). Other secretory 

systems like neuroendocrine cells, chromaffin granules or peripheral neuropeptidergic 

terminals do not contain obvious morphological specializations but contain large amounts of 

vesicles, occupying ~20% of cell volume as well (Garcia et al., 2006). In most of these 

structures, small electronlucent (synaptic-like) vesicles are described in addition to the large, 

dense core granules or vesicles. 

Synaptic vesicles are also spheric and rather small - mean diameter ~41.6 nm, 

according to Takamori et al. (2006) - therefore maximizing their surface to volume ratio and 

providing an immense membrane surface area in close proximity of Ca2+ ions entering an active 

zone that one would expect to find an intracellular store of large uptake, and release 

capacity. 

Isolated Torpedo synaptic vesicles were reported to accumulate calcium through a 

Ca2+-ATPase and accumulate up to 14 mM Ca2+ within the organelles (Israël et al., 1980; 

Michaelson et al., 1980; Rephaelis and Parsons, 1982).  

Calcium transiently accumulates in synaptic vesicles of Torpedo electric organ 

submitted to brief stimulation (Párducz and Dunant, 1993; Párducz et al., 1994). Similarly, 

stimulation of chromaffin cells increases simultaneously cytoplasmic and vesicular calcium 

accumulation where total calcium reaches ~20-40 mM with >99% in “bound” state (Mahapatra 

et al., 2004). On the other hand, a robust Ca2+ release from pancreatic acinar cell granules can 

be elicited by nicotinic acid adenine dinucleotide phosphate (NAADP); cyclic ADPribose 

(cADPR) or inositol (1,4,5) triphosphate (IP3) (Gerasimenko et al.,2006) that is capable of 

eliciting a combined Ca2+/H+ intracellular signal from mast cell granules (Quesada et al., 2003). 

Therefore vesicles can accumulate and secrete Ca2+.  

Besides participating in intracellular signalling, vesicular calcium seems to be of the up 

most importance in the process of rapid calcium turnover in excitable cells both at rest 



Introduction 
 

 19

(Babel-Guérin, 1974; Dunant et al., 1980b; Marsal et al., 1980) and specially upon stimulation 

(Babel-Guérin, 1974; Dunant et al., 1980b; Marsal et al., 1980; Borst and Sakmann, 1999) 

where it allows for the fast replenishment of the few Ca2+ ions accomodable in a synaptic 

cleft by Ca2+-filled vesicle exocytosis (Párducz and Dunant, 1993; Párducz et al., 1994; Borst 

and Sakmann, 1999).  

To accompany the Ca2+-turnover rates expected to occur under heavy stimulus one 

should expect fast, high capacity calcium transport systems. Synaptic vesicle/secretory 

granule membranes have several channels with pore conductances ranging from 13 pS up to 

350 pS (For a review see Woodbury, 1995; Meir et al., 1999) , including large, non-selective 

and Ca2+-permeable voltage gated channels (Meir and Rahamimoff 1996), rapid (<1ms)  Cl- 

channels operating in bursts (Rahamimoff et al., 1988), channels activated by low SV-lumen 

[ATP] (Ahdut-Hacohen et al., 2006) and a Ca2+-modulated channel that seems to be coded by 

synaptophysin under the control of other Ca2+-binding proteins like synaptotagmin I (Lee et 

al., 1992; Yin et al., 2002). 

The number of ions transported through these channels could approach that of Ca2+-

ions entering by VOCCs considering appropriate conditions of driving force and mean open 

time (Meir and Rahamimoff, 1996). Such large vesicular ion flux raised the proposition that 

the regulated activity of these channels could participate in pre and post-fusion regulation of 

transmitter release (Rahamimoff and Fernandez, 1997). The proposition is based on the 

observation that several secretory systems rely on a negatively charged intravesicular matrix 

to store large quantities of positively charged secretory molecules (Rahamimoff and 

Fernandez, 1997).  

In general, matrices act as “smart” hydrogels (Tanaka 1981) and behave as cation 

exchange resins  (Uvnäs and Åborg, 1983, 1989) that condensate when their internal 

electrostatic repulsion is reduced by trivalent and sometimes divalent cations and 

decondensate when mobile ions are exchanged for monovalent cations and the proteoglycan 

matrix expands as it gets hydrated by the increase in osmotic pressure (Verdugo, 1990; 

Curran and Brodwick, 1991; Fernandez et al., 1991; Parpura et al., 1996; Reigada et al., 2003).  

Secretory molecules behave as divalent cations at acidic pH but could become 

monovalent cations at neutral pH (Uvnäs et al., 1970) thereby promoting the condensation of 

matrices (assisted by other divalents like Ca2+) and behave as single particles at low pH. This 
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solves the problem raised by Katz (1969) of having prohibitive hyperosmotic concentrations of 

transmitters within the acidic vesicular space. 

Pre and post-fusion control of release depends on the type of ion exchange, hydration 

and proteoglycan constitution. For example, the exocytotic release of histamine and serotonin 

from mast cell secretory granules; of catecholamines and ATP from chromaffin cell large 

dense core vesicles or the secretion of zymogen granule content in exocrine pancreas rely on 

K+ ions in the pre-exocytotic phase and/or Na+ ions in the exocytotic phase to displace 

molecules from their matrices by ion exchange as well as to promote vesicle swelling (Uvnäs 

and Åborg, 1987; 1989; Jena et al., 1997; Marszalek et al., 1997).  

When secretion relies on fusion an explosive change of matrix molecular phase from 

condensated to the hydrated phase triggered by replacement of intravesicular Ca2+ with 

extracellular Na+  would release secretory contents as in a “jack-in-the-box” and promote 

matrix swelling upon hydration (Verdugo, 1991). However, the diffusivity of a transmitter 

within a gel matrix (1.3 x 10-8 cm2/s; Marzalek et al., 1996) is almost three orders of 

magnitude slower than in water (~10-5 cm2/s; Almers et al, 1989) and would impose the 

emptying of a 50 nm wide vesicle in ~10 ms (Rahamimoff and Fernandez, 1997).  

Rapid secretory systems work at sub-millisecond kinetics and rely on pores. The 

amount of transmitter releasable by a large conductance pore would be set by the availability 

of transmitter at the channel mouth and channel opening time (Almers et al., 1989; Dunant, 

1994).  

Oxidizable transmitter molecules were shown to be released by a transient form of 

fusion proposed initially by Ceccarelli et al. (1973) and later named kiss-and-run (Alvarez de 

Toledo et al., 1993; Valtorta et al., 2001).  It was proposed that the pool of oxidizable 

transmitter that is readily releasable is dissolved in the liquid or halo fraction of PC12 

(Sombers et al., 2004), adrenal chromaffin (Borges et al., 1997; Troyer and Wightman 2002) 

or beige mouse mast cell (Alvarez de Toledo et al., 1993; Troyer and Wightman, 2002) 

vesicles rather than associated with the dense core matrix and it could be determined by pre-

fusion ion exchange with the matrix (Rahamimoff and Fernandez, 1997).  

The amount and duration (in ms) of kiss-and-run release is directly related with 

vesicular volume and transmitter content while kiss-and-run frequency is inversely related to 

those parameters (Sombers et al., 2004). Kiss-and-run increases when cells are exposed to 
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high calcium (Alés et al., 1999) and depend also on synaptotagmin expression (Wang et al., 

2003).        

The fastest modes of secretion occur in the time scale of the few hundred 

microseconds (Dunant and Muller, 1986; Girod et al., 1993; Sabatini and Regehr, 1996; 

Yazejian et al., 2000) where the temporal jitter must be reduced to a minimum while 

maintaining a steady response even at high frequencies (Avissar et al., 2007).  

In Torpedo marmorata electric organ synapses, the release of ACh from the 

cytoplasmic pool through mediatophores guarantees highly synchronised release with sub-

millisecond precision (Israël et al., 1986; Muller et al., 1987; Brochier et al., 1992; Dunant and 

Israël, 2000). ACh molecules are released from a rather large cytoplasmic pool (ca. 27 mM; 

Dunant et al., 1974; Katz and Miledi, 1977) through plasma membrane mediatophores. The 

advantage is obvious: cytoplasmic ACh is free to diffuse at high speed (close to diffusion in 

water = ~10-5 cm2/s; Almers et al., 1989) through the proteolipidic pore, fed by the enormous 

cytoplasmic pool. The terminal releases a precise amount of transmitter that is determined 

mainly by the mean opening time of mediatophores since free transmitter is considered to be 

available close to mediatophore channel mouths instead of having to be displaced from any 

molecular cage by ion exchange prior to secretion.   

However, Torpedo electric organ nerve terminals are rich in synaptic vesicles that 

accommodate ~100,000-200,000 ACh molecules as well as ATP and varying number of calcium 

ions totalling ~800 mM ACh and ~120 mM ATP (Reviewed in Rahamimoff and Fernandez, 1997). 

The copious number of positive ACh charges are partially “neutralized” by interaction with the 

negative ATP and by complexation with a keratan sulfate proteoglycan matrix composed 

mainly of the highly glycosilated SV2 proteins (Stadler and Wittaker, 1978; Scranton et al., 

1993; Reigada et al., 2003) as well as Svp-25, o-rab3 and VAT-1 proteins (Volknandt et al., 

1990; Linial et al., 1995; Hausinger et al., 1996). Over 95 % of the vesicular ACh and ATP are 

tightly bound to the vesicular matrix with only a very thin layer of loosely bound transmitter 

molecules within each vesicle (Marchbanks and Israël, 1972; Reigada et al, 2003).  

Calcium ions are able to displace ACh and ATP molecules from the vesicular matrix 10x 

more efficiently than Na+ ions (300 Ca2+ ions needed against 3000 Na+ to empty an SV; 

Reigada et al., 2003). Concordantly, calcium accumulation into synaptic vesicles of stimulated 

neuro-electric Torpedo synapses is accompanied by a decrease in vesicular ACh content 
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Marchbanks and Israël, 1972; Babel-Guérin, 1974; Dunant et al., 1980b; Diebler, 1982) that is 

particularly visible under very intense stimulation (Schmidt et al., 1980).  

On the contrary to chromaffin cell granules and zymogen granules where calcium 

decreases the vesicular membrane elastic modulus, calcium accumulation within Torpedo 

vesicles increases the vesicular elastic modulus determined by hard vesicular central cores 

that correlate with decreased vesicular volume (Laney et al., 1997). Three distinct populations 

of synaptic vesicles were reported in the electric organ of Torpedo. VP0 are rather empty and 

actively accumulate ACh and ATP; VP1 represent the fully matured synaptic vesicle population, 

fully charged with transmitters displaying little ACh transport but active Ca2+-uptake. Finally, 

the VP2 SV population, that occur mainly after stimulation, are smaller (less 25% in diameter), 

denser and regain active ACh and ATP accumulation capacities while loosing Ca2+-transport 

activity (Kiene and Stadler, 1987; Stadler and Kiene 1987; Bonzelius and Zimmermann, 1990). 

The transition from VP1 to VP2 vesicles was originally proposed to represent a pool of 

recently endocytosed vesicles devoid of ACh and filled with extracellular calcium (Kiene and 

Stadler, 1987). An alternative hypothesis combines (1) transient calcium rise within stimulated 

synaptic terminal (2) calcium entry into VP1 ACh-rich synaptic vesicles before vesicular fusion 

(Párducz and Dunant, 1993; Párducz et al., 1994) (3) dissociation of ACh from the internal 

matrix by Ca2+-ACh exchange (Reigada et al., 2003) (4) shrinkage of vesicular matrix by 

glycosaminoglycan cross-linking facilitated by ACh/ATP unbinding and Ca2+ binding to the 

matrix under dehydrated conditions (Laney et al., 1997; Sombers et al., 2004) (5) ACh leakage 

into the cytoplasm by a yet unknown concentration-dependent mechanism (Williams, 1997) 

that could well be the choline transporter existing between 70-90% in synaptic vesicles 

(Ferguson et al., 2003, 2004; Nakata et al., 2004), is permeable to ACh at high concentrations 

(Marchbanks, 1969; Marchbanks and Wonnacott, 1979), is positioned to transport ACh out of 

the vesicles and is homologous to the Na+-glucose transporter that can replace Na+ with H+ 

(Hirayama et al., 1994). 

The mechanism of ion exchange would guarantee a stimulus-dependent supply of ACh 

out of the vesicular matrix into the cytoplasm near release sites (where synaptic vesicles are) 

thereby preventing transmitter rundown under intense stimulus (diminished flow of ACh due 

to decreased cytoplasmic concentration) at the same time that Ca2+ ions are extruded from 

the cytoplasm into vesicles and gets “packed” into the vesicular matrix until fusion delivers it 

back into the synaptic cleft. After exocytosis Ca2+/Na+ ion exchange from the matrix would 
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be promoted by the high Na+ concentration at the same time that new choline transporters 

are placed in the membrane after a stimulus. Na+ binds the proteoglycan matrix with ~10x less 

affinity than Ca2+ (EC50=~0.27 mM for Ca2+ against ~2.6 mM for Na+; Reigada et al., 2003) a 

fact that would favour refilling of recently endocytosed vesicles with transmitters (ACh and 

ATP) while regenerating the calcium retention capacity of those vesicles.  

Two Ca2+ transport systems (figure 3) have been identified and characterized in 

synaptic vesicles isolated from brain cortex (Gonçalves et al., 1998, 1999a, 1999b, 2000a). An 

orthovanadate-inhibited P-type Ca2+-ATPase with higher apparent affinity (K0.5= 0.6 µM), and 

maximum velocity (1.9 nmol/min/mg protein) at 25 µM Ca2+ (pH 7.4), that declines to ~½ at 100 

µM and is completely inhibited at [Ca2+]>200 µM. 

The other vesicular Ca2+ transport system is a Ca2+/H+ antiport, a low affinity system 

with a K0.5= 217 µM and maximum velocity (1.9 nmol/min/mg protein) at 500 µM Ca2+. In 

contrast to the Ca2+-ATPase, the antiport shows only modest activity at 100 µM Ca2+ (~1/3 

that of Ca2+ ATPase at same [Ca2+]) , but increasing sharply for [Ca2+]>200 µM up to 500 µM 

and slowly declining thereafter to ~½ at 1 mM Ca2+. There are other cations capable of 

displacing H+ from synaptic vesicles with decreasing affinity that seems to depend on their 

dehydrated ionic radius, with activities of Zn2+ > Cd2+ > Ca2+ while larger ions like Sr2+ Ba2+ or 

Cs2+ are excluded by the selectivity filter of the H+ displacement mechanism (Gonçalves et al., 

1999a). It is important to notice that vesicular Ca2+ uptake by the antiport is inhibited by Zn2+ 

and Cd2+ (transported by the antiport) but also by  Sr2+ (500 µM), that apparently, is not 

transported.  

Therefore, synaptic vesicles possess two calcium (figure 3) transportation systems: A 

Ca2+-ATPase that relies on metabolical energy for Ca2+ pumping and a Ca2+/H+-antiport 

energised by the vesicular transmembrane gradient generated by the V-type H+-ATPase which 

is inhibited by bafilomycin A1 (Tanaka et al., 1976; Stadler and Tsukita, 1984.; reviewed by 

Beyenbach and Wieczorek, 2006). 

Together, the antiport and the ATPase endow vesicles with the possibility to pump 

Ca2+ out of the active zones and into the vesicles with unperturbed efficacy from the near 

millimolar [Ca2+] up to low micromolar concentration, that gets further extruded by higher 

affinity (K0.5= 0.017 µM) systems like the endoplasmic reticulum Ca2+-ATPases (Gonçalves et 

al., 2000). 
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Having addressed the question of what are the functional implications of vesicular 

calcium transport, it is perhaps intuitive to address the question of: Who? 

 Recently, we were presented with the very first description of the so-called 

“molecular anatomy” of the trafficking organelle: synaptic vesicle. Far from trying to describe 

all the different aspects of particular vesicles and granules in individual systems it points to 

the establishment of the main proteins and lipids composing an “average” synaptic vesicle 

(Takamori et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3. Schematic view of the complementary calcium transport systems existent in 
synaptic vesicles. Figure illustrates an ATP-dependent P-type ATPase (right) and the 
secondary active transporter Ca2+/H+ antiport (left) that is energized by the transmembrane 
H+ gradient provided by the large macromolecular V-type H+-ATPase at the centre. Inset 
shows an electron micrograph from the original study of Stadler and Tsukita (1984) showing a 
synaptic vesicle isolated from guinea pig brain with a “knob-like” protrusion corresponding to 
the H+-ATPase. Functional details about vesicular Ca2+ transport are in the text. 

 

The picture arising from that work (figure 4) is that of a round organelle, with 41.6 

nm in diameter and packed with a dense array of transmembrane proteins covering at least 

20% of the vesicular surface area and proposed to be organized in patches surrounded by 

lipidic rims instead of evenly distributed. One of the surprising findings is that despite the 

extensive list of ubiquitous and vesicle specific proteins, there is only a hand full of them that 
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dominate either in mass or in number.  The “average” organelle has ~70 copies of 

synaptobrevin 2 (VAMP2); ~30 copies of synaptophysin; 15 copies of synaptotagmin I; similar 

number of copies of vesicular neurotransmitter transporters (14 copies) and few copies of 

other proteins, including SV2 (~2 copies) and 1 or 2 copies of V-type H+-ATPase that, 

nevertheless, accounts for ~10-20% of vesicular protein (Takamori et al., 2006).  

With the original hypothesis being that synaptic vesicle proteins have already been 

described previously (for detailed references see Takamori et al., 2006), the preliminary task 

sits on choosing the candidate fitting the characteristics of the transport systems described 

in synaptic vesicles. Among the proteins described in vesicles there is one that could become 

the next vesicular Ca2+/H+ antiport to be included on a “molecular anatomy” of an organelle. 

The question is then, which one? 

VAMP is the vesicular counterpart of the SNARE complex (involving plasma membrane 

proteins syntaxin and SNAP25) that forms the minimal machinery for membrane fusion 

(Sollner, 1993; Rothman, 1994).   

 Synaptophysin was proposed to be a voltage-sensitive 150 picosiemens channel 

putatively implicated in the uptake or release of transmitters (Thomas et al., 1988; 

Woodbury, 1995) it interacts also with VAMP and the V0 sector of the V-type H+ATPase (Galli 

et al., 1996), as well as the physophiline (Thomas and Betz, 1990; Siebert et al., 1994), that 

also interacts with the mediatophore and with the fusion pore (Peters et al., 2001; Bajjalieh, 

2005; Hiesinger et al., 2005), therefore synaptophysin could be important for bringing about 

two hemichannels (one at the vesicle and another at the plasma membrane) in close apposition 

to form a proteinacious fusion pore. 

SV2 is a highly glycosilated protein endowed with 12 transmembrane domains and has 

been proposed as a calcium transporter (Bajjalieh et al., 1992). Yet, despite the efforts, no 

substrate was been found for SV2 (Xu and Bajjalieh, 2001; Iezzi et al., 2005). 

However, SV2 glycosilated intravesicular domains were proposed as neurotransmitter 

traps to diminish intravesicular osmotic pressure (Alvarez de Toledo et al., 1993) but also to 

bind calcium in exchange for transmitter within the vesicular matrix (Reigada et al., 2003).  

The V-type H+-ATPase comprehends a macrostructure with two subunits: V0 is the pore-

forming subunit and V1 the catalytical sub-unit. The assembly/disassembly of V0/V1 regulates 

the pump and is itself regulated by Ca2+ (Kane, 2000; Crider and Xie, 2003). As stated above 

the V0 subunit comprises the elements of a proteinaceous fusion pore. However, the 15 kDa  
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Figure 4. Molecular model of an average synaptic vesicle. Model is based on space-filling 
models of all macromolecules at near atomic resolution. A Outside view of an SV. B  View of a 
vesicle sectioned in the middle (the dark-coloured membrane components represent 
cholesterol). C Model containing only synaptobrevin to show the surface density of the most 
abundant vesicle component. From Takamori et al. (2006). 
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monomeric units homologous to the c-subunit of the V0-sector of V-ATPase also compose the 

multimeric 220 kDa mediatophore (containing 15 monomers) (Israël et al., 1986; Muller et al.,  

1987; Brochier et al., 1992; Dunant and Israël, 2000). Both the mediatophore and V0 are 

oligomers composed of proteolipid subunits of 15-16 kDa, present both in the vesicular and 

plasma membranes. They can be extracted by chloroform-methanol, but not by the usual 

techniques used for membrane proteins (Israël et al., 1986; Muller et al., 1987; Brochier et 

al., 1992; Dunant and Israël, 2000) and for that reason are sometimes overlooked (Takamori 

et al., 2006). 

Finally, synaptotagmin I (Syt I) is an integral vesicular protein with a short 

intraluminal N-terminal, a transmembrane segment and a cytoplasmic domain endowed with 

two Ca2+ binding modules, C2A and C2B (Reviewed by Chapman, 2002). Intrinsic affinity of C2 

domains for Ca2+ is low. C2A binds three Ca2+ with Kd values of ~60 µM, 400 µM and >1mM, 

whereas C2B binds two Ca2+ ions with Kd ranging from 300-600 µM. Yet, some synaptotagmin I 

Ca2+-dependent interactions occur at lower Ca2+ concentrations in situ in virtue of interactions 

with lipids and proteins involved in the process of exocytosis in active zones of secretion 

(Chapman, 2002). C2A domain plunges into lipid bilayers with fast kinetics in response to high 

calcium (<50 µs at 200 µM Ca2+) whereas C2A-C2B forms ring-like heptameric oligomers in 

response to high calcium ([Ca2+]1/2 = 140 µM) with sub-millisecond kinetics, early after Ca2+ 

entry and prior to interactions with fusion proteins (Davis et al., 1999; Wu et al., 2003). The 

Ca2+-dependent oligomerization via the C2B domain of Syt I occurs only if the several 

monomers are preassembled at the amino terminal at the interface between the 

transmembrane and spacer domains of Syt I by a Ca-independent oligomerization step 

(Fukuda, M. and Mikoshiba, K., 2000; Fukuda et al., 2001).  

Syt I is the most abundant member of a family of membrane-trafficking proteins with 

putative Ca2+ sensing modules (Südhof, 2002). It is also one of the most abundant proteins in 

vesicular membranes (~15 copies per vesicle according to Takamori et al., 2006) where its low 

affinity Ca2+-dependent reactions lead to its recognition as being the calcium sensor for 

synchronous transmitter release.  

The molecular basis of synchronous release is still a mater of debate. On one hand 

there is the possibility that molecules like Syt I, Syt II and Syt IX code for the synchronous 

phase of release while other, yet unidentified molecules, code for the asynchronous phase of 

release (Xu et al., 2007). Alternatively, synchronous release would represent the activation of 
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sensors in close proximity of Ca2+ channels while asynchronous release represents the 

activation of sensors further away from the Ca2+ source. Either way, the local [Ca2+] affecting 

the Ca2+-sensor will determine the degree of synchrony of secretion. Higher calcium 

transients traduce into faster responses by low affinity calcium sensors with fast on rates 

(Dunant and Israël, 1995; Dunant and Bloc, 2003; Otsu et al., 2004; Shahrezaei and Delaney, 

2005; Moser et al., 2006; Schneggenburger and Forsythe, 2006; Dunant, 2006; Wadel et al., 

2007). Conversely, the same low affinity will guarantee that the time course of transmitter 

release will follow closely the Ca2+ transient within the Ca2+-nanodomain. Failure to restrain 

the calcium into a localized nanodomain might result in activation of calcium sensors away 

from the Ca2+ source and promote asynchronous while reducing synchronous release.  

The slower rise and lower Ca2+concentrations reached in those domains could also 

result in decreased Ca2+-cooperativity (Dunant and Israël, 1995; Dunant and Bloc, 2003; Otsu 

et al., 2004; Shahrezaei and Delaney, 2005; Moser et al., 2006; Schneggenburger and 

Forsythe, 2006; Wadel et al., 2007). Mutations in Syt I C2B region were reported to display 

either reduced cooperativity, increased asynchronous release, or both (for reviews see: Koh 

and Bellen, 2003; Tokuoka and Goda, 2003). 

Furthermore, Syt I is one of the main proteins interacting with phosphatidylinositol 

(PtdIns) polyphosphates (Osborne et al., 2007). These lipids represent ~2-5% of 

lipid/phospholipid composition of the vesicular membrane (Takamori et al., 2006) and have 

long been implicated in the process of secretion (Larrabee et al., 1963; reviewed by Cremona 

and De Camilli, 2001). The C2B domain of synaptotagmin binds preferentially 

phosphatidylinositol-3,4,5-phosphate (PtdIns-3,4,5-P3) at resting Ca2+ but shifts to PtdIns-

4,5-P2 in high calcium (Schiavo et al., 1996). In turn, PtdIns-4,5-P2 were reported to 

modulate the bovine heart Na+/Ca2+ antiport activity that depended also on the local H+ 

microenvironment (Posada et al., 2007). Ca2+ and H+-sensitivity of PtdIns-4,5-P2-

synaptotagmin  I interactions could play an important role in the temporal definition of rapid 

Ca2+/H+-antiport activities with sub-millisecond and nanometric resolutions. 

The control of vesicular calcium influx via activity (rather than gene expression) 

represents a form of regulation far more suitable to be integrated in the control of events 

allowing sub-millisecond secretion of transmitter molecules.   
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1.8. Objectives 
 

Having come to this point of knowledge about the molecular participants involved in 

vesicular calcium transport it seemed natural to ask myself the question that has crossed 

many other’s minds for the last 30 years about calcium transport into synaptic vesicle: So 

What? 

Far from depreciative, the question gains body if we aim at looking for specific 

effects on the characteristics governing stimulus-secretion coupling and calcium homeostasis. 

What will be the effects of having (or not) a Ca2+-ATPase and a Ca2+/H+-antiport 

activity in synaptic vesicles, during and after a stimulus? 

Will they contribute to general homeostasis within synaptic terminals? 

Will they be able to have an effect on the faster calcium transient occurring 

at active zones? 

Will they be able to affect the time course for the onset and offset of 

release? 

Will they participate in the modulation of vesicular transmitter content? 

What will be their action on synchronization or the desensitization of 

transmitter release and inactivation of calcium channels? 

What will be the relative contributions of these two complementary Ca2+ 

transport systems for the above mentioned questions? 

In the course of the work presented at this thesis these questions were always at the 

base of specific hypothesis and experimental design for they constituted some of the 

objectives of this work. 

In this work we focused on vesicular calcium transport partners with the prospect of 

having the capability to intervene in processes with very rapid kinetics involved in rapid 

neurosecretion. 

Since vesicular proteins have been extensively studied, we looked for characteristics 

that would include or exclude possible candidates capable of executing rapid Ca2+-transport. 

After all the inconsistencies and hurdles to presenting synaptotagmin I as a possible 

candidate for the vesicular Ca2+/H+-antiport activity were removed by the literature we 

gained a candidate that became an objective to accomplish in the course of this thesis. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Material and methods 
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2.1. Reagents 
 
 All reagents were of analytical grade. Unless otherwise indicated the reagents were 

from Sigma Co (Sigma-Aldrich). 

 
2.2. Fish supply 

 
Male and female Torpedo marmorata fish specimens with 25–60 cm in length were 

supplied by the Station Biologique, 29682 Roscoff, France. They were kept alive in a sea-

water aquarium at 10°C until usage. 

 

2.3. Experiments using whole fish; stimulation and recording 

 
All experiments with Torpedo marmorata were conducted at 20ºC. In experiments 

using intact living animals the electric discharge from an entire electric organ was registered 

with an oscilloscope connected to two large electrodes placed in contact with the ventral and 

dorsal faces of an electric organ (averaging ~50 cm2 in surface). Reflex electrical discharges 

(as in figure 6 A) were elicited by stimulating mechano receptors in fish tail or dorsal-front 

borderline. The discharge (~43 V in figure 6 A) was recorded with the fish placed for a short 

while outside of the water.  

 

2.4. Experiments using dissected tissue; stimulation and recording 

2.4.1. Dissection of prisms  

 
The animals were anaesthetised with tricaine methanesulphonate (Fluka, Switzerland) 

dissolved in sea water at a concentration of 3 g/l. Such anaesthesia is rapidly reversible and 

does not affect the synaptic transmission of the electric organ (Dunant et al., 1980a).  

The electric organ tissue was sliced into smaller portions maintaining both dorsal and 

ventral skin and kept in an elasmobranch saline medium of the following composition: 280 mM 

NaCl; 3 mM KCl; 3.4 mM CaCl2; 1.3 mM MgCl2; 5 mM NaHCO3; 20 mM 4-(2-hydroxyethyl)-1-

piperazine-ethanesulphonic acid (HEPES) buffer; 300 mM urea; 5.5 mM glucose. The medium 

was gazed with 95% 02 and 5% CO2 before the experiment; its pH was adjusted between 7.1 

and 7.3 with NaOH. Small fragments of tissue composed of one or two intact stacks of 
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electrocytes were dissected from slices excised from the electric organ. Each stack, also 

named prism, is composed of about 500 superposed electrocytes disposed in columns that are 

arranged side-by-side in the organ. When carefully excised, the prisms can survive in a good 

functional state for 2-3 days in elasmobranch saline solution at 20 °C, and still longer if they 

are kept at 4 ºC. 

 

2.4.2. Electric response of excised prisms 

 
Pieces containing a single prism - or two prisms according to the size of the specimen 

-were placed under continuous superfusion with elasmobranch saline medium. Stimulation 

electrodes were placed parallel to the prism. The electrical stimulation consisted of “field” 

shocks of supra-maximal intensity (100 V; 0.5 ms) delivered by a pair of Ag-AgCl, electrodes 

applied to the fluid in close proximity to the prism. Such a procedure in the Torpedo 

electrogenic tissue excites only nerve branches at the surface of the prism, since the 

electrocytes themselves are not able to produce regenerative action potentials. Stimulated 

prisms generate a response (electroplaque potential, EPP) that was recorded by adjusting two 

platinum electrodes in contact with the extremities of the prisms. The electric signal was 

visualized in an oscilloscope and digitized through a Lab PC Plus card (National Instrument, 

USA) using a “home-made” device, and recorded in “Ophiuchus” computer program files.  The 

characteristics of transmission were studied in response to a single stimulus, a pair of stimuli 

or repetitive stimulation (as seen in figure 6 and Table 1). Parameters of the registered data 

were further analysed using the WinWPC V.3.9 Strathclyde University software (courtesy of 

John Dempster). 

 

2.4.3. Release of radiolabelled acetylcholine from excised prisms 

 
Torpedo electric organ prisms were labelled with either [3H]-acetate (2 µCi/ml; 8.5 

µM) or [14C]-acetate (6 µCi/ml; 8.5 µM) (both obtained from Amersham U.K.). The incubation 

with the radioactive precursors lasted for 4-6 h at room temperature in continuously stirred 

elasmobranch medium. In typical experiments, 20-40 prisms (weighing ~100 mg each) were 

incubated in 80 ml. After the incubation, the fragments were washed for three successive 20 

min periods in 100 ml of the saline medium in the absence of the radioactive precursors. They 
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were then kept overnight in a large volume of saline (300 ml) at 4-7 °C to reduce the rate of 

ACh metabolism. The labelled fragments of Torpedo electric organ were gently placed on a 

small piece of nylon holder under continuous perfusion with elasmobranch saline medium at 

room temperature (20ºC) for 1-2h. Prisms were submitted to paired pulse stimulation, with 

20ms interval between stimuli. We collected the perfusate in fractions lasting 1 minute each, 

two minutes before stimulation, and another four fractions (1 minute each) after stimulation. 

Then the prisms were perfused another 30 minutes in elasmobranch saline medium before 

addition of drugs – or modification of the ionic composition of the medium- for another 1h30. 

This time was sufficient to allow complete exchange of the extracellular space by diffusion, 

even for rather thick prisms (0.4-0.7 cm in diameter) excised from large Torpedoes (Dunant 

et al., 1972). The stimulation protocol was then repeated again for assessing the effects of 

the new condition on synaptic transmission. Modifications of the above protocol modified in 

some experiments will be indicated in the text. Radiolabelled-ACh diffusing from excised 

tissue was measured by liquid scintillation spectroscopy. 

 

2.4.4. 45Ca accumulation and clearance in excised prisms  

 
The procedures were as described by Babel-Guérin (1974). Excised prisms weighing 

70–150 mg were incubated for 3h in elasmobranch medium (with 3.4 mM CaCl2) in the 

presence  of 45Calcium (Amersham, U.K.) (2 µCi/ml), in the presence or absence of drugs such 

as 2 µM bafilomycin A or 10 µM orthovanadate at laboratory temperature (20°C). Then prisms 

were either stimulated at 100 Hz during 12 s or not stimulated. The stimulation-dependent 

calcium accumulation was determined as the surplus of 45Ca measured in stimulated tissue as 

compared with unstimulated tissue. The clearance of the surplus 45Ca to the perfusing 

medium (similar to incubation medium but without any 45Ca) was evaluated 0, 5, 15 and 30 min 

after the tetanus. Calcium exchanges between tissue and solution were stopped at the 

desired time by incubating the prisms in ice-cold medium composed of 0.5 mM sucrose and 0.5 

mM urea. After three 30 min periods of washing with this medium, the prisms were dissolved 

in 1 N NaOH overnight at 60°C. Then NaOH was neutralized by using HCl, and tissue 45Ca was 

counted by scintillation spectrometry. 

 

2.4.5. Assessment of ACh content in tissue  
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ACh content was determined as previously described by Dunant et al. (1972; 1980a). 

To assess the whole tissue content in ACh (total ACh), the prisms were plunged into ice-cold 

trichloracetic acid 5% (vol/vol) for about 1 h. Then the tissue was homogenised using a Potter 

device. After centrifugation, the acid was removed from the supernatant with water-

saturated ether. Water soluble extracts were obtained by evaporating ether under N2 flux. 

Total ACh in the extracts (10-50 µl aliquots) was measured by using the luminescence method 

of Israël and Lesbats (1981a; see below). For the measurement of vesicle-bound ACh, the 

prisms were first homogenised in the above-described elasmobranch medium. Any cytoplasmic 

or unstable ACh is hydrolysed in the procedure by the very active tissue cholinesterases 

while vesicular ACh remains protected by the vesicular membrane. Trichloracetic acid was 

added subsequently (~1min) to the homogenate and vesicular-bound ACh extracted and 

measured as described above for total ACh.  

 

2.5. Determining ACh and glutamate by chemiluminescence  

 
Acetylcholine was quantified using the chemiluminescent procedure of Israël and 

Lesbats (1981a; 1981b). The quantification is based on a series of reactions where ACh is 

hydrolyzed by acetylcholinesterase to acetate and choline. Choline is oxidized to betaine and 

H2O2 by choline oxidase; finally H2O2 triggers light emission from luminol in the presence of 

horseradish peroxidase. The amount of light can be detected by photomultiplier tubes built in 

luminometers that relay the amount of light into digital traces (in mV). 

A typical ACh determination assay contained a chemiluminescence mixture (mix) of 

choline oxidase from Alcaligenes sp. (5U/ml), horseradish peroxidase (7U/ml) and luminol 60 

µM dissolved in either 200 mM Na/Na2 phosphate buffer at pH 8.6 (used for detecting ACh 

in extracts) or the appropriate saline medium (see below) for detection of continuous ACh 

release from synaptosomes. It is possible to evaluate the choline and ACh amounts in the 

same sample if acetylcholinesterase (9U/ml) from Electrophorus electricus is added after all 

choline content in the sample is oxidized to betaine. Evidently, this discrimination is not 

possible if an endogenous acetylcholinesterase activity is present (i.e., Torpedo 

synaptosomes), unless it is blocked by pre-incubating synaptosomes with ecothiopate iodide 

50 µM (Wyeth-Ayerst; also named phospholine). The amount of light emitted by a given 

sample was calibrated by injecting acetylcholine perchlorate standards into the same reaction 



Material and methods 
 

 35

tube. ACh content was computed by comparing the amplitudes of the responses to that of the 

nearest standards or by comparing the areas instead of the amplitudes in case of ACh release 

from synaptosomes. 

Glutamate was quantified using the chemiluminescent procedure described by Israël 

and Lesbats (1982) and modified by Fosse et al. (1986). The quantification is based in three 

successive reactions where glutamate (in presence of NAD+) is dehydrogenized into 2-

oxoglutarate and NADH2 by glutamate dehydrogenase. NADH2 reacts with flavin 

mononucleotide (FMN) through the action of NADH-FMN oxydoreductase (Boehringer-

Roche), regenerating NAD+ and producing FMNH2. Lastly, a long chain aldehyde (above 8 

carbons) reacts with FMNH2 and O2 through the action of photobacterial luciferase to 

produce light and regenerate FMN. 

For chemiluminescent detection of glutamate a mix of enzymes was prepared with: 

250 μl of β-nicotinamide adenine dinucleotide (β-NAD) (16.6 mg in 2.5 ml Tris 0.2 M pH 8); 25 

μl of flavin mononucleotide (1 mg in 8.3 ml H2O); 100 μl of NADP(H) FMN oxydoreductase (2.4 

mg in 1 ml H2O); 80 μl of bacterial luciferase (de Vibrio fisheri, 25 mg in 1 ml H2O) and 50 μl 

glutamate dehydrogenase (2.66 units/ μl) and kept at -20ºC until usage. 

Glutamate contained in a given sample was determined by adding 50 μl of the above 

described mix to 500 μl of 50 mM Na/Na2 phosphate buffer at pH 7.1, and 5 μl of n-decyl 

aldehyde (from freshly prepared stock at 1/500 in phosphate buffer). A variable amount of 

light will be produced and stabilized at a baseline after a few minutes. After this the amount 

of light produced by glutamate contained in a sample (5-10 μl) is compared to that produced 

after the addition of known amounts of glutamate to the reaction tube.  

 

2.6. Experiments using sub-cellular preparations from Torpedo 

2.6.1. Isolation of Torpedo electric organ synaptosomes 

 
Preparation of synaptosomes was carried out as described previously (Israël et al., 

1976 ; Morel et al., 1977) with a slight modification (CaCl2 was not present in the successive 

solutions used in the procedure).  

Thirty grams of sliced electric organ tissue were washed out in ice-cold Ca2+-free 

elasmobranch medium for 30 minutes and then the tissue was finely chopped (figure 5 A) with 

a razor blade, suspended in 280 mM NaCl, 300 mM urea, 3 mM KCl, 1.8 mM MgCl2, 3 mM 
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NaHCO3 and 50 mM Na/Na2 phosphate buffer (pH 7.1) and left stirring for another 30 min at 

4ºC. The tissue was gradually comminuted by forced filtration through calibrated metallic 

grids with meshes decreasing square openings from 1000 to 500 and 200 μm side length 

(figure 5 B). The suspension was then filtered through a nylon gauze (50 μm side length mesh) 

under slight suction. The filtrate was then pelleted by centrifugation at 6000 x g for 20 min, 

then the pellet resuspended in 280 NaCl mM, 300 mM urea, 3 mM KCl, 1.8 mM MgCl2, 3 mM 

NaHCO3 and 50 mM Na/Na2 phosphate buffer (pH 7.1) and centrifuged on a discontinuous 

sucrose gradient at 64000 x g for 40 min. After centrifugation, the wider band in the 

interface between sucrose 300–500 mM contains a very pure preparation of torpedo 

synaptosomes (figure 5 C) as determined by morphological criteria and biochemical analysis of 

the cytoplasmic marker lactate dehydrogenase, ATP and cholinergic markers (acetylcholine, 

choline acetyltransferase and acetylcholinesterases). This arises from the fact that unlike 

mammalian brain synaptosomal preparations Torpedo electric organ synaptosomes are free of 

any attached post synaptic elements (Israël et al., 1976; Morel et al., 1977, 1978, 1982). 

The synaptosomes were kept at 4 °C for 3-24 h until the time of the experiment when 

they were re-warmed to 20ºC. 

 
2.6.2. ACh release from Torpedo electric organ synaptosomes  

 
ACh release from Torpedo synaptosomes was determined in a continuous manner by 

the chemiluminescence method (Israël & Lesbats, 1981a and 1981b).  30 μl of synaptosome 

suspension were delivered into a tube containing 300 μl of saline elasmobranch saline medium 

composed of: 280 mM NaCl, 3 mM KCl, 1.8 mM MgCl2, 300 mM sucrose, 5.5 mM glucose and 

200 mM Tris-HCl, pH 8.5, containing the mix of enzymes for ACh detection (see above). The 

suspension was allowed to equilibrate for 10-15 min in presence or absence of drugs (details in 

figures). After that, ACh release was elicited by depolarizing synaptosomes with 100 µM 

veratridine followed by addition of 3.4 CaCl2. Alternatively, calcium was already present in the 

pre-incubation medium and ACh release occurred right after veratridine addition. The amount 

of light produced by ACh released was compared to that produced by known amounts of ACh 

perchloride (standards). Total amount of ACh contained in a sample was determined by 

permeabilizing the synaptosomes with Triton X-100 (0.02% final concentration) and comparing 

the light emitted with that produced by another set of ACh standards. 
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Figure 5. Isolation of Torpedo marmorata pinched off nerve terminals (synaptosomes). 
Picture A: electron micrograph showing four stacked electrocytes with numerous nerve 
endings covering their ventral surfaces (x 3,400). In B it is visible the “grapes” of nerve 
terminals detached from the electrocytes after comminuting the tissue (x 5,900). At this 
stage, the nerve terminals are still attached to segments of the post synaptic membrane 
(PSM). In C: an electron micrograph of fraction C (x 18,000) shows large synaptosomes 
copiously populated with synaptic vesicles. Adapted from Morel et al. (1977). 
 

2.6.3. Isolation of Torpedo electric organ synaptic vesicles 

  
 Cholinergic synaptic vesicles were obtained from the electric organ of Torpedo by 

sucrose gradient centrifugation as described by Israël et al. (1980).  

 Thirty grams of sliced electric organ tissue were washed out in Ca2+-free 

elasmobranch medium for 30 minutes at 20ºC and then the tissue was grossly chopped with a 

razor blade. The mince was washed under gentle agitation for 2h30 in the same medium which 

was renewed every 30 min. A good washing was found to be essential to remove extracellular 

calcium thereby increasing the amount of bound (vesicular) ACh in the end.  

 

C

A B 
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All further steps were carried out at 4ºC. 25 g of tissue were then homogenised in 100 ml of 

“KCl medium” composed of: 350 mM KCl; 100 mM sucrose, 10 mM Tris, pH 7.1. We used a 

glass-Teflon homogeneizer (Potter-Elvehejem) turning at 1000 rpm (9 strokes of the pestle). 

The homogenate was centrifuged at 5100 x g for 20 min. The pellet was resuspended in 45 ml 

of “KCl medium”, frozen with liquid N2 and powdered in a porcelaine mortar. The fine powder 

can be stored overnight immersed in liquid nitrogen.  

 The frozen powder was allowed to warm up in a Potter flask to melting sorbet 

consistence. The suspension was then smoothly homogenised (8 strokes of the pestle). The 

homogenate was centrifuged at 16,000 x g for 30 min. The supernatant collected and re-

centrifuged 15 minutes further at the same speed. Six milliliters of supernatant per 

centrifuge tube were layered on top of a discontinuous sucrose gradient consisting of 4 layers 

(7 ml each) of sucrose-KCl mixtures buffered with 10 mM Tris, pH 7.1. The top layer was 

constituted by: 250 mM sucrose and 300 mM KCl; the second layer had: 380 mM sucrose and 

250 mM KCl; the third layer had: 450 mM sucrose and 200 mM KCl and the bottom layer had: 

550 mM sucrose and 150 mM KCl. 6 charged gradient tubes were centrifuged at 95,400 x g. 

After centrifugation, readily visible bands are found at the first and second interfaces and a 

pellet was also present. The second band at the interface of 250-380 mM sucrose and 

penetrating slightly in the 380 mM sucrose layer is the synaptic vesicle enriched fraction. 

Protein was determined with the BCA Protein Assay (Pierce, Rockford, IL, USA) as described 

by Lowry et al., 1951. 

 

2.7. Experiments using mammalian sub-cellular preparations 

2.7.1. Isolation of rat hippocampus mossy fibre synaptosomes 

 
Hippocampal mossy fibre synaptosomes (MFS) were prepared from adult male Wistar 

rats as previously described (Israël and Whittaker, 1965; Helme-Guizon et al., 1998; Bancila 

et al., 2004; 2008). After animal decapitation, the brain was rapidly removed and placed in an 

oxygenated (95% O2 and 5% CO2) modified mammalian Krebs medium containing: 136 mM 

NaCl; 3 mM KCl; 1.2 mM MgCl2; 2.2 mM CaCl2; 16.2 mM NaHCO3;5.5 mM glucose; 1.2 mM 

Na/Na2 phosphate buffer; pH 7.4, on ice. The two hippocampi were rapidly dissected out, cut 

into small cubes of approximately 1 mm side, and placed into tubes containing 0.3 ml of the 

above medium. The preparation was then gently homogenised by repeated pipeting. The 
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homogenate was diluted to 2 ml and filtered through nylon gauze (mesh size 100 µm). The 

filtrate was left to sit during 30-45 min until a pellet was formed. The supernatant was 

discarded, the pellet resuspended into 1 ml Krebs solution and left to recover at room 

temperature (20 °C). This temperature was kept in all further steps of the experiments. 

Identification and characterisation of MFS in this fraction by using electron microscopy and 

other techniques have been presented elsewhere (Israël and Whittaker, 1965; Helme-Guizon 

et al., 1998; Bancila et al., 2004; 2008). The fraction revealed an abundance of large resealed 

nerve terminals of a complex shape. Synaptosomes larger than 1 µm represented 80% of all 

synaptosomes present in the fraction, which also contained nuclei, myelinated and other large 

membrane fragments. The mean MFS length was 2.05 ± 0.2 µm (SEM), some of them reaching 

8 µm. Most MFS were full of synaptic vesicles and contained abundant mitochondria with a 

well-preserved ultrastructure. Small postsynaptic elements (dendritic CA3 spines) were 

regularly entrapped in MFS. Synapses could easily be identified at these places thanks to the 

characteristic local thickenings of the pre- and post-synaptic membranes. Although 

apparently crude, the MFS fraction had the advantage to exhibit exceptional functional 

capabilities when compared to more purified fractions of MFS (using sucrose gradient 

centrifugation) that had a lower membrane potential and were much less efficient in releasing 

glutamate. 

 

2.7.2. Glutamate release from rat hippocampus mossy fibre synaptosomes 

 
Glutamate release from MFS was monitored at room temperature (20 °C) by using the 

chemiluminescence method (Helme-Guizon et al., 1998; Israël et al., 1993; Fosse et al., 1986), 

as follows.  MFS (3 mg protein/ml) were incubated during 20-30 min in a series of test tubes 

containing 250 μl of modified Krebs medium in presence or absence of drugs in test (see 

figure 41). Glutamate release was elicited by raising KCl to 30-40 mM. After 5 minutes, the 

tubes were briefly centrifuged. Glutamate was assayed in the supernatant by the above-

described luminescence assay and the MFS pellet was collected for protein determination, 

using the BCA Protein Assay (Pierce, Rockford, IL, USA) as described by Lowry et al., 1951. 

All measurements were expressed as a function of the protein content of the sample. 
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2.7.3. Measurement of the vesicular proton gradient in rat hippocampus mossy 

fibre synaptosomes 

 
The vesicular proton gradient established at mossy fibre synaptosomes was monitored 

at room temperature (20ºC) using the fluorescent probe acridine orange (AO), as described 

by Zoccarato et al. (1999). Assays took place by addition of 100 μl of the MFS suspension 

(final protein concentration approximately 10 mg/ml) to 400 μl modified Krebs solution 

containing 3 μM A.O. (final concentration). Fluorescence was read in a Perkin-Elmer LS-50B 

fluorimeter at the rate of 2 Hz. Upon addition of MFS sample, the intense fluorescent signal, 

due to free AO, declined rapidly (see figure 10 B) since dimerisation occurs when the dye is 

exposed to the vesicular acidic medium, where it accumulates. Then KCl was added at the 

same concentrations as in the release experiments. Full dissipation of the proton gradient was 

eventually provoked by adding either the protonophore CCCP (10 μM) or bafilomycin A1, an 

inhibitor of V-ATPase (0.3 μM). This confirmed that virtually all the A.O. signal came from 

the H+ gradient established in synaptic vesicles (see also Zoccarato et al., 1999). 

 

2.7.4. Measurement of cytosolic [Ca2+] in rat hippocampus mossy fibre 

synaptosomes 

 
The cytosolic [Ca2+] was monitored in MFS kept at room temperature (20 °C) using 

fura-2 (Molecular Probes, Invitrogen), as follows.  MFS (0.3 mg protein) were incubated in 0.5 

ml of saline medium composed of: 140 mM NaCl; 5 mM KCl; 5 mM NaHCO3; 1.2 mM NaH2PO4; 1 

mM MgCl2; 1.33 mM CaCl2; 10 mM glucose; 10 mM Hepes, pH 7.4. The saline medium was 

supplemented with 1 mg/ml of bovine serum albumin and MFS were allowed to equilibrate 

during 5 min under mild agitation. Then, Fura-2-acetoxymethyl ester was added (2 μM final 

concentration) and allowed to incubate for 30 minutes. After Fura-2 loading, synaptosomes 

were washed-out in two cycles of centrifugation for 1 min at 13,000 rpm and the pellet 

resuspended in 1.5 ml of saline medium. Then they were allowed to incubate in that medium 

for 1h30, before being centrifuged again and resuspended in saline medium devoid of calcium. 

The synaptosomal suspension was further incubated for 15 min in presence or absence of 0.5 

μM bafilomycin under mild agitation in a quartz cuvette in a Perkin-Elmer LS-50B 

spectrofluorimeter. Fluorescence data were accumulated at 2 Hz with excitation wavelength 



Material and methods 
 

 41

of 340 nm and emission wavelength of 510 nm.  CaCl2 was added to 1.33 mM final 

concentration 1 min after the beginning of the assay. MFS were depolarized with 40 μM 

veratridine (final concentration) 30 s after CaCl2 addition.  Cytosolic free Ca2+ concentration 

([Ca2+]cytosol, nM) was calculated according to the method described by Grynkiewicz et al. 

(1985) following calibration procedures using 2.5 mM EGTA and  0.1% sodium dodecyl sulphate 

to obtain minimum fluorescence in the absence of any Fura-2/Ca2+ complex and maximal 

fluorescence with Fura-2 saturation with Ca2+ after addition of 5 mM CaCl2.   

 

2.7.5. Isolation of mammalian brain synaptic vesicles 

 
The isolation of synaptic vesicle enriched fractions from either sheep brain cortex or 

rat brain was carried out according to the procedure described previously (Hell et al., 1988; 

1990; Gonçalves et al., 2000b). Brains of young male rat (Wistar) or sheep (Ovis aries, breed 

merino) were removed immediately after death, cut in small pieces and frozen in liquid N2, 

until further processing. They were subsequently transferred into N2 cooled porcelain mortar 

and crushed with a pestle until a fine powder was obtained. The powder was homogenized in 6 

volumes of homogenization buffer containing: 0.32 M sucrose, 10 mM HEPES–K, pH 7.3, 0.2 

mM EGTA, 0.5 µg/ml pepstatin and 1 µg/ml leupeptin at 4ºC by a motor driven Teflon-glass 

homogenizer at 900 rpm. All further steps were at 4ºC. The homogenate was centrifuged at 

47,000 x g for 10 min and the supernatant collected for new centrifugation at 120,000 x g 

during 40 min. The supernatant was layered onto 5 ml cushions of 0.65 mM sucrose and 10 mM 

HEPES–K, pH 7.3 and centrifuged for 2 h at 260,000 x g. The resulting pellets are 

resuspended in 0.32 M sucrose and 10 mM HEPES–K, pH 7.4 and centrifuged for 10 min at 

27,000 x g. At this stage, the collected supernatant is essentially enriched in synaptic 

vesicles. Indeed, contamination with plasma membranes was not observed as judged by 

absence of ouabain-sensitive Na+/K+ ATPase activity, but a little contamination with 

microsomes; 15% was detected by measuring the activity of the marker enzyme glucose-6-

phosphatase (Gonçalves et al., 2000b). Finally, the protein is determined by the method 

described by Gornall et al. (1949) using bovine serum albumin as a standard and the fraction is 

divided into various aliquots to store at -80ºC. They were thawed at room temperature 

immediately before use in the experimental assays.  
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2.7.6. Measurement of the vesicular proton gradient in mammalian purified 

synaptic vesicles 

 
ATP-dependent vesicular proton transport was measured by following the 

fluorescence quenching of acridine orange (Deamer et al., 1972; Gonçalves et al., 1998). To 

follow pump-mediated proton loading into vesicular lumen, synaptic vesicles (0.6 mg 

protein/ml) were incubated at 30ºC in a medium containing 150 mM KCl,  2 mM MgCl2, 60 mM 

sucrose, 10 mM Tris–HCl, pH 8.5, 50 µM EGTA, and 3 µM acridine orange. After addition of 

0.5 mM ATP–Mg to the vesicle suspension, the ATP-dependent proton transport was 

visualized by following the fluorescence emission (λ at 525 nm) quenching of acridine orange 

using an excitation wavelength of 495 nm in a Perkin-Elmer spectrofluorimeter LS-50 B. The 

formation of the proton gradient (∆pH) can be checked by inducing its dissipation with a 

protonophore like CCCP (2 µM final concentration). Partial dissipation of the proton gradient 

due to the activation of Ca2+/H+-antiport was elicited upon 500 µM free [Ca2+] addition (as in 

figure 13).  

 

2.7.7. Measurement of ATPase activity in mammalian purified synaptic vesicles 

 
The ATPase activity of the synaptic vesicles was determined by measuring the 

liberation of inorganic phosphate (Pi) associated with the hydrolysis of ATP as reported by 

Gonçalves et al. (2000a). Membrane vesicles (600 mg protein/ml) were incubated in 1.1 ml of 

60 mM sucrose, 2 mM MgCl2, 150 mM KCl, 50 µM EGTA and 10 mM Tris, pH 8.5. The reaction 

was started by adding 504 µM ATP-Mg and, after 5 min at 30ºC. It was stopped by adding 50 

µl of ice-cold 20% (v/v) trichloroacetic acid. The precipitated protein was discarded by 

centrifugation and the supernatant was collected for Pi analysis by the method of Taussky 

and Shorr (1953). The assays were undertaken in the presence or absence of drugs indicated 

in the figures.  

 

2.8. Acetylcholine release from synaptic vesicles 

 
ACh release from synaptic vesicles isolated fromTorpedo electric organ or sheep 

brain cortex was determined in a continuous manner by the chemiluminescence method (Israël 
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& Lesbats, 1981a and 1981b).  25 μl (~3 μg) of Torpedo synaptic vesicle suspension or 60 μg of 

sheep brain cortex synaptic vesicles were delivered into a tube containing the ACh detection 

enzyme mixture in 250 μl of: 380 mM KCl, 2 mM MgCl2, 60 mM Hepes-KOH, pH 7.2 and 50 μM 

EGTA used with Torpedo SVs or:   150 mM KCl, 2 mM MgCl2, 60 mM sucrose, 60 mM Tris-

HCl, pH 8.5 and 50 μM EGTA used with sheep brain cortex SVs. The suspension was allowed 

to equilibrate for a few minutes and ACh release from synaptic vesicles was tested in 

presence or in the absence of Ca2+ with or without permeabilization of vesicle membranes to 

calcium with ionomycin (in case of Torpedo vesicles) or by addition of 500 μM CaCl2 to vesicle 

suspension energised with 1mM ATP (details in figures). The amount of light produced by ACh 

released was compared to that produced by known amounts of ACh perchloride (standards). 

Total amount of ACh contained in samples was determined by permeabilizing the 

synaptosomes with Triton X-100 (0.02% final concentration) and comparing the light emitted 

with that produced by another set of ACh standards. 

 

2.9. Cell culture 

 
 PC12 cell clones (Shoji-Kasai et al., 1992) were kindly provided by Yoko Shoji-Kasai 

(Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-

8511, Japan). Cells were cultured in Dulbecco’s modifed Eagle’s medium (DMEM; Eurobio, 

France) supplemented with glutamine (0.2 mM), 5 % foetal calf serum (FCS; Amimed), 5% 

horse serum (HS; Amimed) and penicilin-streptomycin (5 units/l; Invitrogen). The cultures 

were carried out at 37ºC in a 5% CO2; 95% air mixture saturated with water in 175 cm2 

plastic bottles (Falcon). For morphological experiments, cultures were grown in monolayer 

until confluence on plastic coverslips (Thermanox, Nunc, USA).  

 

2.10. Gene construct and transfection into PC12 Cells in culture 

 
 Two Synaptotagmin I genes were engineered for transfection of PC12 cell clones 

devoid of endogenous Syt I (F7). Constructs were similar to those described earlier by Marek 

and Davies (2002), but using the mouse sequence instead of Drosophila. For that, the pMH4-

SYN-P65-I-EGFP plasmid (corresponding to mouse NM_009306 sequence) was used to 

amplify (F: AAA ATG GTG AGT GCC AGT CGT; R: TTA CTT CTT GAC AGC CAG CAT ; Rtag: 



Material and methods 
 

 44

TTA AGC ACG AGC ACA TTC ACG ACA AGC TTC ACG AGC AGC TTC AGC CTT CTT GAC AGC 

CAG CAT) synaptotagmin I cDNA without (Syt) or with the FlAsH-binding tetracysteine 

motif (AEAAAREACCRECCARA) (Griffin et al., 1998) (Syt_tagg) and subcloned in pcDNA3.1. 

The constructs were sequenced. These mouse cDNA showed 96.32 % homology to rat 

synaptotagmin sequence and 99.76% homology was found between the two proteins. Cells were 

transfected with LipofectamineTM 2000 (Invitrogen), according to the manufacturer’s 

guidelines. After the formation of liposome/DNA complexes they were delivered into cell 

cultures during ~4h. After this period cells were cultured in normal growth medium for two 

more days before being assayed.    

 

2.11. Preparation of post nuclear supernatants from PC12 cells 

 
 Crude post nuclear supernatants were prepared from PC12 cells according to Bloc et 

al. (1999). PC12 cells were detached from cultured flasks by washing in phosphate buffer 

saline (PBS) composed of: 137 mM NaCl, 2.7 mM KCl, 10 mM Na/Na2 Phosphate, pH 7.4 at 

37ºC (no need for trypsin). Cells were centrifuged at 800 x g for 5 min and resuspended (~2.5 

ml for every 106 cells) very gently in ice cold (4ºC, temperature kept until the end of the 

procedure) homogenisation buffer (HB) composed of 250 mM sucrose, 3 mM imidazole, pH 7.4 

and centrifuged again at 800 x g. Cells were resuspended again in HB and counted in an 

Neubauer haemocytometer. They were centrifuged at 1000 x g for 10 minutes. The cell pellet 

was diluted (~0.5 ml for every 106 cells) in HB containing protease inhibitors (10 μM leupeptin 

and 1 μM pepstatin A) and homogenized by 5-10 passages through a 22-gauge needle. The 

suspension was monitored by phase contrast microscopy. The homogenate was centrifuged at 

2000 x g for 15 min and the post nuclear supernatant was collected and stored at -80ºC until 

usage. A small aliquot was taken for protein quantification by the BCA protein assay (Pierce, 

USA)  

 

2.12. Measurement of the vesicular proton gradient in PC12 post nuclear 

supernatants 

 
ATP-dependent proton transport was measured on crude post nuclear supernatants by 

following the fluorescence quenching of acridine orange (Deamer et al., 1972; Bloc et al., 
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1999) in a Perkin-Elmer spectrofluorimeter LS-50 B with excitation and emission wavelengths 

of 495 and 530 nm, respectively. The assay was carried out at 30ºC in: 130 mM KCl, 2 mM 

MgCl2, 20 mM MOPS/Tris, pH 7.4 and containing 50 μM EGTA and 3 μM acridine orange. 

Assays started by addition of PNS (300 μg/ml) from different cells. H+ pumping into the 

acidic organelles started upon addition of 1 mM ATP-Mg. Partial dissipation of H+ gradient was 

assayed in PNS from synaptotagmin I positive or negative cell clones by addition of 500 μM 

Ca2+. In the end of each assay CCCP was added to allow full dissipation of the H+ gradient.   

 

2.13. Active Ca2+ uptake into acidic organelles of PC12 cell post nuclear 

supernatants  

 
Ca2+ accumulation by acidic organelles in PNS was measured by rapid filtration and 

scintillation counting. A PNS sample (0.3 mg protein/ml) was incubated at 30ºC in 850 µl of 

reaction medium containing 130 mM KCl, 2 mM MgCl2, 20 mM MOPS/Tris, pH 8.5 and 50 μM 

EGTA. Radiolabelled calcium was from Amersham (U.K.). 

In ATP dependent Ca2+ uptake assays PNS (0.3 mg protein/ml) suspensions were 

allowed to equilibrate for 6 minutes in reaction medium containing 10 µM Na-orthovanadate. 

Then, 1 mM ATP-Mg was added and a pH gradient was allowed to form for 2 minutes before 
45Ca2+ (550 µM free; 0.5 mCi/mmol calcium) addition. Rapid filtration took place 2 minutes 

after by placing the 800 μl aliquot in millipore filter HAWP (0.45 mm) under vacuum. The 

filtration cycle included pre-washing of filters with 1.5 ml ice-cold reaction medium without 

MgCl2 followed by filtration of the sample and washing with 3 ml more of the same medium.  

In another set of experiments Ca2+ uptake was driven by the pre-established pH 

gradient (pH-Jump) between the acidic vesicular lumen of the organelles in PNS (prepared at 

pH 7.4) and the reaction medium (pH 8.5). Ca2+ uptake assays started by adding PNS 

suspensions (0.3 mg protein/ml) to reaction medium already containing 10 µM Na-

orthovanadate and 45Ca2+ (550 µM free; 0.5 mCi/mmol calcium) and were stopped 2 min after 

by rapid filtration (as above).  

The radioactivity of the filters was measured by liquid scintillation spectrometry and 

the amount of Ca2+ accumulated in the vesicular space was calculated. Radiolabelled 45Ca2+ 

uptake assays were performed in the presence of orthovanadate (10 μM) to inhibit the 



Material and methods 
 

 46

activity of Ca2+-ATPases. In some conditions (indicated in figures) 0.6 µM bafilomycin A was 

present to inhibit the activity of the Ca2+/H+ antiport. 

Ionomycin-dependent Ca2+ retention in post nuclear supernatant (PNS) of PC-12 cells 

was also tested with PNS from tested cells. Conditions were as for pH-jump but in presence 

or absence of 2 μM ionomycin in the reaction medium.  

 

2.14. Cellular and subcellular labelling of PC12 cell synaptotagmin I with FlAsH  

 
 Labelling of PC12 cells with the biarsenical derivative of fluorescein, FlAsH was done 

by combining the FlAsH cell loading protocol of Marek and Davies (2002) with PNS protocol 

by Bloc et al. (1999). FlAsH reagent was acquired from Invitrogen under the name of Lumio™ 

Green. It is not fluorescent until it binds the tetracysteine motif at which time it becomes 

highly fluorescent. The motif consists of Cys-Cys-Xaa-Xaa-Cys-Cys where Cys equals cysteine 

and Xaa equals any amino acid other than cysteine. This motif is rarely seen in naturally 

occurring proteins allowing specific fluorescence labelling of recombinant proteins fused to 

the tetracysteine motif (tag). Syt_tagg transfected cells are expected to bind FlAsH with 

high affinity (Gaietta et al., 2002) and guarantee nearly 100% labelling (Beck et al., 2002; 

Marek and Davies, 2002). FlAsH is supplied pre-complexed to (1,2-ethanedithiol) EDT2 that 

solubilizes and stabilizes the molecule. It is membrane-permeable, and readily enters cells. 

Cells were labelled at room temperature (20ºC) either in suspension (after harvesting with 

PBS as above) or attached to plastic coverslips. All further steps occurred under protection 

from light until the assays. FlAsH loading medium contained: 137 mM NaCl, 2.7 mM KCl, 2 mM 

MgCl2, 0.5 mM CaCl2, 1 mM Na-Pyruvate, 2.5 mM glucose, 10 mM Na/Na2 Phosphate, pH 7.4 

supplemented with 1 μM FlAsH- EDT2 and 15 μM EDT2 and lasted 20 min. Then cells were 

washed (in case of cells in suspension, they were centrifuged at 800 x g followed by 

resuspension) in loading medium supplemented with 250 μM EDT2 to remove non-specific 

FlAsH binding and incubated under slight agitation for 10 minutes. After two additional 

washings in the loading medium alone, they were either visualized (figure 16) under a 

fluorescence microscope with a FITC (fluorescein) filter (excitation at 488 nm and emission 

at 528 nm) or proceeded to obtain PNS preparations as described earlier. 

  

 



Material and methods 
 

 47

2.15. Fluorescence assisted light inactivation with FlAsH: FlAsH-FALI  
 
 FlAsH-FALI of synaptotagmin I was performed by adapting the method described by 

Marek and Davis (2002) to sub-cellular suspension. Briefly, PNS suspensions from cells 

transfected with Syt_tagg construct and labelled with FlAsH were kept at 4ºC while being 

exposed for 1 minute to UV light from a 200W HBO lamp. After being “flashed” the samples 

were assayed within 5 minutes using the Ca2+ active uptake or the Ca2+-induced H+ gradient 

dissipation protocols (details in figures).   

 

2.16. Statistical analysis 
   
Statistical analysis was performed using either a Two-way ANOVA test (Tukey post-

test) or the Student's t-test (two-tailed distribution; unpaired) and P values are presented in 

the legends of the figures.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Results and discussion 
 

 
 



Results and discussion - experimental models 
 
 

 49

3.1. Experimental models 
 
3.1.1. Real-time measurement of neurotransmitter release and dynamic changes 
of calcium content in intact tissue 
 
 In this work we made a profuse use of a biological model that uses rapid ACh 

transmission to produce highly synchronized electrical discharges. The electric organ of 

Torpedo species has provided an invaluable tool for investigating the mechanisms of ultra-

rapid synaptic transmission. Embryologically, the Torpedo electromotor system is homologous 

to the neuromuscular system, with which it shares most of its structural, functional and 

pharmacological characteristics.  

The Torpedo marmorata  (Figure 6 A) is an elasmobranch (cartilaginous) fish denizen 

from the north Atlantic Ocean and Mediterranean Sea. It possesses two kidney-shaped 

electric organs on either side of his body that together account for 1/5 of the animal’s total 

weight. A single organ of a middle sized fish (approximately 40 cm length) is capable of 

delivering electrical discharges of ~40-60 V in open circuit (when the discharge is provoked in 

the air), or 15-30 V and 4-6 amperes in sea water. The discharge is composed of successive 

peaks arising at high rate (100 to 300 Hz); it lasts for less than 0.1 s for the defence reflex 

(figure 6 A), but up to 24 seconds when the fish is hunting a prey (Fessard, 1958).   

 Excitation of mechano receptors in the tail or in the dorsal-front borderline of the 

fish stimulates the generation of an electrical defensive discharge that is coordinated in the 

brain stem and transmitted to the electromotor system. The later consists of some 60,000 

electro-motorneurons located in the electric lobe. The axons of those neurons project to the 

electric organ where they branch profusely, ending up in numerous nerve endings, innervating 

the ventral face of electrocytes. Electrocytes are actually modified muscle cells, very thin 

(10-15 μm) but large (2-8 mm diameter) cells. Upon excitation, the electro-motor terminals 

abruptly release the neurotransmitter acetylcholine (ACh), which binds and opens nicotinic 

ACh receptors in the electrocytes ventral membranes, provoking a sudden decrease in the 

electric resistance and the irruption of Na+ ions into the cells. The resulting currents sum up 

to give the vigorous electrical discharge produced by the fish (Dunant and Israël, 1985). 

Indeed, the electric organ is composed of 400-470 stacks of electrocytes also called prisms 

that resemble honeycomb-like structures when the skin is removed (figure 6 B). Each prism 

spans the animal and is composed of ~514 superposed electrocytes that keep their 

innervation when they are excised from the electric organ. Excitation of an isolated prism by 
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a single field shock activates the nerves contacting the electrocytes, resulting in the 

generation of a highly synchronized electric response (figure 6 C-D). The discharge of a prism 

is the result of undistorted endplate potentials synchronously generated by the superposed 

electrocytes that, on the contrary to their muscular counterparts or to Electrophorus 

electrocytes, do not produce regenerative action potentials (figure 6 C-D).  

Transmission is purely cholinergic in the electric organ and the release of the 

neurotransmitter is “quantal”, i.e., the evoked electroplaque potentials (EPP) is composed of 

discrete units corresponding to simultaneous release of 7,000–10,000 acetylcholine (ACh) 

molecules (Dunant and Muller, 1986), a value close to that reported for vertebrate motor 

endplates (Kuffler and Yoshikami, 1975).  

In the absence of stimulation, spontaneous miniature electroplaque potentials (MEPPs) 

can be recorded at electric organ synapses; they have the same size as evoked monoquantal 

potentials. In turn, like in nerve-muscle synapses (Kriebel and Gross, 1974), Torpedo MEPPs 

are composed of smaller discrete subunits, or subquanta, whose size is about a tenth of that 

of the mean quantal MEPPs or EPPs. Thus one subquantum is expected to arise from the 

release of a packet of 700-1000 ACh molecules (Muller and Dunant, 1987; Girod et al., 1993).  

In spite of these homologies, a few remarkable differences should be noticed between the 

two systems. In the Torpedo electric organ the synaptic vesicles are almost twice the size of 

those of the motor nerve terminals (80 nm vs. 45 nm). They were shown to contain 100,000 – 

200,000 ACh molecules (Ohsawa et al., 1979), which would be enough for generating 10-25 

quanta, or 100-250 subquanta (Dunant and Muller, 1986). Also the pre-synaptic specializations 

described as the active zone at the endplate (Couteaux and Pécot-Dechavassine, 1973) are 

not clearly observed at electric organ synapses. Importantly, the Torpedo nicotinic ACh 

receptors, although exhibiting a very high degree of homology with those of vertebrate 

neuromuscular junctions, are characterized by a much shorter mean open time (0.6 ms) and a 

linear current-voltage relation (Sakmann et al., 1985). This represents a favourable 

adaptation for a device designed to deliver brief electric discharges at a high frequency. 

 For investigating pre-synaptic mechanisms, the Torpedo electric organ offers several 

decisive advantages over neuromuscular preparations. First, the electroplaques do not 

contract. Also, they are devoid of voltage gated channels and thus unable to generate 

regenerative action potentials; their current-voltage relationship is linear both at rest and at 

the peak of the discharge (Fessard, 1958; Bennett et al., 1961). Therefore, the electrical 
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Figure 6. Torpedo marmorata electric organ as a model for the study of fast transmission. 
Panel A shows a train of 10 electric responses at high frequency (~200 Hz) produced by an 
electric organ. This, in vivo, experiment was registered out of the water after stimulation of 
mechanoreceptors in the animal’s front (defence reflex discharge). Panel B shows the electric 
response generated by dissected stacks of electrocytes (prisms) under field stimulation at 
physiological frequency (100 Hz). Panel C analyses such an electrical response of a 
dissected prism to a 100 V-0.5 ms field shock (schematic view of the apparatus shown to 
the right). Trace show in succession the stimulation artefact, the synaptic delay (latency) and 
the electrical discharge produced by the prisms (area in grey). Indicated in the figure are 10, 
50, and 90% of maximal amplitude (in volts) levels used to calculate several parameters like 
rise time, or T50 and T90 decay times lasting from peak response (dotted line) until the 50% 
and 90% decay values are reached, respectively. Broken lines define the segment of the 
decaying response where a single exponential curve (superimposed in red) can be fitted and 
used to calculate tau (decay time constant). Panel D illustrates a typical prism electric 
response resulting from paired pulse field stimulation (100 V; 0.5 ms) with 20 ms interval 
between stimuli. The facilitating (or depressing) effects of paired pulse responses were 
evaluated by analyzing parameters (as in panel C) of the second response as compared to the 
first response. Traces are representative of >100 experiments. 
 
discharge in the Torpedo is the summation of pure postsynaptic potentials, which are not 

distorted by all-or-none events.  

Another remarkable property of the electrogenic tissue is its extremely low 

electrical resistance. This is explained by the cytology of electroplaques, which are large, but 

very thin and flat cells. Their dorsal membrane (a non innervated membrane) presents a huge 

area due to a dense network of micro-invaginations. To this large area corresponds a very low 
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Table 1. Electrophysiology of Torpedo electric organ 

 In vivo  
 

This work 
and ref.1 

Prisms 
 

This work 
N=59, 12 
torpedoes 

Unitary 
evoked 

Epp/Epc 
ref. 2,3 

Mepp or Mepc
 

ref. 2,3 

Sub-
Meps/ 
Mecs 
ref. 2,3 

Synaptosomes 
Mepc 

 
N=266 

ref.4 

Amplitude 
Immersed 

 
In air 

 

15-30 V 
4-6 A 
40 mA.cm2 
52 V 
(40-60 ) V 

2.2± 0.18 V ~1 mV 
1,8± 0.4 nA 

1.25±0.24 mV
2.25±0.72 nA 

~0.1 mV 
~0.2 nA 

 
0.065±.0016 nA 
(noise to 0.2 nA) 

Rise time 
  10-90% 

 
time to peak 

 
0.61 ms 

 
1.01± 0.037 
ms 

 
0.6 ms 

 
0.43±0.02 ms 

 
0.4 ms 

 
0.9-3 ms 
mean (2.6 ± 0.4) 

T50 (ms) 2.261 0.97± 0.026 0.5-0.7 0.4±0.025 0.3-0.4 0.5-5 (6.0± 1.1) 

T90 (ms) 3.442 2.075±0.093     

Decay 
Tau (ms) 

0.834 0.747±0.024 0.3-0.4 0.35± 0.01  6.2± 1.1 

Latency 
(ms) 

--- 
 

1.98± 0.048 1.4 ms 
true delay, 
(0.61±0.03 ms 
direct depol. of 
terminals) 

-- -- -- 

Characteristics of adult Torpedo nicotinic ACh receptors : Mean open time : 0.6 ms, 
amplitude : 4.1 pA at -100 mV, 40 pS. (Reconstituted in oocyte, 17-21°C frog Ringer; Sackmann 
et al., 1985). 
ACh release from Torpedo synaptosomes was recorded using embryonic Xenopus myocytes 
(Ref. 4); Characteristics of Xenopus embryonic nicotinic ACh receptors:  Mean open time : 3 
ms, amplitude : ~1 pA (Brehm et al., 1982; Kikodoro and Rohrbough, 1990).  
Under the experimental conditions presented above (either with prisms or local recordings 
using a loose patch clamp electrode) the time course of electroplaques currents is the same 
as that of electroplaques potentials. Rise time: 0.71 ± 0.15 and  0.71 ± 20 ms; T50: 0.72 ± 12 
and 0.84 ± 0.23 ms for MEPC and MEPP, respectively (SD; see Girod et al., 1993). 
Table References: 1 (Fessard, 1958), 2 (Dunant and Muller, 1986), 3 (Girod et al., 1993), 4 
(Girod et al., 1992). 

 

electrical resistance. As a consequence the potentials recorded in this system (EPPs and 

MEPPs) and the corresponding currents (EPC and MEPCs) display an identical time course 

(Girod et al., 1993) (see table 1).  

The post-synaptic response can therefore be taken as a measurement of the amount 

of transmitter release in each nerve impulse (Dunant and Israël, 2000). The electric potential 

generated by the prisms gives a wealth of information by comparative study of its composing 

parameters (figure 6 C and table 1). 
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For all the above reasons, the electrical responses of the Torpedo electrogenic tissue 

reflects in most circumstances quite faithfully the amplitude and time course of transmitter 

release in a given nerve impulse. As a matter of fact, an excellent correlation has been 

observed in the Torpedo electric organ between electrophysiological and biochemical 

assessments of release, even in response to a single or a few nerve impulses (Dunant et al., 

1980a) (figure 7).  

In the present work, we describe electrophysiological observations obtained using 

whole prisms, or stack of electroplaques, excised from the Torpedo electric organ. Pieces 

containing a single prism - or two prisms according to the size of the specimen - are carefully 

dissected and placed under continuous superfusion with an elasmobranch saline medium. In 

response to a field shock, such prisms generate a response (electroplaque potential, EPP) with 

the following characteristics (Figure 6 B and Table 1). 

A latency of Ca. 2 ms always lags between the end of the stimulus artefact and the 

beginning of the EPP (measured at 10% the maximal amplitude). The excitation most probably 

fires off in the highly myelinated axons which extensively branch at the edge of the prisms, 

before penetrating in the space separating electroplaques (Wagner’s bush; (Wagner 1847)). 

Axon excitation implies activation of voltage-operated Na+ channels since no EPP could be 

recorded after stimulating in this way prisms perfused in presence of tetrodotoxin (Dunant, 

unpublished work). As measured here, the latency is expected to include a) axon excitation, b) 

conduction along nerve fibres from the Wagner bush into the terminal network, c) Ca2+ entry 

into terminals, d) ACh release, e) ACh diffusion in the synaptic cleft and f) activation of 

postsynaptic nicotinic receptor.  

The rising phase of the EPP reflects the kinetics of activation of nicotinic receptors 

in all the synapses present in the prism. The rise time of a prism EPP (measured between 10% 

and 90% of the peak amplitude) is very short (Ca. 1 ms). The value is just twice the time-to-

peak of unitary EPPs or MEPPs, as recorded locally at restricted innervated areas (Table 1) 

(Girod et al., 1993). Therefore, a single field stimulus elicits a highly synchronous activation 

of an enormous number of synapses, since there are approximately 3x106 synapses per 

electroplaque and more than 500 electroplaques in a full length prism. 

 The peak amplitude of EPPs recorded in this way varies considerably among prisms, 

depending on recording conditions (size of the tissue piece, position of electrodes, degree of 

the short circuit due to the superfusing saline, etc.). Prisms take about two hours after 
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dissection to stabilize. During that period peak amplitude value usually rises slowly and then it 

remains at a steady level for 24 hours or more. The peak of prism EPP, like those of unitary 

EPPs or MEPPs, displays a somewhat “rounded” shape. 

 The EPP area is an integrated parameter, which in many circumstances gives a 

better correlation with biochemical measurements of transmitter release than the peak 

amplitude. A striking example is the effect of 4-amminopyridine which does not significantly 

increase EPP amplitude in the Torpedo, but enhances by two orders of magnitude both the 

EPP duration and the amount of transmitter released (Dunant et al., 1980a; Corthay et al., 

1982). The area to peak ratio can prove an interesting parameter for comparing data from 

an experiment to another, since it depends less on the recording geometry and conditions 

than the amplitude or the area alone. 

 The falling phase of a prism EPP is characterised, between 75% and 15% of the peak 

amplitude, by a rapid decay which could be fitted with a single exponential. Measured in a 

large number of prism EPPs, the time constant of this exponential (decay tau) was 

0.747 ± 0.024 ms. Surprisingly, this was only twice the value found in the elementary quantal 

EPCs, MEPPs or MEPCs (Table 1). It is interesting to note that the decay tau of a prism EPPs 

gives a value close to the mean open time (0.6 ms) reported for Torpedo nicotinic receptors 

reconstituted in Xenopus oocytes (Sakmann et al., 1985). This suggests that the speed of the 

EPP decay during the exponential phase is mainly governed by the rate of receptor closure, as 

will be discussed later. In addition to this parameter, we have also measured the falling times 

from the peak to 50%, and to 10% of its amplitude (decay T50 and T90, respectively). The 

latter parameters include the initial slowly-falling segment of the falling phase, which 

contributes to the more or less “rounded” aspect of the EPP summit. 

The late section of the falling phase is quite variable from a preparation to another. 

Very often, small secondary responses are observed, most probably due to re-stimulation of 

nerve branches by the initial discharge (see Figure 6).  

 The striking observation is that the time course of an EPP elicited by stimulating a 

Torpedo electric organ prism with a single field shock is not greatly longer than that of 

elementary EPPs (or EPCs). The myriads of synapses in the prisms are activated and discharge 

with an impressive synchronisation. The remark also applies for the physiological discharge of 

the whole fish in vivo, elicited in response to a nociceptive stimulus (Figure 6 A and Table 1). 

The 300-400 prisms composing an electric organ fire with astonishing synchronisation. 
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It should be noted that while calcium ions have a very powerful influence on the 

secretory response of nerve endings submitted to a depolarizing stimulus, it has relatively 

little effect on the rate of spontaneous discharge, in the absence of a depolarizing agent 

(Fatt and Katz, 1952; Del Castillo and Katz, 1954; Boyd and Martin, 1956; Liley, 1956; 

Hubbard, 1961; Miledi and Thies 1967; Katz, 1969; Thesleff and Molgó, 198; Dunant, 1986; 

Lupa, 1987; Vautrin and Kriebel, 1991; Girod et al., 1993). One is left to thinking that the 

spontaneous occurrence of basic units of quantal transmitter release (MEPPs and sub-MEPPs), 

operating with low probability, are largely Ca2+ independent in nature, while the evoked 

responses are due to an extremely high probability of release during the very short period 

that Ca2+ invades the terminal at active zones, and are therefore absolutely Ca2+-dependent 

(Katz, 1969; Girod et al., 1993). The neuro-electrocyte synapses of Torpedo electric organ 

seem to exacerbate this corollary by displaying rather low rates of spontaneous release, but 

explosively reaching maximal rates of release <150 µs after Ca2+-entry due to a depolarizing 

stimulus (Dunant and Muller, 1986; Girod et al., 1993) that results in rapid activation of 

transmission (<1 ms) and decaying with a time constant (decay tau = 0.64 ms; table 2) that 

seems to follow closely the kinetics of nicotinic ACh receptors with mean open time <0.6 ms 

(Sakmann et al., 1985). This is due to an extremely rapid hydrolysis of the released ACh by 

acetylcholinesterase, which is highly concentrated in the synaptic cleft, like in neuromuscular 

junctions. Transmission in Torpedo electric organ is adapted to the phasic nature of a synapse 

capable of reaching high frequencies of stimulation. 

The very high rates of transmitter release are coordinated by Ca2+ invading a terminal 

and activates ACh release channels (mediatophores) (Israël et al., 1981; Muller et al., 1987; 

Brochier et al., 1992; Dunant and Israël, 2000). Calcium ions act like gatekeepers of secretion 

that abruptly allow the passage of ACh in their presence. Yet, individual release events seem 

to occur almost instantaneously (under 150 µs according to Girod et al., 1993) and 

consequently it seems that the “guards” of those gates (calcium ions) must be themselves 

regulated. Who guards the guards? The nerve endings of the electric organ are endowed with 

a large number of synaptic vesicles that account for ~20% of its volume (Israël, 1972; Morel 

et al., 1980). This provides an enormous surface area of vesicular membrane in close vicinity 

of the plasma membrane where Ca2+ enters and ACh gets to be released from the terminal at 

<200 nm quantal release spots distant ~600-1000 nm from each other (Dunant and Muller, 

1986; Girod et al., 1993).  
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Synapses of Torpedo electric organ do not have any specialized geometrical 

organization like the active zones of the endplate (Couteaux & Pécot-Dechavassine, 1973). 

Given that synaptic vesicles cover most of the terminal membrane they should be both in 

close proximity of <200 nm wide active zones as well as the ~800 nm plasma membrane space 

separating active zones. The first “layer” of Torpedo vesicles (~Ø 80 nm, each) provides the 

terminal with a membrane area that trebles that of the plasma membrane directly 

underneath it. Vesicles at more distant “layers” (>80 nm away) contribute with more vesicular 

membrane, but are relatively distant from the peak [Ca2+]int at the time of a stimulus. 

Nevertheless, there is a wealth of vesicular membrane in close contact with high calcium 

concentration seemingly in perfect position to modulate the space-time profile of calcium 

microdomains. 

The electric organ can also be used for biochemical assays that relate to synaptic 

function. Prisms can be loaded overnight with a radio-labelled ACh precursor (acetate or 

choline), that will enter the terminal and used to synthesise ACh. Removing the ACh precursor 

from the bathing medium and washing out copiously, reveals a rather “silent” tissue at rest; 

very low amounts of ACh leak out from the terminals in the absence of activation. This allows 

a signal to noise ratio that is good enough to detect ACh release from as little as a single 

nerve impulse. When a small number of stimuli are applied, ACh release can be assessed with 

an excellent proportionality (Dunant et al., 1980a). This technique allows therefore to 

correlate phasic ACh release measured by a biochemical method with post-synaptic 

recordings, being recorded at the same time on the same prisms (figures 6 and 7). 

The Torpedo electric organ also provides an exceptional preparation for investigating 

dynamic changes of calcium metabolism in relation to synaptic transmission. Experiments 

where prisms were bathed in the presence of 45Ca in addition to a physiological 40Ca2+ 

concentration (3.4 mM) revealed that cellular and extracellular calcium fully exchange after 

2-3 h incubation. Under such conditions, the relative changes in 45Calcium give a faithful 

image of those of 40Calcium. Brief nerve stimulation provokes a substantial calcium 

accumulation in the tissue, which in the electric organ takes place essentially in presynaptic 

nerve terminals at the active zones.  

By washing the tissue in the standard solution (without 45Calcium) right after the 

stimulation period, it is possible to assess calcium extrusion back into the extracellular 

medium, and to show the accumulation-induced surplus of cellular calcium return to control  
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Figure 7. Measurement of radio-labelled [3H]-Acetylcholine release from stimulated prisms. 
Torpedo electric organ prisms were labelled overnight with [3H]-acetate. Prisms were placed 
on a holder under continuous perfusion with elasmobranch saline medium (right figure). [3H]-
ACh diffusing from excised prisms was collected in fractions lasting 15 seconds each, before 
and after field stimulation (↓) consisting of 0 (no stimulation) 1, 5, 10 or 20 shocks in 1 
second. The electric responses from prisms were simultaneously registered (top traces) with 
calibration bars of 2V and 4 ms for the single response and 2V and 400 ms for the others 
(From Dunant et al., 1980a). 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 8.  Extrusion of stimulus-dependent calcium accumulation from prisms following a 12 s 
tetanus at 100 Hz. Prisms were incubated with 45Calcium containing elasmobranch saline 
medium for three hours. Then stimulated (black symbols) and not stimulated (grey symbols) 
prisms were washed in the standard medium without 45Calcium and processed for 
quantification of tissue 45Calcium 0, 5, 15 and 30 min after the tetanus. Values are mean ± 
SEM of 8 experiments. 
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value within approximately 30 min (figure 8) (Babel-Guérin, 1974; Dunant et al., 1980b; 

Párducz and Dunant., 1993; Párducz et al., 1994). 

We took advantage of this approach to investigate alterations of calcium dynamics in 

nerve terminals by vesicular Ca2+/H+ antiport and Ca2+-ATPase inhibitors. This was possible 

because stimulation does not cause significant accumulation in post-synaptic electrocytes, 

contrarily to what happens in neuron-muscular preparations. In Torpedo electric organ 

virtually all calcium accumulates in the abundant nerve terminals where it was found to be 

particularly concentrated in close association with active zones after stimulation (Babel-

Guérin, 1974; Dunant et al., 1980b; Párducz and Dunant., 1993; Párducz et al., 1994). 

 
3.1.2. Neurotransmitter release in relation to proton and calcium transients in 
pinched off pre-synaptic nerve terminals (synaptosomes) 
 

 Nerve terminals can be detached from the post-synaptic cell as well as their own 

axons by homogenization, forming sealed synaptosomes (Whittaker., 1959; De Robertis et al., 

1961; Israël at al., 1976). The synaptosomes are metabolically active, have active plasma 

membrane high affinity transport (i.e., choline), they synthesize and release transmitters and 

exhibit membrane potential (Israël et al., 1976, Morel et al., 1977; Meunier, 1984).   

In this work we used two types of synaptosomes. The first ones were purely 

cholinergic nerve endings isolated from Torpedo electric organ as described previously 

(Israël et al., 19976; Morel et al., 1977). These synaptosomes are large (ca. 3.5 μm), very 

homogenous, and contain high concentration of cytosolic ACh (ca. 20 mM) in adition to 

vesicular ACh; they also contain ATP (ca. 3 mM) (Morel et al., 1978) This correlates very well 

with the estimated concentration of cytosolic ACh in Torpedo intact terminals (ca. 27 mM) 

(Dunant et al., 1974), and with the 27 mM and 34 mM ACh estimated respectively in the 

cytoplasm and whole tissue of the frog neuromuscular junction (Katz and Miledi, 1977).  

Furthermore, Torpedo synaptosomes respond to a depolarizing stimulus only in the 

presence of Ca2+ by releasing ACh from their cytoplasmic compartment (Israël and Lesbats, 

1981a), like it was demonstrated to occur in whole tissue (Dunant et al., 1972; 1974). ACh 

release can be followed continuously by a chemiluminescent method developed by Israël and 

Lesbats (1981a, 1981b). The amount of light emitted is proportional to the amount of ACh 

placed in contact with light-emitting enzymes, allowing for both measurement and calibration 

of transmitter release (figure 9).   
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Figure 9. Acetylcholine release by 30 µl of electric organ synaptosome fraction using the 
chemiluminescent enzymatic method. Synaptosomes were kept in elasmobranch medium 
containing 3.4 mM CaCl2 and depolarized with veratridine 100 µM to elicit ACh release. 
Standard amounts of ACh were added subsequently for calibration. Trace is representative 
of 10 experiments. 
 

However useful for ACh release and other studies, we encountered some limitations 

to the use of several fluorescence techniques using Torpedo marmorata synaptosomes. We 

repetitively tried to use acridine orange and other fluorescent probes to assess pH changes 

within the acidic organelles of Torpedo synaptosomes, but our attempts were frustrated 

(figure 10 A and 13 A). It was only of little comfort to learn that previous attempts to use 

other fluorescence probes (including calcium probes) with fish preparations were without 

success in our and other laboratories. We hypothesize that Torpedo membrane and protein 

composition is not prone for the use of probes that were developed for mammalian 

preparations.  

We overcame this unwieldy situation by using synaptosome and vesicle preparations 

isolated from mammalian tissue. 

 We prepared mossy fibre synaptosomes (MFS) from the rat brain hippocampus as 

previously described (Israël and Whittaker, 1965; Helme-Guizon et al., 1998).  These 

synaptosomes are particularly large (1-8 µm)(Bancila et al., 2004). They come from the large 

mossy fibre of the CA3 region, which are the nerve endings of axons issued from granular 

cells of the dentate gyrus (Amaral and Witter, 1989). Furthermore, these giant synaptosomes 

maintain an astonishing vigour after isolation; as shown by a resting membrane potential of -

85 mV (Bancila et al., 2004, 2008); capability of releasing glutamate as a function of Ca2+ 

concentration and membrane depolarization; and the presynaptic expression of pre-synaptic 

long-lasting potentiation (Helme-Guizon et al., 1998; Bancila et al., 2004, 2008).  
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 Mossy fibre synaptosomes were used to measure glutamate release using a 

luminescence approach (figure 41) and changes of the vesicular proton gradient, using the 

fluorescent probe acridine orange (A.O.). The accumulation of A.O. in the acidic organelles of 

synaptosomes results in fluorescence quench due to dimerization of A.O. molecules. 

Therefore, any decrease in intravesicular H+ concentration results in an increase in A.O. 

fluorescence, i.e., a transient dissipation of vesicular proton gradient (figure 10 B), as 

previously shown in experiments using rat brain cortex synaptosomes (Zoccarato et al., 1999). 

This phenomenon might be attributed either to the activation of vesicular Ca2+/H+ antiport, or 

by a cycle of vesicular fusion followed by endocytosis and re-acidification of vesicles.  

 We also used MFS to measure [Ca2+]int rise in the bulk of the cytoplasm induced by a 

depolarization in the presence of calcium. For that we incubated MFS with the membrane 

permeable form of Fura-2 Ca2+ fluorescence probe, and determined the fluorescence changes 

due to Ca2+ entry induced by depolarizing the terminals with veratridine (figure 11).  

 In the set of experimental procedures described above we addressed the roles of 

vesicular Ca2+-ATPase and that of the Ca2+/H+-antiport in the temporal-definition of fast 

post-synaptic responses (electrophysiology), as well as the amounts of ACh and glutamate 

released from synaptosomes under similar conditions (chemiluminescence). They were also 

used to relate the Ca2+/H+ antiport activity with the [Ca2+]int and proton transients induced 

after applying a depolarizing stimulus to rat hippocampus MFS. 

 

 

 

 

 

 

 
 
Figure 10. Monitoring proton gradient formation and dissipation with the acridine orange 
(A.O.) dye in synaptosomes. Panel A: Failure to record proton gradient using A.O. fluorescence 
in Torpedo electric organ synaptosomes (syn.).There was no quenching of A.O. fluorescence by 
synaptosomes (25 µl or ~50 µg protein), and consequently it has not been possible to measure 
any dissipation after adition of 40 mM KCl or of the protonophore CCCP. The downward 
deflections were due to the opening of the fluorimeter chamber for introducing the drugs 
Representative trace of (n=10). Panel B: Similar experiment using mossy fibre synaptosomes 
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isolated from rat brain hippocampus. Proton gradient was monitored by adding 10 mg/ml of 
the synaptosome suspension (arrow) to Krebs solution containing 3 µM acridine orange. 
Fluorescence quench occurred when the dye penetrated into and was exposed to acidic 
medium inside acidic compartments, where it dimerised and accumulated as the proton 
gradient was formed across acidic compartments. Addition of 40 mM KCl in the presence of 
2.2 mM [Ca2+]out, induced a transient of the H+ gradient, which was then fully dissipated by 
10 μM CCCP. Representative A.O. fluorescence trace of (n=6). 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
Figure 11. Calcium concentration within rat hippocampus mossy fibre synaptosomes 
monitored by Fura-2 fluorescence. Fluorescence trace of Fura-2-AM loaded synaptosomes 
kept in mammalian Krebs containing 1.33 mM CaCl2. Fluorescence was measured before (basal) 
and after depolarization with 40 µM veratridine (arrow). Addition of EGTA caused a 
progressive decrease in fluorescence. Full decrease to a fluorescence minimum occurred 
after synaptosome permeabilization with SDS. An excess of calcium was added at the end of 
each assay for calibration (fluorescence maximum). 
 

3.1.3. Neurotransmitter content and Ca2+ and H+ transport by isolated synaptic 
vesicles 
 
 When synaptic vesicles were first isolated from mammalian brain by De Robertis et al. 

(1963) and Whittaker (1964), they were demonstrated to contain more ACh than other 

fractions. However, ACh is only a minor neurotransmitter in mammalian brain, where no more 

than 10-15% of synapses are cholinergic. In contrast, being purely cholinergic, the Torpedo 

electric organ allowed for isolation of a vesicle fraction of much higher yield and purity 

(Israël et al., 1968)  

 Torpedo synaptic vesicles have ~100,000-200,000 molecules of ACh per vesicle 

(Ohsawa et al., 1979). The amount of ACh and ATP existent in a given synaptic vesicle 
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suspension can be measured by chemiluminescence (Israël and Lesbats, 1981a, 1981b; 

Strehler 1974; Dunant et al., 1988). Figure 12 shows the comparative analysis of ACh content 

from two preparations of synaptic vesicles, one isolated from Torpedo electric organ and the 

other one from rat brain, according to the methods described by Israël et al. (1980) and Hell 

et al. (1988), respectively. ACh was quantified by the chemiluminescence method by 

permeabilization of vesicular content with Triton X-100 followed by ACh calibration. Inset 

shows the difference in ACh content between the two SV preparations. 

  

 

 

 

 

 

 

 

 
 
 
 
Figure 12. Comparison between the vesicular acetylcholine content in synaptic vesicles 
isolated from Torpedo marmorata electric organ and those from rat brain cortex. Traces 
show ACh-dependent light emission by chemiluminescence in elasmobranch or mammalian 
medium containing either 25 µl (~3 μg) of Torpedo s.v. fraction (grey) or 60 µg protein rat 
synaptic vesicles (black), respectively. Vesicular content was determined by adition of 5 µl 
Triton X-100 1% to the synaptic vesicle suspension followed by standard amounts of ACh. 
Inset Bars show the average ± SEM (n=6-11) ACh content within vesicles isolated from rat or 
Torpedo. 
 

One of the methods that we can use to assess the activity of vesicular Ca2+/H+ antiport is to 

follow acridine orange fluorescence response to changes in isolated S.V. internal acidic milieu 

(Gonçalves et al, 1998). Like with synaptosomes, we tried to use A.O. with synaptic vesicles 

isolated from Torpedo electric organ (figure 12 A) without any success (despite innumerous 

attempts). We moved for the isolation of synaptic vesicles from rat brain by the method 

described by Hell et al. (1988). Likewise to results obtained with synaptosomes, we were able 

to elicit dissipation of the vesicular proton gradient by addition of 500 μM Ca2+ to the 

vesicular suspension (figure 13). 
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Figure 13. Following proton gradient formation and dissipation with the acridine orange 
(A.O.) dye in isolated synaptic vesicles. Panel A: With synaptic vesicles isolated from Torpedo 
(25 µl) in 200 mM KCl, 2 mM MgCl2, 400 mM sucrose, 10 mM Tris-HCl, pH 8.5 and 50 μM 
EGTA. No fluorescence change could be detected using acridine orange dye (3 µM) after 
addition of 0.5 mM ATP or 10 µM CCCP. Representative A.O. trace (n= 10).  Panel B: 
Representative A.O. fluorescence trace (n= 3) with synaptic vesicles isolated from rat brain 
(600 µg/ml) added to medium containing 60 mM sucrose, 2 mM MgCl2 , 150 mM KCl, 50 µM 
EGTA, 10 mM Tris–HCl, pH 8.5 and 3 µM A.O.. After a period of stabilization, 0.5 mM ATP 
was added to allow the formation of H+ gradient. Quenching of the probe's fluorescence 
occurs when the dye is exposed to acidic medium within vesicles, where it dimerises and 
accumulates. After complete gradient formation H+ gradient dissipation was assayed in the 
absence (black trace) or presence of 500 µM free [Ca2+] (grey trace). Full dissipation of the 
proton gradient was eventually induced by addition of the protonophore CCCP (10 µM).  
 

3.1.4. Genetically modified proteins to study vesicular Ca2+ transport in cultured 
cell clones 
 

When we proposed ourselves to seek for the protein encoding the vesicular Ca2+/H+-

antiport we did so by hypothesizing that synaptotagmin I was the most probable candidate 

for such activity (see also introduction).  
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Therefore we looked for a model where we could compare between synaptotagmin I 

expressing (+/+) versus non-expressing (-/-) cells. The model also had to be rich in synaptic 

vesicles so that we could clearly determine under similar conditions: 1) Ca2+/H+ antiport-

dependent vesicular 45Ca2+ transport and 2) dissipation of the vesicular proton gradient 

induced by this vesicular Ca2+ transport. 

The choice was for the use of PC-12 cells. These are originated from a rat benign 

tumour (pheochromocytoma) derived from chromaffin cells in the medulla of the adrenal 

glands. PC-12 cells can suffer spontaneous mutations with increasing number of passages. 

Shoji-Kasai et al. (1992) took advantage of this to selectively target synaptotagmin I 

expressing cells using specific antibodies and adding complement to kill them by cytolysis. 

This allowed for the selection of cell clones containing neither synaptotagmin I protein nor 

the corresponding mRNA. PC-12 cells are naturally devoid of synaptotagmin II, so we found 

ourselves on the one hand with a model without synaptotagmin I or II, called F7, and on the 

other hand, with a cell clone positively labelled for synaptotagmin I protein and mRNA named 

G11. Both of them were nevertheless capable of releasing dopamine and ATP upon stimulation 

(Shoji-Kasai et al., 1992). PC-12 cells are also cells endowed with a particularly large 

population of both large dense core granules as well as electronlucent synaptic-like vesicles. 

Post-nuclear fractions of PC12 cells are capable of generating particularly robust 

transvesicular membrane H+ gradients, as measured by acridine orange (Bloc et al., 1999). 

Furthermore, the post-nuclear suspensions (PNS) provide for an A.O. signal that is mostly due 

to bafilomycin-sensitive acidic organelles that are less H+-leaky than synaptic vesicles 

isolated from sheep brain cortex (figure 14).  

We cultured F7 and G11 clones of PC-12 cells (kindly provided by Dr. Shoji-Kasai) 

(figure 15) and prepared post nuclear supernatants that contained the acidic organelles where 

we tested for Ca2+/H+-antiport activity (figures 51-57). Similar results were obtained with 

these cells differentiated with nerve growth factor (figure 15 B) to induce differentiation 

into neurons (data not shown).  
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Figure 14. Slow proton gradient dissipation from PNS suspensions of PC12 cells. Traces 
illustrate proton gradient dissipation induced by 0.6 µM bafilomycin A1 in PNS suspension (0.3 
mg protein/ml; black trace) or synaptic vesicles isolated from sheep brain cortex (0.6 mg 
protein/ml; blue trace). Proton gradient was monitored using A.O. fluorescence and 
bafilomycin A1 was added after complete H+ gradient formation (red arrow). CCCP (10μM) was 
added in the end of assays to check for complete H+-gradient dissipation. Fluorescence 
traces were scaled to their full dissipation for comparison.  

 
 

 

 

 

 

 

Figure 15. PC12 F7 cell culture. Panel A: undifferentiated cells observed by phase contrast 
microscopy. Panel B: Cells differentiated with mNGF 7S for 4 days by phase contrast 
microscopy. Panel C: Cells transfected with the gfp gene and differentiated with mNGF 7S 
for 4 days, observed in fluorescence microscopy (excitation at 488 nm and emission at 528 
nm). 

 

It was also possible to transfect these cells with a gene of interest i.e., egfp gene 

transfection in figure 15 C or Syt_tagg labelled with FlAsH (figure 16). However, when one 

uses a model that is genetically impaired, there is always the possibility of having had 

developmental compensation (Madhani and Fink, 1998; Plum et al., 2002) by closely related 

proteins (for example, Syt IX seems to be up-regulated in F7 cells (Fukuda et al., 2002)) that 

could lead to false interpretation of results. To avoid this one could use rather common 

techniques like those interfering with normal RNA processing or the use of the 

pharmacological approach (inhibitors). However, interfering with RNA processing takes 

A CBA CB
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prolonged periods of time (since it relies on the gradual turnover of endogenous RNA) and 

would not prevent rapid compensatory mechanisms. On the other hand we do not know any 

inhibitory substance that is specific for the Ca2+/H+-antiport.  

Therefore we used a recent technique that allows to studying the function of a 

protein in vivo by acutely, non-invasively and specifically inactivate our protein of interest and 

proceed immediately with our assays.  

We transfected a transgene encoding synaptotagmin I fused with a tetracysteine 

sequence (Cys-Cys-Pro-Gli-Cys-Cys) in the resulting fusion protein. This sequence is 

responsible for the recognition of a biarsenical probe, able to fluoresce when bound to the 

fusion protein (notice in figure 16 the punctuate labelling of vesicles) and liable to generate 

highly reactive free radicals (oxygen singlets) when exposed to intense UV light, in a process 

called fluorophore assisted light inactivation (FlAsH-FALI). FlAsH is a fluorescein derivative 

of fluorescein which has been shown to be 50 x more efficient than malachite green or GFP 

for FALI (Surrey et al., 1998). 

 

 
 

 

 

 

 

 

 

 

 

Figure 16. FlAsH punctuate labelling of a tetracysteine motif inserted within synaptotagmin 
I in cell granules of PC12 cells. Top: Schematic view showing the molecular formula of 
fluorescein-based arsenical hairpin binder (FlAsH) dye, before (non fluorescent) and after 
(fluorescent) binding to a tetracysteine motif inserted into the protein of interest. Bottom: 
PC 12 cells were transfected with a construct coding for synaptotagmin I with a 
tetracysteine motif fused to its C-terminal. Cells were labelled with FlAsH-EDT2 and phase 
contrast image (left) or fluorescence image (right) was taken with a FITC (fluorescein: 
excitation at 488 nm and emission at 528 nm) filter. The electron micrograph (center) shows 
a chromaffin cell (from witch PC12 cells derive) vastly populated with vesicles and granules.  
Micrograph by Schmidt et al. (1982).    
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FlAsH binds the tetracysteine motif with a dissociation constant of 10-11 M (Gaietta 

et al., 2002), guaranteeing nearly 100% labelling and very efficient inactivation (Beck et al., 

2002; Marek and Davies, 2002). Furthermore, FALI is very specific because the 

tetracysteine motif is hardly found in endogenous proteins and because the estimated half 

maximal inactivation distance is approximately 30-40 Å (Surrey et al., 1998; Beck et al., 

2002), making it possible that not all functional domains of a protein are accessible to the 

destructive effects of FALI, but certainly enough to destroy the C2B domain of 

synaptotagmin I, that is, a site very close to the C-terminus where the tetracysteine tag was 

fused to (Wang et al., 1996; Marek and Davis, 2002). 
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3.2. Experimental findings 

 
3.2.1. Ca2+/H+ antiport shapes the time-course of fast neurotransmitter release 

3.2.1.1. Bafilomycin shapes secretion timing and interferes with calcium 

clearance in nerve terminals 

 
 We addressed the participation of synaptic vesicle Ca2+ sequestration through a 

Ca2+/H+ antiport in rapid neurotransmission. To achieve the high temporal definition needed to 

follow “real-time” synaptic transmission we registered the electric response of prisms 

excised from Torpedo electric organ (described in section 3.1.1.), and submitted to field 

stimulation (figure 6 and 17). The response of prisms is a compound electroplaque potential 

(EPP) resulting from the summation of an enormous number of quantal EPP generated with an 

astounding synchronization. The compound EPPs display a very similar time course as the 

elementary EPPs, as well as the spontaneous MEPP or even the miniature eletroplaque current 

(MEPC) (Girod et al., 1993) (Table 1).  

We tested for a role of vesicular Ca2+ sequestration in the temporal definition of ACh 

release in Torpedo prisms. To do so, we compromised vesicular Ca2+/H+ antiport activity by 

inhibiting the V-type H+-ATPase (Gonçalves 1999a) with the specific blocker, bafilomycin A1 

(Dröse and Altendorf, 1997). The use of bafilomycin A1 has the advantage of targeting only 

the organelles relying on a proton pump and leaving other organelles like mitochondria intact. 

In this way we were able to restrict our analysis to the effect of collapsing vesicular proton 

gradient on synaptic transmission.  

Bafilomycin significantly affected the evoked electroplaque potential of prisms 

(Figure 17, table 2 and 3). It affected chiefly the time course of secretion, prolonged from 

<3 ms up to 10 ms in some cases, like at the example in figure 17 A. It was fully reversible by 

washing out during one hour (figure 17, B). The prolonging effect resulted from bafilomycin 

incubation, since control prisms (figure 17 C, without bafilomycin) stimulated after 1h or 2h in 

saline medium kept the same time course. It should be noticed that some prisms produce 

small secondary responses to the field stimulation due to re-stimulation of nerve fibres. In 

that case, the enlargement profile of transmission due to bafilomycin resulted in the loss of 

resolution of primary and secondary spikes that merged in a single response with particularly 

long time course as compared with single spike responses. For this reason we 
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Figure 17. Effect of bafilomycin A1 on neurotransmission in the electric organ of Torpedo. 
Representative experiment from n=18. Prisms of electroplaques were excised from the 
electric organ and submitted to paired pulse field stimulation (20 ms interval between 
stimuli). Traces show in succession the stimulation artefact (↓), the synaptic delay, and the 
electrical discharge (postsynaptic potential or electroplaque potential, EPP). The 
elasmobranch saline medium contained 3.4 mM CaCl2, in the absence (control) or presence of 2 
µM bafilomycin A1. Panel A: Control EPP recorded after 1h incubation in elasmobranch saline 
medium (▬▬), and EPP produced by the same prism perfused in presence of bafilomycin A1 
during 1h (▬▬). Panel B: Reversion of bafilomycin A1 effect (▬▬) after washing out during 
1h (▬▬). Panel C: EPP recorded from another prism after 1h (▬▬) and 2h (▬▬) under 
control conditions.  
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measured parameters (described in section 3.1, figure 6) that best describe and separate 

each phase of evoked secretion and analysed the influence of bafilomycin on them (tables 2 

and 3). Table 2 reflects the analysis made on 18 independent experiments where the electric 

response of bafilomycin-incubated prisms was compared to the same prisms prior to drug 

exposure. Bafilomycin exerted a marked effect on the time course of transmission without 

changing significantly its amplitude or onset. This is reflected by ~92% increase in prism EPP 

area, a parameter that integrates the amount of transmitter release over the time course of 

transmission. It is interesting to notice that there was only a slight, non-significant, increase 

in peak amplitude. This probably arose from the fact that even under control conditions the 

maximum rate of transmission is already reached at the peak of the response.  

This is not surprising if we take into consideration that the action of a given release 

site on neighbouring receptor field (~800 nm away) is strongly limited by the activity of 

acetylcholinesterase that degrades ACh very fast (Rosenberry, 1975; Wathey et al., 1979) 

and is capable of limiting the number of ACh molecules capable of activating receptors a few 

hundred nm away (Girod et al., 1993). In Torpedo synapses however, evoked quantal release 

under normal physiological conditions occurs at release sites that are capable of synchronous 

ACh release in a super-additive manner that already uses most of the partial activation of 

neighbouring receptor field’s capacity (Girod et al., 1993). Therefore, the slight bafilomycin-

induced increase in prism amplitude might also be attributed to an increase in the amount of 

ACh being released but whose post-synaptic action on neighbouring receptor fields was 

strongly limited by an abundant (Salpeter et al., 1978) and extremely efficient ACh esterase 

activity (Rosenberry, 1975 and Wathey et al., 1979).  

Since the response of dissected prisms differs slightly from each other, it is useful 

for the sake of comparison to calculate the prism EPP area/peak ratio. Bafilomycin increased 

area/peak ratio by 71% indicating that the main influence is on increasing ACh release 

duration, rather than influencing peak amplitude. 

From the above parameters we learned that bafilomycin can increase prism EPP 

timing, probably by increasing the time course of ACh release. However, they do not tell us if 

those effects are due to an early onset of ACh release or rather a late effect, or even a 

combination of both early and late effects.  

The time a prism EPP takes to reach its maximal value (peak) can give some 

information on the kinetics and wave form of activation of ACh receptors by ACh released.  
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Table 2. Amplitude and time characteristics of bafilomycin A1 effects on 
neurotransmission in Torpedo electric organ  
 

 

 

 

 

 

 

 

 

 

 

 

 
Prisms were submitted to field stimulation in elasmobranch saline medium containing 3.4 mM 
CaCl2 in the absence (control) or presence of 2 µM bafilomycin A1. Values are mean ± SEM of 
18 experiments. Values between parenthesis show bafilomycin data expressed in percentage 
of control. Statistical significance was computed for bafilomycin data with respect to control 
values using Student unpaired T-test (*p<0.05; **p< 0.01; ***p<0.001). 
 

The parameter used to measure such kinetics is called rise time and measures the time 

between 10% and 90% of peak response to avoid ill defined onset points and the somewhat 

rounded shape of EPPs. It is interesting to recall that prism EPPs are the summation of 

unitary EPPs (MEPPs) released with such a synchrony that makes it possible that prim rise 

time is only twice that of MEPPs or MEPC (see table 1). 

Bafilomycin-incubated prisms showed 28% increase in time to peak as compared to 

control prisms (table 2). The effect was fairly visible during the experiments with the upper 

portion of the EPPs accentuating the round form. The idea that the bafilomycin effect 

happens with more extent in the upper portion of the rising EPP is corroborated by the fact 

that the rate of rise was unchanged by bafilomycin.  

The 28% effect on rise time might indicate a slight de-synchronizing effect (with 

some release sites being activated slightly later in presence of bafilomycin) or alternatively, 

the possibility that the increased number of ACh molecules shifts the peak response to the 

right as a result of delayed activation of receptors due to some super-additive activation of 

1.25 ± 0.20 ** (205 ± 37 **)0.64 ± 0.03Decay tau (ms)

3.37 ± 0.50 **  (206 ± 35 **)1.70 ± 0.09T.90% (ms) 

1.56 ± 0.23 **  (178 ± 29 **)0.90 ± 0.03T.50% (ms) 

2.94 ± 0.39       (102.6 ± 3)2.23 ± 0.06Latency (ms) 

3.32 ± 0.37       (99 ± 7)3.37 ± 0.48Rate of Rise (V/ms) 

1.26 ± 0.06 *   (128 ± 9 *)1.01 ± 0.08Rise Time (ms) 

2.79 ± 0.24 *** (171 ± 21 ***)1.70 ± 0.09Area/peak (ms)

3.11 ± 0.50       (108 ± 8) 2.99 ± 0.47Peak (V) 

9.08 ± 1.28 * (192 ± 21 *)4.99 ± 0.85Area (V.ms) 
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neighbouring receptor fields coming to action slightly later (they would be at few hundred nm 

away and activated by the few ACh molecules having escaped AChE hydrolysis) but just in 

time to contribute to the peak response occurring slightly later.  

 This rather late effect of bafilomycin is in line with minor, non-significant, change in 

the latency between the stimulus and the beginning of prism EPP wave response. It also 

implies that bafilomycin has (as expected) minor or no effect on the generation or conduction 

of action potentials, on calcium entry into the terminal, or on the kinetics of activation of the 

calcium sensor that is responsible for ACh secretion and has no effect on the activation of 

post-synaptic nicotinic ACh receptors, either. Ruling out these participants accentuates the 

idea that bafilomycin acts at a stage downstream of secretion activation and puts the tonic in 

the possible modulators of secretion time-course, like calcium transient timing and intensity 

(but we’ll come back on this afterwards).  

  In spite of affecting rise time already by 28%, bafilomycin exercises its full power 

over the later phase of transmission. This can be appreciated by looking at the parameters 

measuring the rapid decay of prism EPP, that normally correlate closely with the mean open 

time of Torpedo nicotinic ACh receptors (0.6 ms; Sakmann et al., 1985). In fact bafilomycin 

increased the time required to decrease EPP to ½ of its amplitude (or T50) by almost 80% and 

more than doubled the time required to decrease EPP by 90% (or T90). Both of these 

parameters are fairly sensitive to the “rounded” profile of the EPP wave form (possibly 

affected by the interference of, out of phase, secondary stimulation of prisms superposed to 

the later part of enlarged EPP waves). Yet, the decay phase mean time constant (or decay 

tau), that in normal circumstances, reflects the kinetics of channel closure also suffered a 

markedly increase, more than doubling in presence of bafilomycin. This “prolonging” effect 

could be either related to some post-synaptic action, like increasing the mean time opening of 

nicotinic receptors or interfering with acetylcholinesterase activity. We found evidence, 

however, that the effect arose from a prolongation of ACh release.  

The fact that we used an antibiotic that is specific for the V-type-H+ ATPase leads to 

ruling out a post-synaptic effect and to follow the lead that ACh release is augmented by 

bafilomycin (see below). Additionally, the fact that the decay tau more than doubled its value 

argues for a prolonged time-course of ACh secretion instead of just increased amount of ACh 

being released over the usual time and what is more, it sets a minimum time limit to surplus 

ACh secretion in ~0.61 ms (1.25-0.64) that relate only to the decaying phase of the EPP and 
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to which should be added some time (probably less) related to the 28% effect on rise time ( 

some 0.25 ms). In all, ACh release endures at least 860 µs over normal release time. That 

should be below the calculated rise time (ca. 1 ms). If we take into consideration that rise 

time of normal excised prisms only doubles (up to 2.5 x the rise time of sub-MEPPs) that of 

quantal and sub-quantal events and that those events (minis) are believed to result from 

synchronous release of ACh from a given active zone (<200-300 nm wide) in less than ~150 µs 

(Girod et al., 1993) we can assume that ACh released by the billions of active zones in a single 

prism release their cargo in <400 µs and come to the conclusion that roughly, bafilomycin-

treated prisms extend the ACh release period at least to 1260 µs  (“normal” 400 µs + “extra” 

860 µs) and the resulting EPP over three ms. 

 The fact that bafilomycin appears to induce a protracted time course of ACh 

secretion from excised prisms seems to bear out the original hypothesis proposed in the 

introductory chapter of this thesis that Ca2+ sequestration by a vesicular Ca2+/H+ antiport 

might be involved in restricting the microdomain of high [Ca2+] both in time (to a few 

microseconds) and in space (to a few nanometres away from the calcium sources that 

coordinates ACh release).  

  (Katz and Miledi, 1968; Miledi and Thies, 1971; Rahamimoff, 1968; Rahamimoff and 

Yaari, 1973; Zucker and Lara-Estrella, 1983; Van Der Kloot and Molgó, 1993; Kamiya and 

Zucker, 1994; Xu-Friedman and Regehr, 2000).  Paired pulse facilitation (PPF) is a form of 

synaptic plasticity in which a pre-synaptic terminal stimulated twice in a short interval (Ca. 20 

ms interval, as in figures 6 and 17) yields an increase in the second response (EPSP) with a 

time course that is similar to the time course of delayed release (Zucker and Lara-Estrella, 

1983; Van Der Kloot and Molgó, 1993; Xu-friedman and Regehr, 2000).  

The calcium theory for transmitter release (first section of introduction) 

contemplated the formulation of the residual calcium hypothesis for facilitation. Katz and 

Miledi (Katz and Miledi, 1968; Miledi and Thies, 1971) proposed that facilitation is the natural 

consequence of nonlinear calcium dependency of transmitter release, with a power 

dependency of 3-5 (Dodge and Rahamimoff, 1967; Hubbard et al, 1968; Katz and Miledi 1970; 

Dunant et al., 1980a; Yazejian et al., 2000) and that after an action potential, some 

subthreshold residual calcium persists in transmitter release sites (Miledi and Parker 1981; 

Charlton et al., 1982; Xu-friedman and Regehr, 2000). 
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It is interesting to notice that facilitation depends on the initial (first EPP) 

probability of transmitter release. Low release probability of release (i.e., in low Calcium) 

enhances paired pulse facilitation (Rahamimoff, 1968; Creager et al., 1980; McNaughton, 

1982; Dobrunz and Stevens, 1997; Xu-friedman and Regehr, 2000; but see figure 27). Yet, 

calcium entry during the first spike causes facilitation whether or not transmitter is released 

by the first spike –i.e., release failure, or the “release of zero quanta”- as reported by Del 

Castillo & Katz (1954) and Dudel & Kuffler (1961). Low release probabilities are achieved in 

low calcium, where the percentual increase of the second EPP is much greater than in high 

calcium (figure 27). This is in line with the prediction that facilitation resulted from the 

building-up of a second Ca2+ microdomain “on top” of the Ca2+ mould resultant from the 

remaining ions after the collapse of the previous microdomain enabling to reach the necessary 

[Ca2+] needed for Ca2+ binding up to saturation of a greater number of calcium sensors. When 

all sensors in release sites are fully activated no facilitation of peak amplitude can occur 

simply because it is already at its maximum (figure 27).  

We considered the possibility that residual calcium responsible for paired pulse 

facilitation should be sensitive to the action of a vesicular Ca2+ transport system capable of 

restricting calcium microdomain that seems to be capable of preventing lingering ACh 

secretion.  

 Excised prisms were submitted to 20 ms interval paired pulse stimulation in 

elasmobranch saline medium containing 3.4 mM CaCl2 (control) or after supplementation with 

2 µM bafilomycin A1 during 2h before stimulating. Paired pulse facilitation was compared for 

the two groups (with or without bafilomycin) and the second EPP was expressed as a 

percentage relatively to the first EPP (table 3). The experiments were done with 3.4 mM 

CaCl2 in the extracellular medium, a concentration that yields only mild facilitation 

presumably because synapses are close to maximal activation, already during the first 

impulse. 

Nevertheless, it is interesting to notice that facilitation of the second peak in normal 

calcium saline medium (control in table 3 but see also above mentioned references) is marked 

by an increase of the peak response when compared to the first stimulus. 

The increase in EPP area is the result of increased peak response yet, it declines as 

fast as the first EPP, which is reflected in unaltered area/peak ratio. The rise time was  
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Table 3. Effect of bafilomycin A1 on the facilitation obtained with paired-pulse stimulation  
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Prisms were submitted to paired-pulse field stimulation (20 ms interval between stimuli) in 
the absence (control) or presence of 2 µM bafilomycin A1. Parameters of the second EPP are 
expressed in percentage of those measured in the first EPP. Values are mean ± SEM of 11 
experiments. 
 

increased and was accompanied by small decrease in EPP rate of rise, which could be 

motivated by small desynchronization of ACh release in the second EPP. The parameters 

sensitive to the decay phase (T50; T90; tau) were unaltered if not decreased; corroborating 

the idea that facilitation affects mainly the amount of transmitter being released but not its 

time course. However, it should be noticed that the latency between the stimulus and the 

onset of prism EPP was decreased. 

 Most of the latency measured here is due to the generation and conduction of action 

potentials (Llinás et al., 1981b; Dunant and Muller, 1986) whereas the time needed to activate 

the release machinery after calcium entry is less than 300 µs (Dunant and Muller, 1986) or 

even somewhere around 150 and 300 µs if we take into account the time for ACh release per 

release site (Girod et al., 1993). Shortening the latency of the second EPP seems to be also 

calcium independent (figure 26). Therefore, it seems likely that the >15% reduction in latency 

is perhaps due to a facilitation effect of the previous action potential on the generation 

and/or conduction of a second action potential rather than related to the activation of the 

Bafilomycin A1 Control Parameter

(2nd response in  % of 1st response)
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101 ± 2

82 ± 5 
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131 ± 15

104 ± 2

110 ± 5

115 ± 6

Facilitation

102 ± 8Decay tau (ms) 

105 ± 5T.50% (ms) 

83 ± 4Latency (ms) 

99 ± 6Rate of Rise (V/ms) 

112 ± 5Rise Time (ms) 

103 ± 2Area/peak (ms)

102 ± 2Peak (V) 

105 ± 3Area (V.ms) 

Bafilomycin A1 Control Parameter

(2nd response in  % of 1st response)

100 ± 496 ± 3T.90% (ms) 

103 ± 5

101 ± 2

82 ± 5 

95 ± 4

131 ± 15

104 ± 2

110 ± 5

115 ± 6

Facilitation

102 ± 8Decay tau (ms) 

105 ± 5T.50% (ms) 

83 ± 4Latency (ms) 

99 ± 6Rate of Rise (V/ms) 

112 ± 5Rise Time (ms) 

103 ± 2Area/peak (ms)

102 ± 2Peak (V) 

105 ± 3Area (V.ms) 



Results and discussion - experimental findings 

 76

release machinery. 

 The EPPs of bafilomycin-incubated prism showed virtually no facilitatory effects 

(table 3). The second EPP was very similar to the first one. The only parameter affected was 

a decrease in the latency. As discussed above, this is more likely to be related with action 

potential generation and conduction. There was also no statistical distinction between 

facilitation with bafilomycin and facilitation without bafilomycin (control). Yet, bafilomycin 

incubated prisms had a minor increase in EPP area and virtually no increase in peak amplitude, 

possibly because amplitude in the first peak was already slightly larger than in the absence of 

the drug (table 2). More importantly, the temporal profile reflecting protracted ACh 

secretion was kept or only slightly increased as reflected by T90, T50 and decay tau. 

Paired pulse facilitation and delayed release are distinct Ca2+-dependent processes. 

While the amplitude increase obtained with PPF is mainly due to increased peak calcium whose 

time course within the terminal continues to be strongly restricted by rapid and slow 

extrusion mechanisms the enhancement in ACh secretion due to Ca2+/H+ antiport inhibition 

should result from compromising the early phase of calcium extrusion leading to a calcium 

transient that endures.  

Even if the above assumptions -i.e., that the described effects arose from changes in 

the amount and time course of ACh release- seem logic, they should be confirmed by 

biochemical methods which provide more direct assessment of the amount of ACh release 

under these conditions.  

We incubated excised prisms overnight with [14C]-acetate to allow the synthesis of 

radiolabelled [14C]-ACh within prism nerve terminals. The labelled precursor was then washed 

so that [14C]-ACh could be measured both at rest and upon stimulation (figure 18, see also 

figures 6 and 7). The rate of basal ACh release from Torpedo terminals is low enough to 

provide a signal to noise ratio that allows to register ACh release elicited by a single or a few 

stimuli (Dunant et al., 1980a).  

Figure 18 shows the amount of [14C]-ACh being released from prisms perfused with 

normal elasmobranch saline medium (control prisms) or supplemented with 2 µM bafilomycin. 

The tissue was kept under continuous perfusion for 1h prior to stimulation to allow for drug 

incubation and washout of any [14C]-ACh leaking from the tissue. Two samples of the 

perfusate were collected in 1 min aliquots just before application of a paired-pulse stimulus  
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Figure 18. Bafilomycin A1 increases ACh release evoked by pair-pulse stimulation (P.P.S. 20 
ms interval between stimuli). Prisms from Torpedo electric organ were labelled with [14C]-
acetate. Radioactivity was then washed out overnight, and the prisms perfused with 
elasmobranch saline medium containing 2 µM bafilomycin A1 (black bars) or without drug 
(control in grey), for 1h prior to stimulation. Panel A: The amount of [14C]-ACh diffusing in the 
fluid was measured in fractions lasting 1 minute each, before and after P.P.S. stimulation (↓). 
Panel B: The same protocol was applied to the same prisms after 1h of drug washout (Values 
are mean ± SEM; n=8). The average value of ACh released in the last 3 fractions under 
control conditions is shown as reference (─ ─). The amount of [14C]-ACh released after 
stimulus (fractions 3 to 6) was significantly higher in the presence of bafilomycin A1 than in 
control (Two-way ANOVA:  p<0.01). 

 

(equivalent to the one applied in figures 6, 17 and tables 2 and 3); four additional 1 min 

aliquots were taken right after the stimulus and during the consecutive four minutes. The 

amount of [14C]-ACh measured in the fluid increased right after the stimulus (demonstrating 

that the method is sensitive to the stimulation and recollection protocol) and was kept high 

for a few minutes (presumably the time for [14C]-ACh release from deep tissue synapses to 

diffuse out into the perfusate). Bafilomycin-incubated prisms had a similar [14C]-ACh amount 

leaking out of unstimulated prisms, but showed a significant (~70%) increase in [14C]-ACh 

release following paired-pulse stimulation as compared to control prisms (figure 18 A). The 

effect was fully reversible after 1h washout (figure 18 B) with the amounts of [14C]-ACh 

collected in perfusates of control and bafilomycin-incubated prisms being virtually the same.   

These experiments were undertaken in parallel with electric recording of prisms used 

in figure 17 and tables 2 and 3, demonstrating by another way that the protruded 

transmission we registered electrophysiologically was most likely the result of an increase in 

the amount of ACh release.     

 Considering that we are at hands with an effect that nearly doubles ACh secretion 

per pulse in response to compromised Ca2+ sequestration into synaptic vesicles within nerve  
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Figure 19. Bafilomycin A1 effect on the accumulation and extrusion of calcium in prisms 
submitted to a 12 second tetanus at 100 Hz. Prisms were incubated with 45Calcium containing 
elasmobranch saline medium with 2 µM bafilomycin A1 or without the drug (control). Then the 
prisms were washed in the standard medium without 45Calcium but still in the presence of the 
drug if any. Prisms were processed for quantification of cellular 45Calcium at 0, 5, 15 and 30 
min after the tetanus. In inset, closed circles show the amount of tissue 45Calcium found in 
stimulated prisms, and open circles the amount found in non-stimulated prisms. Triangles in 
the main graph show difference between stimulated and non-stimulated prisms for 
bafilomycin-treated prisms (grey) and controls (black) calculated from the data shown in 
insets (mean ± SEM of 4 to 8 experiments). Bafilomycin A1 significantly increases 45calcium 
accumulation in – and slows down 45calcium extrusion from - stimulated prisms (Two-way 
ANOVA: p<0.05). 
 

terminals, it is perhaps pertinent to ask: What happens to calcium accumulation and extrusion 

from Torpedo prisms when they are stimulated after being incubated with bafilomycin? 

The accumulation of 45calcium within excised prisms was shown to be stimulus-

dependent and maximal with a 12 s tetanus at 100 Hz;  and to decrease over time (less than 
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1h) back to unstimulated levels (Babel-Guérin, 1974; Dunant et al., 1980b; Párducz and 

Dunant., 1993; Párducz et al., 1994). 

Figure 19 shows stimulus-dependent 45Ca2+ accumulation within small (70-150 mg) 

excised prisms incubated in the absence (control) or in the presence of 2 µM bafilomycin. 
45Calcium retained within the tissue is obtained from the subtraction of 45Calcium found 

within stimulated prisms versus unstimulated ones (Figures inserted in figure 19). 45calcium 

accumulation after a 12 s tetanus at 100 Hz was significantly larger in bafilomycin-incubated 

prisms that in controls.  

We could also follow 45calcium extrusion rates from prisms by washing them out with 

standard elasmobranch medium (+/- Bafilomycin), without 45calcium, during 5, 10, 15 or 30 

minutes before placing the tissue in ice-cold medium and proceed with radioassay counting. 

It is interesting to notice that most of the bafilomycin effect appears soon after the 

stimulus (time 0) and to much lower extent after 5 min of extrusion of calcium after the 

stimulus by comparing the slopes of control prisms (inset to the left in figure 19) and 

bafilomycin incubated prisms (inset to the right in figure 19). However, there seems to be no 

later effect of bafilomycin in calcium extrusion from prisms. This seems to indicate that, 

normally, the vesicular Ca2+/H+-antiport is capable of decreasing calcium accumulation into the 

prisms by accumulating them into nearby vesicles and most probably by further rapid 

extrusion early after the stimulus.  

The results seem to implicate synaptic vesicles in calcium retention or extrusion 

capacity in tissue. They also point-out to the very rapid (a few seconds) nature of 

bafilomycin-sensitive calcium accumulation within the prisms, since the protocol relies in 

placing the tissue immediately after the stimulus in ice cold medium that stops any further 

calcium exchange with the extracellular medium. These assumptions are borne out by previous 

experiments reporting that the 45Ca2+ accumulated in the tissue was proposed to be 

preferentially accumulated in synaptic vesicles (and under such strong stimulus also in the few 

mitochondria that exist in Torpedo terminals) where calcium precipitates into electron-dense 

granules with oxalate-pyroantimonate fixation viewed in electron microscopy. (Dunant et al., 

1980b; Párducz and Dunant., 1993; Párducz et al., 1994). Furthermore, the tissue was 

submitted to rapid freezing (ms resolution) and cryofractured for analysis of the number of 

membrane depressions or pits (~20-40 nm wide) that are thought to result from vesicular 

openings (Párducz et al., 1994).  Exocytotic pits were counted using freeze-fracture replicas 
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of the P-face of the pre-synaptic membrane. There was no increase in the number of pits 

during the 12 s stimulus (~20/100 µm2). Conversely, there was an increase in the number of 

pits right after the end of the stimulus (~27/100 µm2) that reached its maximal value one 

minute after the stimulus (~33/100 µm2) and fell back to control density (~21/100 µm2) after 

5 minutes. Maximal occurrence of pits correlated also with a decrease in the number of 

vesicles with a calcium spot seen by electron microscopy. However there were still a 

significantly high number of vesicles containing a calcium dense spot after 10 minutes, 

indicating that not all Ca2+-containing vesicles fuse with the membrane in the exocytotic burst 

right after the end of the stimulus (one minute after), but will decrease over one hour 

presumably by the basal fusion rate reflected by the number of pits (~21/100 µm2) that is 

not much lower than maximum number of pits registered.  

If we bear in mind that torpedo synapses rely on a calcium-activated ACh channel in 

the plasma membrane (mediatophores) instead of vesicular fusion (Reviewed in Dunant and 

Israël, 2000 and Dunant and Bloc, 2003), it is perhaps easier to consider that vesicles within 

Torpedo cholinergic terminals specialized into doing somewhat different tasks, like 

accumulation and extrusion of calcium ions entering in nearby active zones. However, the fact 

that there is also considerable Ca2+ accumulation in synaptic vesicles in other systems like the 

neuro-muscular junction, brain synapses, or chromaffin granules upon stimulation (Von 

Grafenstein and Powis, 1989; Buchs and Muller 1996; Mizuhira and Hasegawa, 1997; Pezzati 

and Grohovaz, 1999; Mahapatra et al., 2004), indicates that the task could be far more 

common -perhaps ubiquitous- after all. 

Torpedo vesicles are themselves almost twice as big as light dense-core synaptic 

vesicles found in mammals (and in Torpedo brain and NMJ as well) (see Girod et al., 1993 and 

Takamori, 2006). A two-fold increase in SV diameter implies an 8-fold increase in SV volume 

that is capable of accommodating an impressive number (100,000-200,000) of ACh molecules 

per SV (a quantity that would be enough to generate 10-20 quanta) and a presumably greater 

number of calcium ions as well (Girod et al., 1993; Párducz et al., 1994). The increase in SV 

volume per active zone can however be somewhat mitigated (only 2x increase in volume) by 

the fact that a greater number of smaller vesicles is capable of occupying the planar area 

directly above the active zones where calcium channels and mediatophores presumably cluster 

(Girod et al., 1993). If an active zone occupies a 240 nm/240 nm (in accordance with Girod et 

al., 1993) there will be maximumly 9 Torpedo SVs covering each release site and a maximum 
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of 82 vesicles between active zones distant on average 800 nm (Girod et al., 1993). 

When the terminal is invaded by a stimulus, there is a considerable calcium entry 

close to release sites. Ca2+ ions reach high concentrations near mediatophores but also near 

the Ca2+/H+ antiport in SVs directly above the active zone. Both have particularly low affinity 

for calcium (Israël et al., 1987; Gonçalves et al., 1998, 2000a; Dunant and Bloc, 2003 Dunant, 

2006) and should be operative for the short period of time required for phasic ACh release. 

The antiport should be able to restrict both in time and in space the [Ca2+]int within 

the terminal as a backup system that decreases Ca2+ concentrations very fast, within a 

particular cluster limiting an active zone, dealing with short-term Ca2+ homeodynamics. 

Right after, there seems to be a need to rapidly extrude the accumulated calcium ions 

out of nerve terminals and back into the synaptic cleft. The results in figure 19 point-out for 

a role of vesicular Ca2+/H+ antiport in keeping Ca2+ homeostasis by limiting the calcium load 

within the terminal. Notice that late decrease in 45Calcium retained within tissue exposed to 

bafilomycin seems to follow similar kinetics of release as control prisms arguing in favour of a 

prevention of excessive calcium load in the terminal by the antiport (see section 3.2.2. below). 

That later calcium extrusion should depend on plasma membrane transporters like 

Na+/Ca2+ exchangers (minorly expressed in Torpedo) and Ca2+-ATPases both in plasma 

membrane, but also in the remaining synaptic vesicles within the terminal and apparently 

fusing after the initial exocytotic burst (Párducz et al., 1994). 

There is another reason for rapid Ca2+ exocytosis by nerve terminals. The space 

occupied by the synaptic cleft is rather small. The height (ca. 50 nm in NMJ and central 

synapses; ca. 75 nm in Torpedo) is similar to the diameter of synaptic vesicles, such a tiny 

space that diffusion of a given molecule (i.e., of ACh) takes no more than a few microseconds 

(Bartol et al., 1991). On the contrary, active zone surface in Torpedo and at NMJ synapses 

are larger (ca. 1 µm2). Girod et al. (1993) considered a 750 nm radius disk in their model of an 

active zone, rather than an infinite space, where the time needed for the diffusion of a given 

molecule at the edge of the synapse needs to be taken into consideration (Egelman and 

Montague, 1999). 

The active zone volume is also very small (1 µm2 x 0.075 µm = 0.075 µm3) even when we 

consider the reserve of volume that has been developed at Torpedo and NMJ in the form of 

arcs (2 per active zone) in Torpedo and folds in the NMJ that increase the total volume per 

active zone to 0.467 µm3, that creates additional reserve space for ions, choline, acetate and 
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pH buffering in synapses capable of rapid repetitive firing (Girod et al., 1993).  

As a consequence of space limitations, calcium concentration in the synaptic cleft may 

decrease sharply, dependent on the size of consumption zone, local diffusion of calcium and 

the geometrical arrangement of the synapse (Egelman and Montague, 1999). Calcium depletion 

in the synaptic cleft has been reported in: (1) heavily stimulated synapses of cat cerebellum 

showing up to 20-90% [Ca2+]ext decrease (Heinemann et al 1977), (2) in Aplysia ganglion 

showing a decrease of up to ~1 mM [Ca2+]ext (Keicher et al., 1990), (3) in calyx of Held 

implicating 35% reduction of EPSC amplitude (Borst and Sakmann, 1999; Stanley, 2000), (4) in 

cortical neurons where [Ca2+]ext depletion serves to regulate “silent” periods of activity during 

sleep (Massimin and Amzica, 2001), (5) in rod photoreceptors (Rabi and Thoreson, 2002) and 

(6) in hippocampus CA1 area where the [Ca2+]ext depletion measured with a calcium probe was 

also extensive (Rusakov and Fine, 2003). 

 What is more, there is an >28-fold discrepancy between the amount of Ca2+ ion 

charge accomodable in the calyx synapse (7 pC) and the charge measured in a 100 ms stimulus 

(200 pC) that reflects the existence of fast Ca2+ replenishment system (Borst and Sakmann, 

1999). There is a slow component of replenishment attributable to diffusion from extra-

synaptic spaces and replenishment from Ca2+ pumping out of the terminal seems to be far 

slower than the observed time-course of replenishment and even more delayed when 

submitted to larger Ca2+ loads (Borst and Sakmann, 1999). Those authors proposed that there 

could be a third line of synaptic Ca2+ replenishment due to synaptic vesicle exocytosis, 

whereby a single 50 nm synaptic vesicle filled with close to 100 mM calcium (Grohovaz et al., 

1996) would be able to resupply the synaptic cleft with ~1/3 of the calcium that had entered 

the terminal. The additional observation that the Ca2+-depletion effects were somewhat 

larger with Ba2+ as the charge carrier than with Ca2+ argue in favour of the participation of 

rapid vesicular Ca2+ transport through a Ca2+/H+ antiport capable of filling-up nearby SV 

before exocytosis since Ba2+ is unable to dissipate the vesicular proton gradient nor interfere 

with Ca2+ transport through the vesicular antiport (Gonçalves et al., 1999a).  

In summary, annihilation of the proton gradient of synaptic vesicles by bafilomycin in 

acute experiments does not impair rapid neurotransmission, but on the contrary enhances 

transmission by prolonging the duration of phasic transmitter release. This effect most 

probably arises from inactivation of the vesicular Ca2+/H+ exchange, as will be demonstrated 

below.  
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3.2.1.2. Strontium mimics bafilomycin effect on cholinergic secretion   

 

Strontium cation (Sr2+) is unable to induce measurable H+ displacement from sheep 

brain cortex synaptic vesicles while being capable of preventing Ca2+ accumulation into 

isolated SVs via the antiport (Gonçalves et al., 1999a). It is also known since the days of 

Locke (1894) that Sr2+ ions can substitute Ca2+ to activate transmission. Dodge et al. (1969) 

demonstrated that strontium elicited quantal transmitter release in frog NMJ but far less 

effectively than Ca2+ does at equimolar concentrations and if the concentration of strontium 

used surpassed 10 mM there was a blockade of transmission presumably resulting from 

failure in the propagation of nerve impulses. The lower potency of Sr2+ than Ca2+ to support 

transmitter release was confirmed in other synapses and related with a lower affinity of 

strontium for the calcium sensor (Mellow et al., 1982; Bain And Quastel, 1992; Goda and 

Stevens, 1994; Abdul-Ghani et al., 1996; Xu-friedman and Regehr, 2000; Kishimoto et al., 

2001). Some of those reports also suggested that strontium induces an increase in 

asynchronous and late transmitter quanta (Mellow et al., 1982; Goda and Stevens, 1994; 

Abdul-Ghani et al., 1996 Xu-friedman and Regehr, 2000; Kishimoto et al., 2001), due to 

persistence of the ion within the terminal (Xu-friedman and Regehr, 2000). 

Substitution of strontium with calcium as the trigger for evoked transmitter release 

seemed perfect to confirm the assumptions made with bafilomycin. In this way we could 

confront the results obtained with an inhibitor of the V-type H+-ATPase (that blocks the 

driving force of the Ca2+/H+ antiport-mediated transport) with the activation of transmission 

by Sr2+ that is not submitted to removal into SVs by the Ca2+/H+ antiport, but does not 

tamper with the vesicular proton gradient. 

Figure 20 shows the response of excised prisms where all CaCl2 in the elasmobranch 

medium was substituted with increasing SrCl2 concentrations. EPPs generated by excised 

prisms bathed in control (+ 3.4 mM CaCl2) elasmobranch medium are shown for comparison. It 

is clear that Sr2+ has very limited capacity to evoke a response from prisms at concentrations 

that would generate near maximal response with calcium. However, as the concentration of 

Sr2+ rose in the perfusion medium there was a progressive increase in the EPP size until a 

response equivalent to –or even larger than- the control was obtained for 34 mM Sr2+ and 

kept at that level for 50 mM Sr2+.  

 It is noteworthy that as long as the EPP amplitude was kept low (low [Sr2+]), the time 
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course of transmission followed closely that of control, However, when SrCl2 was such that 

ACh released produced an EPP of similar amplitude as control there was a significant 

enlargement of the post-synaptic response that was very similar or even greater than with 

bafilomycin.  

 The evoked response followed a steep dependency on extracellular strontium 

concentration, but the apparent affinity for the sensor of ACh release was ~10 fold lower 

than that of Ca2+, a value that is in accordance with the apparent affinity determined 

intracellularly  by rapid Sr2+ uncaging (Kishimoto et al., 2001). 

 It is worth mentioning that we were probably rather lucky in being able to reach such 

high SrCl2 concentrations to elicit similar responses to control since, as stated above, it had 

been reported that 10 mM SrCl2 was enough to “silence” frog NMJ synapses (Dodge et al. 

(1969).  This was probably achieved because intact prisms maintain the rather idle nature of 

Torpedo discharge pattern until evoked responses develop synchronously in a typically phasic 

way without the interference of asynchronous release events reported to occur with 

strontium (Mellow et al., 1982; Goda and Stevens, 1994; Abdul-Ghani et al., 1996 Xu-friedman 

and Regehr, 2000; Kishimoto et al., 2001). Also, the elasmobranch medium used in these 

experiments has a very high ionic strength, equivalent to that of sea-water, and addition of 

35 or 50 mM SrCl2 could be applied since they do not cause serious osmotic or other changes. 

Figure 20 also evidences the facilitation observed under all SrCl2 concentrations 

tested. Both facilitation and EPP enlargement can be explained by the persistence of Sr2+ 

within the terminal after the action potential, due to deficient Sr2+ extrusion. On one hand 

the Sr2+ ions, entering the terminal in the first pulse, are not enough to activate maximal ACh 

secretion but remain in the terminal where they are summed-up to Sr2+ ions entering the 

second pulse. Facilitation of EPP amplitude is the result of higher [Sr2+] attained under those 

conditions that prolongs time-course of Sr2+ transient (Xu-Friedman and Regehr, 2000) and 

consequently the time of ACh secretion also.  

We assessed the [SrCl2]-dependency of radiolabelled [14C]-ACh release (figure 21) 

submitted to paired pulse stimulation as described for bafilomycin-incubated prisms. There 

was a concentration-dependent exponential increase in [14C]-ACh released by excised prisms 

until maximum release occurred with 34 mM SrCl2 that followed closely the amplitude and 

area of the EPP response. 

The calcium and strontium dependencies of the cholinergic response of excised prisms  
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Figure 20. Effect of strontium on synaptic transmission in the Torpedo electric organ. 
Conditions were like in Figure 17.  Prisms were perfused for 1h in the elasmobranch saline 
medium (3.4 mM CaCl2; controls traces in black) and then in the same medium where CaCl2 was 
replaced with increasing SrCl2 concentrations (traces in grey). Representative traces from 12 
experiments. 
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Figure 21. Strontium supports neurally-evoked ACh release. Conditions were like in figure 18. 
The amount of transmitter release in response to a pair of electrical impulses was measured 
in elasmobranch saline medium (3.4 mM CaCl2 black bar) or in a medium containing increasing 
SrCl2 concentrations instead of CaCl2 (grey bars). Histograms show mean ± SEM (n=4) of the 
stimulus-dependent [14C]-ACh release. The mean basal release was subtracted. 
 

were represented on a semi-logarithmic plot (figure 22) where the EPP amplitude and the 

area under the EPP wave were resented together with [14C]-ACh release. 

The plot shows that all methods used to assess ACh (either electrophysiological or  

biochemical) were equally sensitive to changes in cation concentration. We also calculated the 

Hill coefficient or cooperativity index given by the slope of the sigmoid fit adapted to the 

data set. Calcium ions display a cooperativity index of 3.4 while strontium has 2.8 (not 

significant). The cooperativity index reflects the non-linear binding of each cation to the Ca2+ 

(Sr2+)-sensor where the binding of the previous ion favours the allosteric binding of the next 

ion to the sensor. It has been argued that this measure yields a value that is somewhat 

underestimated (Zucker, 1989). Therefore, it seems ACh release in Torpedo electric organ is 

determined by the 4th power of calcium concentration and the 3rd to 4th power strontium 

concentration at release sites, in line with MEPP frequency rise with the 4th power [Sr2+] 

registered in rat diaphragm nerves (Bain and Quastel, 1992).  
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Figure 22. Concentration-release relationship of Ca2+ and Sr2+ in electric organ. Prisms were 
kept in elasmobranch saline medium with increasing concentrations of either CaCl2 (in black) 
or SrCl2 (in grey). Open circles represent the EPP amplitude (V) of the first response to 
paired stimuli; open triangles show area (V*ms) in the same EPPs; filled circles stand for the 
amount of radiolabelled [14C]-ACh released from pair-pulse stimulated prisms. The sigmoid 
curves were fitted to each set of data, expressed in percentage of maximal effect. The 
cooperativity index is indicated ± SD. 
 

3.2.1.3. Calcium and strontium-dependency of EPP parameters 
 

Synaptic transmission and more precisely ACh release have long been known to be 

dependent on the presence of Ca2+ in the extracellular medium (Locke 1894; Harvey and 

MacIntosh 1940; Katz 1969). We shall pay here special attention to the changes affecting 

the different EPP parameters when transmission was tested in various Ca2+ concentrations in 

response to paired-pulse stimuli applied at 20 ms intervals (Figure 23 through 25). 

 Latency remained constant at physiological [Ca2+]ext but increased significantly at 

10 mM Ca2+. The same happened with [Sr2+]ext, only that latency was consistently higher than 

with calcium. Coincidently, when bafilomycin was present in the incubation medium, there was 
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also some increase. The effect seems dependent on the accumulation of Ca2+/Sr2+ ions within 

the terminal, whether as the result of an excessive extracellular calcium/strontium load 

promoting basal ion entry into the terminal or as the combined result of having Ca2+/Sr2+ 

entry added to inefficient Sr2+ extrusion through plasma membrane Ca2+-ATPase (Graf et al., 

1982; Xu-friedman and Regehr, 2000) and no Ca2+/H+ antiport-mediated Ca2+/Sr2+ vesicular 

transport. How can slow Ca2+/Sr2+ accumulation affect latency?  

Latency in this preparation comprehends the time for axonal conductance and the 

synaptic delay which is very short (Dunant and Muller, 1986) and usually not taken as 

modifiable.  Yet, there seems to be a slight increase in latency in conditions that might favour 

subthreshold Ca2+ or Sr2+ accumulation that could have a down-regulatory effect on Ca2+-

channels (Birman and Meunier, 1985; Catterall, 2000; Forsythe et al., 1998) or the 

mediatophore (Israël et al., 1987) (with partial instead of full desensitization). This could 

determine either a reduced ICa or an increase in [Ca2+]-threshold for mediatophore activation 

(Israël et al., 1987). Under those circumstances, there could still be activation of the release 

machinery but after a time-lapse whereby enough Ca2+ accumulated in the microdomain and 

overcome the limitations of the down-regulation.  

Fedchyshyn and Wang (2007) have recently reported that an increase in latency 

develops in calyx of Held synapses submitted to high frequency (20-200 Hz) stimuli (it 

happens in Torpedo too). The effect was prevented by lowering the [Ca2+]ext  or diminishing ICa  

by inhibiting VOCCs with baclofen or still by increasing the temperature (also increasing Ca2+ 

extrusion capacity) or by pre-incubating the terminals with the membrane permeable form of 

EGTA (EGTA-AM). The natural conclusion for that report and for the effects reported here 

is that residual Ca2+ (and Sr2+) accumulation in pre-synaptic nerve terminals induces the 

observed increase in latency. 

As for the rise time, it showed a regular prolongation both with [Ca2+]ext, and specially 

with strontium, which is in line with the bafilomycin effect. Like with bafilomycin where Ca2+ 

ions are expected to remain and activate ACh more time there seems to be a super-additive 

effect on receptor fields resultant from late ACh release and shifting the peak response to 

the right. 

The EPP area was related to the concentration of calcium or strontium ions in the 

external medium. The relation could be described by a steep sigmoid with a potency factor of 

3.4 for Ca2+ or 2.8 for Sr2+, in good accordance with the data measured by biochemical 
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assessment of transmitter release in this and other synaptic preparations (Muller et al., 

1987; Dunant et al., 1980a; Dodge and Rahamimoff 1967; among others). Sr2+ was 10 x less 

potent in activating ACh release but induced a significant enlargement in EPP area at 

concentrations above 20 mM. 

As for the peak amplitude, whereas it increased from 0.85 to 3.4 mM Ca2+, it did not 

so significantly with higher concentrations. The observation was confirmed in other 

experiments where Ca2+ concentrations higher than 10 mM were used (not shown). Strontium 

followed a similar profile but at concentrations 10 x higher. Therefore, it is mainly the 

duration of the EPP which was enlarged at “supranormal” Ca2+ or Sr2+ concentrations. A fact 

that is well patent in area/peak ratio. 

 The increase in decay T50 ,T90, and decay time constant (tau) with increasing 

[Ca2+]ext was hardly significant from 0.85 to 3.4 mM, but frankly prolonged at 10 mM. 

Similarly with [Sr2+]ext there was a rather small increasing effect at lower concentrations 

that reached enormous proportions with 20 mM SrCl2 and above. At these concentrations, the 

decay was greatly prolonged and a secondary exponential could be adjusted with time 

constant ranging from 3 to 10 ms. 

In conclusion, not only the amplitude ofTorpedo prism EEPs but also their time course 

of the response exhibited Ca2+-dependency. The decay phase was particularly prolonged at 10 

mM Ca2+, a concentration about 3 times the physiological value. This result is in close 

relationship with both the effects of bafilomycin and Sr2+ and seems to reflect an effect of 

endured Ca2+ (Sr2+) transient within active zone microdomains that will determine the 

enhancement of ACh secretion, reflected more in the EPP duration than in its amplitude. 

As for facilitation and depression in experiments with calcium and strontium (figures 

26 through 28) we should recall that facilitation depends on the initial (first EPP) probability 

of transmitter release. Low release probability (in low Calcium) enhances paired pulse 

facilitation of ACh release (Rahamimoff, 1968; Creager et al., 1980; McNaughton, 1982; 

Dobrunz and Stevens, 1997; Xu-friedman and Regehr, 2000). 

In low Ca2+ concentration, the area of the second EPP was larger than the area of the 

first, elicited 20 ms before (facilitation). In contrast, at high Ca2+ concentrations, the area 

of the second EPP was smaller than that of the first one (depression). Such a Ca2+-

dependency of the facilitation-depression phenomenon has long been described in various 

preparations (Zucker, 1989). Under the present experimental conditions, facilitation only 
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occurred at low Ca2+, and Figure 27 shows that the process affected more the EPP amplitude 

than its area. Previous work using direct measurement of transmitter release (Dunant et al., 

1980a) clearly showed that, at least in case of depression, the phenomenon can be chiefly 

attributed to a pre-synaptic change. In other words, the bigger amount of transmitter is 

delivered in the first impulse, the smaller amount is delivered in the second impulse. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Synaptic delay (latency; graph A) and rise time (graph B) of EPPs generated in the 
presence of increasing concentrations of either Ca2+ (black scales and symbols) and Sr2+ (grey 
scales and symbols) in response to a single stimulus. Values are means ± SEM of 3-15 
experiments. Values of the corresponding parameters obtained with prisms treated with 2 µM 
bafilomycin A1 for 1h in the presence of 3.4 mM CaCl2 are given in inset. With Sr2+ both the 
latency and the rise-time last longer than with Ca2+. 
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Figure 24. Peak amplitude (panel A); area (panel B) and area/peak ratio (panel C) of EPPs 
generated in the presence of increasing concentrations of either Ca2+ (black scales and 
symbols) and Sr2+ (grey scales and symbols) in response to a single stimulus. Values are 
means ± SEM of 3-15 experiments. Values of the corresponding parameters obtained with 
prisms treated with 2 µM bafilomycin A1 for 1h in the presence of 3.4 mM CaCl2 are given in 
inset. When compared to Ca2+, Sr2+ affects more the time course than the amplitude of the 
EPP. 
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Figure 25. Parameters of the decaying phase of EPPs generated in the presence of increasing 
concentrations of either Ca2+ (black scales and symbols) and Sr2+ (grey scales and symbols) in 
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response to a single stimulus. Parameters were the T50 decay time (panel A); T90 decay time 
(panel B) and the decay time constant (tau; panel C). In the presence of high Sr2+ 
concentrations, the EPP was greatly prolonged in time; in some cases the final decay could be 
described by a secondary exponential of slower time course (see Figure 20 and panel D). 
Values are means ± SEM of 3-15 experiments. Values of the corresponding parameters 
obtained with prisms treated with 2 µM bafilomycin A1 for 1h in the presence of 3.4 mM 
CaCl2 are given in inset. All the decay parameters are prolonged by Sr2+. 
 

As for strontium, facilitation of the peak amplitude –and that of the area– was 

enormously increased when compared to calcium. This may reflect the rather low probability 

of release with low Sr2+ when compared with Ca2+, due to the ~10 x lower affinity of Sr2+ to 

the Ca2+ (Sr2+)-sensor. 

 The effect of [Sr2+]ext  on EPP peak facilitation is very high at low concentrations and 

decreases steeply at 34 and 50 mM SrCl2. This might be attributed to the approximation of 

higher release probability with a consequent decrease in the second EPP.  On the contrary, 

the area and area/peak of the second EPP were significantly prolonged with increasing 

[Sr2+]ext, which reflects the fact that Sr2+ load is particularly important above 20 mM, a value 

above which the decay parameters are all potentiated, while with calcium they are depressed. 

This rather odd discrepancy could arise from the fact that Sr2+ has a much lower affinity for 

the mediatophore than Ca2+ does and an increased Sr2+ transient will stand a better chance of 

activating such low affinity release channel at higher concentrations reached in the second 

pulse (greater amplitude). Mediatophore activation will also endure longer with higher [Sr2+]ext 

because there is no fast component of Sr2+ extrusion and the persistence of suprathreshold 

Sr2+ within the terminal will exceed that of Ca2+. 

 The time parameters, particularly latency and decay tau, are shorter at all [Ca2+]ext in 

the second EPP, as compared to the first. The second EPP occurred earlier and its time 

course was shorter. This finding was somewhat unexpected but we can assume that contrary 

to the effects of long-term exposure to slightly raised [Ca2+]int that enhances the synaptic 

delay downstream of calcium channel activation, paired pulse stimulation decreases the onset 

of the second EPP. The effect seems quite Ca2+ independent and it is also bafilomycin 

independent and no effect with increasing [Sr2+] was obtained either. This leads to thinking 

we’re looking at an effect related to the generation and conduction of the action potential 

rather than on the synaptic delay.  

As for the shortened rise and decay times, they could arise from rapid onset of 
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transmitter release (the calcium transient piles upon Ca2+ remaining from previous stimulus) 

combined with an early activation of rapid vesicular Ca2+ extrusion provided by the Ca2+/H+ 

antiport (presuming that in the first EPP the antiport displays slower activation kinetics). As 

for strontium, it confirms the notion that the vesicular Ca2+/H+ antiport is involved since both 

the onset and decay parameters were prolonged (instead of decreased) with increasing 

strontium. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 26. In this and the two following figures, the effect of either Ca2+ or Sr2+ on 
facilitation (or depression) will be presented. In the pair-pulse configuration, the parameters 
of the second EPP will be presented in percentage of the corresponding parameter of the 
first EPP (interval: 20 ms). Values are means ± SEM of 3-15 experiments. The latency of the 
2nd EPP is shorter with both Ca2+ and Sr2+ independently of concentrations. 
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Figure 27. Same conditions and same mode of expression like in figure 26. Considering the 
amplitude and the area of the EPP, Ca2+ causes a modest facilitation only at low 
concentrations. In contrast, facilitation is much stronger with Sr2+ in the whole range of 
concentration. 
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Figure 28. Same conditions and same mode of expression like in figure 26. With Ca2+, the 
parameters of the decaying phase are shorter in the 2nd EPP than in the first, independently 
of concentration. In contrast with high Sr2+ concentrations, the decay phase of the second 
EPP is still prolonged, with comparison to the first EPP. 
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3.2.1.4. Other compounds affecting vesicular Ca2+ transport: CCCP, DCCD and 
DBHQ  
 

Changes in [Ca2+] profile have been measured in a number of reports using proton 

ionophores like carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) or Carbonyl 

cyanide n-chlorophehylhydrazone (CCCP) (Herrington et al., 1996; Park et al., 1996; Xu et al., 

1997; Billups and Forsythe, 2002 and Bennett et al., 2007, to name but a few). In those 

studies the protonophores were intended to target mitochondrial inner membrane and 

dissipate its transmembrane H+ gradient that drives Ca2+-uptake by a Ca2+-uniport (Villalobos 

et al., 2002; Kirichok et al., 2004; Kim et al., 2005). However, protonophores like CCCP also 

dissipate the vesicular proton gradient of isolated synaptic vesicles (Gonçalves et al., 1998 

and figure 14) as well as all the acidic organelles endowed with a V-type H+-ATPase within a 

synaptosome (Zocarato et al., 1999 and figure 36) or a PC12 secretory cell (figure 14), far 

more rapidly than bafilomycin does and extinguish Ca2+/H+ antiport vesicular calcium 

transport (Gonçalves et al., 2000a).  

Normal [Ca2+]int profile after a stimulus includes an almost instantaneous rise followed 

by slightly less rapid, but still very fast exponential decay phase of Ca2+ concentration 

(Sabatini and Regehr, 1996; Yazejian et al., 2000) that continues into a second much slower 

exponential decay phase (Herrington et al., 1996; Park et al., 1996; Xu et al., 1997; Castonguay 

and Robitaille, 2001; Billups and Forsythe,2002). That profile is markedly affected by CCCP. 

The rapid decline phase is enlarged or even annihilated and substituted by a slower [Ca2+]int 

decay (Herrington et al., 1996; Park et al., 1996; Xu et al., 1997; Billups and Forsythe, 2002). 

This effect was attributed to compromised calcium transport by mitochondria; however, the  

possibility that the vesicular Ca2+/H+ antiport might be involved in CCCP action is borne out by 

the presented data, since CCCP alone is capable of blocking almost completely the rapid phase 

of the calcium transient while oligomycin adds little to the CCCP effect (Park et al., 1996).  

On the other hand, the initial rapid decay in [Ca2+] was not targeted by inhibitors of 

Ca2+-pumps like thapsigargin (Castonguay and Robitaille, 2001) cyclopiazonic acid (David and 

Barret, 2003) or vanadate (Lajas et al., 2001) nor by inactivation of Na+/Ca2+ exchange (Park 

et al., 1996). CCCP-dependent calcium clearance was markedly more rapid than Ca2+-pumps or 

the Na+/Ca2+ exchanger (Herrington et al., 1996).  

This fast calcium clearance rates along with early extrusion capability are in favour of 

a localization of the target organelle near calcium entry sites where synaptic vesicles are 
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preferably clustered (Couteaux and Pécot-Dechavassine, 1970, 1974), rather than 

mitochondria, more distant and involved in the sequestration of calcium arising from stronger 

stimulus (Friel and Tsien, 1994; Herrington et al., 1996; Zenisek and Mathews, 2000; 

Villalobos et al., 2002; Kim et al., 2005).  

CCCP can also increase secretion up to five fold in chromaffin cells (Montero et al., 

2000; Haynes et al., 2006; Lim et al., 2006) and neurohypophysial terminals (Sasaki et al., 

2005). It has been used to increase MEPP frequency in frog neuromuscular junction (Molgó 

and Pécot-Dechavassine, 1988; Van Der Kloot et al., 2000) where H+-gradient sensitive 

vesicular calcium uptake or release occurs (Von Grafenstein and Powis, 1989; David et al., 

1998; Christensen et al., 2002; Churchill et al., 2002; Mahapatra et al., 2004; Haynes et al., 

2006; Michelangeli et al., 2005; McGuinness et al., 2007). CCCP is responsible for the period 

of massive MEPP frequency followed by either very low or no MEPPs whatsoever (Molgó and 

Pécot-Dechavassine, 1988) as a consequence of ATP synthase reversal followed by ATP 

depletion within the terminal that stops ATP driven pumps (Budd and Nichols, 1996). 

  In a couple of independent recent papers (Guo et al., 2005 and Verstreken et al., 

2005) two different Drosophila mutants lacking pre-synaptic mitochondria were studied. 

They showed normal acute Ca2+ buffering and normal basal neurotransmission that was 

impaired only if submitted to intense stimulation that could be rescued with exogenous ATP. 

The authors concluded that pre-synaptic calcium dynamics are marginally participated by 

mitochondria that seem to be recruited for calcium extrusion only under prolonged 

stimulation. We also recall that mitochondria are very scarce in the Torpedo electric organ; 

they are present only in a small proportion of nerve terminals. Mobilisation of energy is very 

fast during the electrical discharge at the expense of ion gradients, ATP and creatine 

phosphate, but recovery of energy stores afterwards is very slow, mainly provided by 

glycolysis (Abbott et al., 1958; Aubert et al., 1961; Chmouliovsky-Moghissi and Dunant, 1979). 

 We incubated excised prisms with CCCP in an attempt to mimic bafilomycin effect 

with a proton uncoupler. Yet, evoked electrical response after 1h incubation with CCCP was 

completely abolished (data not shown). A straight forward explanation for this result seems 

to be related to the long incubation period needed to allow diffusion throughout the entire 

prism (>30 min) for the drugs tested. When CCCP reaches the tissue proton dissipation is very 

fast as compared to bafilomycin or DCCD (Christensen et al., 2002; figure 36) and contrary 

to bafilomycin induces ATP depletion and inhibition of secretion after as little as 1h 
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incubation in tissue (Molgó and Pécot-Dechavassine, 1988; Van Der Kloot et al., 2000) or ~8 

minutes in guinea-pig cerebro-cortical synaptosomes (Sanchez-Prieto et al., 1987). In Torpedo 

prisms energy depletion (ATP and creatine phosphate) induced by metabolic poisons and 

through a less known effect of botulinum toxin results in marked reduction in ATP and 

creatine phosphate levels or availability, inducing an increase in spontaneous events (including 

giant MEPPs and sub-MEPPs) at the same time that evoked responses decrease and cease 

(Dunant et al., 1988) and could explain failed transmission obtained with CCCP.     

 We also incubated excised prisms with N,N’-dicyclohexyl-carbodiimide (DCCD) that 

was shown to bind covalently both the proteolipid of the V-type H+-ATPase, blocking ATP-

dependent proton translocation (Sutton and Apps, 1981; Arai et al., 1987  and Sun et al., 

1987). DCCD binds also the proteolipid mediatophore, but has little effect on ACh 

translocation (Sbia et al., 1992). DCCD also inhibited 45Ca2+ accumulation into sheep brain 

cortex synaptic vesicles by compromising the H+ gradient energising the vesicular Ca2+/H+ 

antiport (Gonçalves et al., 1999b). We registered a concentration dependent effect of DCCD, 

capable of prolonging the time-course of secretion similarly to bafilomycin with 20 µM DCCD 

inducing a ~30-50% increased time–course that reached ~2 fold increase (like bafilomycin) 

with 100 µM DCCD (data not shown). However, we also noticed that while the Area/peak; T50; 

T90 or decay tau increased with increasing DCCD concentrations, EPP area and peak response 

decayed (~20 % with 20 µM DCCD; up to ~60% with 100 µM DCCD). We did not investigate 

any further this inhibiting effect of high DCCD concentrations on transmission, but 

preferred to concentrate our efforts with bafilomycin that is a more potent (Gonçalves et al., 

1999b) and specific (Dröse and Altendorf, 1997) inhibitor of the V-type H+-ATPase.   

 We also assessed the effect of 2,5-diterbutyl-1,4-benzohydroquinone (DBHQ; also 

named TER) on the electric response of prisms. DBHQ is said to be a specific blocker of Ca2+-

ATPase pumps (Kass et al., 1989; Fossier et al., 1998) and reported to induce increased ACh 

secretion in synaptosomes from Torpedo electric organ and mouse caudate nucleus, as well as 

to increased cholinergic transmission in Aplysia. An effect correlated with ~50% decrease in 
45Ca2+ uptake capacity of isolated synaptic vesicles (Fossier et al., 1998). Later work 

confirmed DBHQ concentration-dependent ACh release increase in mouse caudate nucleus 

and ACh and glutamate (Glu) release increase in Torpedo synaptosomes while being 

ineffective to potentiate Glu release from cerebellum mossy fibre synaptosomes (Israël and 

Dunant, 2004). Interestingly, DBHQ was proposed to inhibit preferentially the sarco-
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endoplasmic reticulum Ca2+-ATPase or SERCA 3 pump reported to occur in bafilomycin 

sensitive acidic organelles in human platelets, where [Ca2+] transients were significantly 

prolonged by 20 µM DBHQ (López et al., 2005, 2006). The effects are of particular interest 

since the proposed targets are vesicular Ca2+-ATPases capable of a similar shaping of 

transmitter release we have found with bafilomycin. 

DBHQ decreased the formation of vesicular H+ gradient (measured by 

A.O.fluorescence) in a concentration-dependent manner (figure 29). The decrease in 

fluorescence is most probably the result of inhibition of the V-type H+-ATPase by DBHQ , 

that is responsible for all the fluorescence signal (complete dissipation with bafilomycin) in 

sheep brain cortex synaptic vesicle preparations (figure 14). In addition, DBHQ seems to 

reduce the bafilomycin-sensitive Pi production resultant from ATP consumption by the V-type 

H+-ATPase working either at maximum speed (presence of CCCP) or in normal conditions 

(without the H+-uncoupler; figure 30). These results point out to a double effect of DBHQ in 

synaptic vesicle calcium transport systems, blocking both the vesicular Ca2+-ATPase and 

partially compromising normal vesicular H+-gradient that is the driving force of the Ca2+/H+ 

antiport.  

In the course of this work we were interested in finding a blocker for the Ca2+/H+ 

antiport activity. Several compounds reported to interfere with Ca2+ sequestration were 

tested in preliminary assays with acridine orange used to report Ca2+-induced H+ gradient 

dissipation in sheep brain cortex synaptic vesicles (data not shown). They were the Plasma 

membrane Na+/Ca2+ antiport blocker KB-R7943 (20 µM); the mitochondrial  Na+/Ca2+ antiport 

blocker, CGP37157 (50 µM); the ryanodine receptor inhibitors, 1,1’-diheptyl-4,4’-bipyridinium 

dibromide or DHBP (100 µM)  and heparin (2mg/ml); the Ca2+-release activated channel or 

CRAC inhibitor 2-aminoethoxydiphenylborane (2-APB at 100 µM); the unspecific Ca2+-ATPase 

inhibitor butylated hydroxytoluene (BHT at 100 µM) and the above mentioned SERCA and 

Ca2+-ATPase inhibitors 2,5-di-tert-butyl-hydroquinone (BHQ at 100 µM) and the benzylated 

homologue DBHQ (100-300 µM) also named TER.  

We were surprised to find that while none of them specifically inhibited the antiport, 

most (all but heparin) induced a significant decrease in proton pump activity, measured by the 

decrease in fluorescence amplitude (shown only for DBHQ in figure 29). We concentrated 

further clarification of these unexpected (those drugs are supposed to be specific) results in 

DBHQ, which was reported to interfere with vesicular calcium transport and modulate  
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Figure 29. Concentration-dependent effect of DBHQ on proton transport across synaptic 
vesicles isolated from sheep brain cortex. Synaptic vesicles (0.6 mg protein/ml) and 3 µM 
A.O. were added (not shown) to medium containing 150 mM KCl, 60 mM sucrose, 2 mM MgCl2, 
10 mM Tris at pH 8.5 and 50 µM EGTA, with (grey traces) or without (blue trace) increasing 
DBHQ concentrations. H+ pumping by the V-type H+-ATPase started by addition of 500 µM 
ATP (arrow) and was accompanied by acridine orange fluorescence quench as described in the 
text. CCCP 2µM was added at indicated times (arrows) for calibration.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30. Effect of DBHQ effect on the H+-ATPase activity of synaptic vesicles isolated 
from sheep brain cortex. H+-ATPase activity in vesicles (0.6 mg protein/ml) was assayed as 
the amount of Pi produced per minute in the same medium as in figure 31. Values show Pi 
quantified after 2 min in presence of 504 µM ATP after subtraction of Pi produced in 
presence of 504 µM ATP and 300 nM bafilomycin A1. Assays occurred in the absence (white 
bars) or in the presence of the proton uncoupler CCCP (2µM) (black bars). Reaction were 
carried out in the absence (control) or presence of 150 µM DBHQ. 
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transmitter release (see discussion and references above). 

We then tested the effects of DBHQ on excised prisms electric response (figure 31 

and 32). There is a concentration-dependent effect of EPP waveform enlargement that 

partially mimics the bafilomycin effect (figure 17 and table 2), with the time-dependent 

parameters (area/peak, rise time, decay T50,T90 and tau) all being increased by ~20% (figure 

32). The ~20% effect is also in line with partial H+ gradient dissipation when compared with 

the ~100% increase in ACh release timing by bafilomycin (that completely inhibits the proton 

pump). However, at higher concentrations (100 µM), we registered an additional time-

dependent decrease in EPP amplitude, that was never present with bafilomycin even for 

prolonged incubations (>24h). This decreased EPP response was accompanied by a slow (hours) 

concentration-dependent increase in the levels of 45Ca2+ accumulation in non-stimulated tissue 

while maintaining unaltered the total 45Ca2+ that accumulates in the tissue right after a 12 

second stimulation at 100 Hz. Thus, the more Ca2+ accumulated at rest in the tissue, the less 

could be added as a surplus upon stimulation (figure 33).  

 

 
 
 
 
 
 
 
 
 
 
Figure 31. Concentration-dependent effect of DBHQ on synaptic transmission in the 
Torpedo electric organ. Traces show in succession the stimulation artefact, the synaptic 
delay and the electrical discharge produced by excised prisms in response to field stimulus. 
Prisms were incubated in 3.4 mM CaCl2 containing elasmobranch saline medium (Control traces 
in black) and then 1h later after addition of 1; 10 or 100 µM DBHQ (grey traces) in A and B, 
respectively. Traces in C show a control EPP (black trace), and the response generated by the 
same prism after 1h (doted line) and 2h (grey line) incubation in the presence of 100 µM 
DBHQ  . Representative experiment of n= 5-6. 
 

These results highlight the possibility that DBHQ compromising the vesicular Ca2+-

ATPases combined with a decrease in vesicular Ca2+/H+ antiport Ca2+ extrusion alters both the 

temporal definition of the calcium microdomain responsible for ACh release activation at the 

same time that it compromises normal calcium extrusion into synaptic vesicles (and  
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Figure 32. Characterization of the concentration-dependent effects of DBHQ on prisms 
EPPs in response to a single stimulus. Prisms were submitted to field stimulation in 3.4 mM 
CaCl2 containing elasmobranch saline medium supplemented with 1 (□); 10 (■) or 100 (■) µM 
DBHQ for 1h. Values show mean ± SEM (n=6) expressed in percentage of the control EPP 
generated by the same prisms before drug incubation. DBHQ prolonged significantly the time 
course of the electrical discharge (Unpaired T-test: * p<0.05). At high concentrations the EPP 
amplitude was reduced. 
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Figure 33. Effect of DBHQ on calcium retention within resting prisms (left panel) or in 
prisms submitted to a 12 s tetanus at 100 Hz (right panel). Prisms were incubated in 45CaCl2 
containing medium for 3h without DBHQ (control) or supplemented with 100 µM DBHQ during 
either 2h30 or 1h before quantification of cellular 45Calcium. Stimulated prisms had 45calcium 
quantified soon after the tetanus. Bars show average ± SEM (n= 5 to 9) of prisms bathed in 
elasmobranch saline medium (controls in black) or supplemented with 100 µM DBHQ (grey 
bars). DBHQ significantly increased 45Calcium accumulation of “resting” prisms, in the 
absence of stimulation (Unpaired T-test: *p<0.01). At the end of the stimulation 45Calcium 
reaches the same level in the presence or absence of DBHQ. 

 

possibly also by non vesicular Ca2+-ATPases), that seem to participate in the “housekeeping” 

task of cytosolic calcium removal that allows to maintaining resting calcium levels within cells 

<100 nM. It is also likely that the slow Ca2+ accumulation induced by DBHQ leads into the Ca2+-

induced desensitisation of the mediatophore (there is a time/concentration-dependant 

transmission decrease; figure 31 and 32) or of VOCCs (time-dependant decrease in the 

surplus of Ca2+ accumulation in stimulated prisms; figure 33). 

 In conclusion, we have learned that besides bafilomycin, a number of drugs (CCCP; 

DCCD; DBHQ, among others) capable of annihilating the vesicular proton gradient end up 

interfering with calcium homeostasis and compromise normal secretory activity. When we look 

at these results under the light of the mechanisms unveiled by the experiments done with 

bafilomycin and strontium (see chapters above for acute effects and below for long-term 

effects), it becomes evident that at least some of the reported effects in the presence of 

those drugs should be attributed to compromising proton-gradient-dependent Ca2+ transport 

into acidic organelles.    
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3.2.1.5. The pre-synaptic effect of bafilomycin reported in synaptosomes 

  
 Having established a pre-synaptic effect of vesicular Ca2+/H+-antiport blockers on 

phasic ACh release in the Torpedo electric organ, we aimed at confirming that effect on 

isolated nerve terminals. For that we prepared synaptosomes from Torpedo electric organ 

tissue according to Morel et al. (1977) and proceeded with the quantification of ACh released 

from synaptosomes in response to a depolarizing stimulation (100 µM Veratridine). The 

incubation medium contained enzymes that responded continuously to ACh released by 

emitting light in proportion to the number of ACh molecules (Israël and Lesbats, 1981a, 

1981b), which could be quantified by subsequent addition of known amounts of ACh (figure 34 

A).  

We compared the amounts of ACh released in response to a Ca2+-veratridine challenge 

following a 10 min incubation in calcium-free saline medium either in the absence (control) or 

in the presence of 2 µM bafilomycin A1 (figure 34). Under these conditions, bafilomycin-

incubated synaptosomes released over twice as more ACh than control synaptosomes (figure 

34 B). After the release run, the synaptosomes were ruptured using Triton X-100, which 

allowed for the measurement of their final ACh content. Those treated with bafilomycin, 

which had released more ACh in response to veratridine, were found to contain less 

transmitter at the end of the run, which was another way to demonstrate that bafilomycin 

considerably enhanced transmitter release from Torpedo isolated nerve terminals. 

This result mimics the ca. 2 fold increase in transmitter release at Torpedo electric 

organ synapses in response to electrical stimulus when the vesicular Ca2+/H+-antiport is 

inoperative (previous sections).  It also confirms that such effects are mostly pre-synaptic.   

 We extended the study of vesicular Ca2+/H+-antiport blockade to another 

synaptosome preparation. Rat mossy fibre synaptosomes (Israël and Whittaker, 1965; 

Helme-Guizon et al., 1998) are also large (Bancila et al., 2004) robust (-85 mV resting 

potential versus -50 mV in Torpedo synaptosomes; Meunier, 1984; Bancila et al., 2004, 2008) 

and glutamate release competent (Bancila et al., 2004, 2008). These synaptosomes are also 

prone to the usage of fluorescence probes while it was not possible to use those in Torpedo 

despite the efforts in ours and other laboratories.  

We proceeded with the measurement of [Ca2+] within the bulk of the cytosol 

([Ca2+]cytosol) of rat hippocampus mossy fibre synaptosomes incubated with Fura-2-AM. 
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Figure 34. Effect of bafilomycin A1 on acetylcholine release from Torpedo electric organ 
synaptosomes. Samples were pre-incubated 10 min in Ca2+-free elasmobranch saline medium in 
the absence (black) or presence of 2 µM bafilomycin A1 (grey). Panel A: Synaptosomes were 
depolarized with 100 µM veratridine followed by addition of [Ca2+]final= 3.4 mM (arrows) to 
elicited ACh release. The figure shows representative traces of ACh release from 30 µl of 
the synaptosome fraction (~60 µg protein), using the chemiluminescent enzymatic method. 
Then, the remaining ACh content within synaptosomes was quantified after permeabilization 
with 5 µl Triton X-100 1%. Standards with known amounts of ACh were finally used for 
calibration (brown trace). B: Values show average ± SEM of at least 3 experiments of 
conditions shown in panel A. Ca2+-dependent ACh release was measured for 5 min. Total ACh 
was obtained by the summation of the amount of ACh released by Ca2+-depolarization and 
that measured upon Triton X-100 permeabilization. The amount of Ca2+-dependent ACh 
released from bafilomycin A1-treated synaptosomes (grey bars) was significantly higher than 
from control synaptosomes (Unpaired T-test: *p<0.05) (black bars). 
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Synaptosomes were then kept for 15 minutes in Ca2+-free mammalian Krebs (control) 

or supplemented with 0.5 µM bafilomycin A1 prior to the addition of 1.33 mM CaCl2 to the 

cuvette where Fura-2 fluorescence was measured (figure 35). Synaptosomes were then 

depolarized with 40 µM veratridine ~30 s after calcium addition. Bafilomycin induced a small 

but significant increase of “basal” [Ca2+]cytosol  measured 60 s before calcium addition. This 

effect might have arisen from Ca2+ release from acidic stores (Christensen et al., 2002; 

Churchill et al., 2002; López et al., 2005; Kachoei et al., 2006) after full H+-gradient 

dissipation induced by bafilomycin (which takes <10 min; figure 36). What is more, bafilomycin 

caused  an over two-fold increase in [Ca2+]cytosol when the synaptosomes were depolarized with 

veratridine in the presence of 1.33 mM CaCl2 (inset in figure 35), arguing in favour of the fact 

that Ca2+ accumulation increase within stimulated synaptosomes as a result of compromised 

vesicular Ca2+/H+-antiport transport.  

Like in Torpedo excised prisms (figure 19), calcium accumulation was enhanced in rat 

synaptosomes devoid of rapid vesicular calcium transport provided by the antiport. 

Therefore, besides acting on secretion timing, rapid Ca2+-sequestration within synaptic 

vesicles seems to contribute also to increasing the Ca2+-load within nerve terminals (figures 

19 and 35). This loss of rapid Ca2+-sequestration while maintaining slower Ca2+-transport 

systems with first order kinetics has been put in evidence in the past with protonophores 

(CCCP/FCCP; Herrington et al., 1996; Park et al., 1996; Xu et al., 1997; Billups and Forsythe, 

2002) and with strontium (Xu-friemann and Regehr 2000), that embody working conditions 

without the participation of a functional vesicular Ca2+/H+-antiport.  

The H+ gradient across the membrane of acidic organelles (essentially synaptic 

vesicles in synaptosomes), can be followed using acridine orange (A.O.) fluorescence as a 

reporter (Zoccarato et al., 1999). We incubated rat hippocampus mossy fibre synaptosomes 

with A.O.. It is expected that A.O. penetrates cell membranes and accumulates in acidic 

compartments where its fluorescence is quenched. Thus any dissipation of the intracellular 

proton gradient should result in an increase in fluorescence.  

Figure 36 illustrates a typical experiment where A.O. (3 μM) was added to the 

synaptosome suspension, causing an increase in fluorescence followed by a slow quenching 

which reflects the incorporation of the dye in acidic compartments. When a plateau is 

reached, addition of 40 mM KCl (final concentration) in the presence of extracellular Ca2+  
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Figure 35. Bafilomycin A1 effect on the [Ca2+]Cytosol rise occurring after depolarization of rat 
hippocampus mossy fibre synaptosomes. Traces show average fluorescence. Synaptosomes 
were loaded with Fura-2-AM and kept in Ca2+-free mammalian Krebs, during 15 min in the 
absence (black) or presence (grey) of 0.5 µM bafilomycin A1. Then, 1.33 mM CaCl2 was added  
(first arrow) followed by depolarization with 40 µM veratridine (second arrow). Values show 
averages ± SEM of 4 to 9 experiments. Inset shows the basal [Ca2+]Cytosol as the average ± 
SEM of the first 60 seconds (basal) and [Ca2+]Cytosol after depolarization as the average ± 
SEM of the last 40 seconds.  Bafilomycin A1 (grey) increased significantly both basal 
[Ca2+]Cytosol (*p<0.05) and [Ca2+]Cytosol of depolarized synaptosomes (Two-way ANOVA: 
**p<0.0001) as compared to control (black). 
 
caused a transient dissipation of H+ gradients (Figure 36 A). Afterwards the proton ionophore 

CCCP was added to induce a full dissipation of the gradient. 

 The H+ gradient measured this way is completely generated by V-type H+-ATPases 

(Figure 36 B-E; Zoccarato et al., 1999). Indeed, when 1 μM bafilomycin A1 was added at any 

moment of the experiment, it caused a dissipation of the proton gradient that was slower 

than with CCCP; the gradient was nevertheless completely dissipated in less than 10 minutes. 

When the synaptosomes were pre-incubated with bafilomycin A1, the gradient was not 

established (Figure 36 B) and DCCD (100 μM) mimicked bafilomycin H+-gradient dissipation 

(figure 36 D and E). 
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Figure 36. Effect of vesicular H+-ATPase inhibitors on the formation and proton gradient 
dissipation across acidic compartments within mossy fibber synaptosomes isolated from rat 
hippocampus. Proton gradient was monitored by adding 10 mg protein/ml synaptosome 
suspension (arrows) to Krebs solution containing 3 μM acridine orange. Fluorescence quench 
occurs when the dye is exposed to acidic medium within acidic compartments, where it 
dimerises and accumulates. Panel A shows H+ gradient formation and transient dissipation by 
40 mM KCl in the presence of 2.2 mM [Ca2+]out, and then fully dissipated by addition of 10 μM 
CCCP. Pre-incubation of synaptosomes for 15 minutes with 1 µM bafilomycin A1 prevented any 
gradient formation, hampering also the typical KCl or CCCP responses (panel B). Addition of 
1μM Bafilomycin A1 after KCl depolarisation resulted in total proton gradient dissipation, as 
shown by CCCP not increasing fluorescence any further (panel C). Similar dissipations were 
observed with DCCD, in resting (Panel D) or depolarized (panel E) synaptosomes. Traces are 
representative of 3-6 experiments. 
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Figure 37. Depolarization-dependent proton gradient dissipation across acidic compartments 
within mossy fibber synaptosomes isolated from rat hippocampus. Proton gradient across 
acidic compartments was monitored with acridine orange (as in figure 36). Bars show the 
dissipation induced by application of increasing KCl concentrations in the presence of 2.2 mM 
CaCl2. Gramicidin (2 µg) dissipated completely the proton gradient. Values were plotted as the 
percentage of total gradient as determined after application of CCCP. 
 

The partial transient dissipation of the proton gradient elicited by KCl challenge 

lasted 20-40 seconds and was followed by re-acidification of acidic organelles lasting 5 more 

minutes (figures 36 A; 38 B). The phenomenon may be explained in two ways. First, the H+-

gradient transient could be interpreted as the result of exocytosis shuttling H+-filled 

synaptic vesicles directly into contact with the extra-synaptosomal medium, followed by re-

acidification of endocytosed vesicles lasting 5 minutes on average (Zoccarato et al., 1999). 

Alternatively, rapid Ca2+/H+ exchange mediated by the vesicular antiport originates the 

transient dissipation of the H+-gradient in synaptic vesicles remaining in situ. The gradient 

would then be re-established by the H+-pump within the same or newly formed vesicles (by 

endocytosis). Either way, the phenomenon was strictly calcium dependent (figures 37-40). 

At a constant calcium concentration (2.2 mM), the amplitude of the peak dissipation 

was found to be a function of the KCl concentration added (Figure 37) and thus, to the size 

of the depolarisation step (maximal with gramicidin). The dependency seemed to arise from 
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Figure 38. Calcium dependence of depolarization-induced proton gradient dissipation from 
acidic compartments within mossy fibber synaptosomes isolated from rat hippocampus. Proton 
gradient across acidic compartments was monitored with acridine orange (as in figure 36). 
Panel A shows that there is no transient dissipation of the gradient induced by 40 mM KCl in 
mammalian Krebs containing 0.5 mM EGTA (no free Ca2+). Panel B shows proton gradient 
transient dissipation after synaptosome depolarization with 40 mM KCl in presence of 2.2 mM 
[Ca2+]out. Panel C evidences rapid, full dissipation of the pre-established H+ gradient induced 
by selective permeation of synaptosomes to calcium by application of the calcium ionophore 
A23187 (50 μM) in presence of 2.2 mM CaCl2. Panel D shows the extent of the dissipation 
induced by 40 mM KCl in the presence of increasing calcium concentrations (0.11; 0.44; 1; 2.2; 
3; 4; 5; 7.5; 10; 15 or 20 mM CaCl2). The bell-shaped curve results from a two phase 
exponential fit to the dataset. Values were plotted as the percentage of total gradient as 
calibrated after application of CCCP (blue arrows in A-C).  
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increased calcium entry into the synaptosomes for when a depolarizing stimulus was applied in 

the absence of calcium (0.5 mM EGTA; figure 38 A) the signal was absent. Conversely, the 

more calcium entered the pre-synaptic terminal, between 0 and 1 mM, the more dissipation of 

the H+ gradient occurred. Stable dissipation occurred between 1-4 mM CaCl2 while higher Ca2+  

concentrations resulted in a decrease in the acridine signal (Figure 38 D). Moreover, the 

calcium ionophore A23187 caused a rapid and maximal dissipation of the gradient (Figure 38 

C). Therefore, the results evidence that the transient dissipation of the proton gradient by 

high KCl is clearly Ca2+-dependent. 

 

3.2.1.6. The pre-synaptic effect of strontium reported in synaptosomes 

 
 Despite the fact that calcium is directly involved in depolarization-induced transient 

H+-gradient dissipation there was still some doubt as to which molecular determinant(s) 

participate in that event. Therefore, we addressed this question by substituting calcium with 

increasing strontium concentrations (figure 39).  We found that equimolar SrCl2 was capable 

of eliciting sub-maximal H+-gradient dissipation in response to a depolarising stimulus. This 

was overcomed by increasing SrCl2 to 10 mM that rendered a response with a similar 

amplitude to the one obtained with 2.2 mM CaCl2. Yet, the time course of that transient was 

markedly different from the one obtained with calcium. The H+-gradient dissipation endured 

much longer than with calcium and there was almost no recuperation of A.O. fluorescence 

signal with high strontium (figure 39 A). Moreover, there was a marked increase in the rise 

time (from 10%-90%) with strontium which was also concentration-dependent (figure 39 B).  

The experiments with strontium were quite revealing since strontium was found to 

tamper with vesicular Ca2+ accumulation through the antiport and to be unable to induce 

measurable H+ displacement from sheep brain cortex synaptic vesicles (Gonçalves et al., 

1999). These arguments favour the hypothesis that Sr2+ is not transported through the 

vesicular Ca2+/H+-antiport while it is capable of entering the terminal upon depolarization (Xu-

friedmann and Regehr, 2000) and interact with Ca2+-binding partners like the mediatophore 

(as reported above with Torpedo) as well as to elicit vesicular fusion (Kishimoto et al., 2001; 

Neves et al., 2001; Shin et al., 2003) and support endocytosis (Guatimosim et al., 1998; Neves 

et al., 2001; Kilic et al., 2001). Despite doing so with decreased efficiency in all these 
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functions due to reduced affinity to Ca2+-binding partners when compared to calcium (see 

section 3.2.1.2).  

In figure 39, strontium also displayed a lower potency but was capable of substituting 

calcium and elicit transient H+-gradient dissipation in depolarised synaptosomes with a similar 

efficiency at high [Sr2+]. Strontium-induced dissipation was probably due to vesicular fusion 

only, since rapid efflux of H+ from vesicles was not expected to occur with strontium. Yet, 

the time required to develop a H+-gradient dissipation similar in amplitude to the one obtained  

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 39. Strontium is a slower substitute of calcium for depolarization-induced dissipation 
of the proton gradient from acidic compartments within mossy fibber synaptosomes isolated 
from rat hippocampus. Panel A. Proton gradient across acidic compartments was monitored 
with acridine orange (as in figure 36). Traces show transient H+ gradient dissipation by 
40 mM KCl, in the presence of either 2.2 mM CaCl2 (black trace) or alternatively 2.2 mM (light 
grey) or 10 mM SrCl2 (dark grey) and then fully dissipated by addition of 10 µM CCCP. Traces 
are representative of 6 experiments. Panel B shows KCl-induced transient from panel A in 
detail. Inset table shows mean ± SEM of the rise time (from 10% to 90%) of the transient 
proton gradient dissipation following depolarization with KCl of the same set of experiments 
(n=6). Strontium dissipates the proton gradient significantly slower than calcium (Unpaired T-
test: *p<0.05; **p<0.01).  

Rise time (s)
(of transient proton gradient dissipation)

17.2 ± 2.3 s*2.2 mM Sr2+

29.6 ± 5.5 s**10 mM Sr2+

10.5 ± 1.3 s2.2 mM Ca2+

Rise time (s)
(of transient proton gradient dissipation)

17.2 ± 2.3 s*2.2 mM Sr2+

29.6 ± 5.5 s**10 mM Sr2+

10.5 ± 1.3 s2.2 mM Ca2+
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with calcium was considerably extended (from ~10.5 s to ~29.6 s) reflecting the loss of rapid 

response with strontium but present with calcium. The difference in H+-dissipation rates 

observed between the two cations probably reflects an early action of the Ca2+/H+- antiport 

present with calcium, followed closely by exocytosis that is present with calcium and 

strontium. The exocytosis of recently calcium-filled vesicles is also concordant with the 

participation of vesicular fusion in intra-terminal (Dunant et al., 1980b; Párducz and Dunant., 

1993; Párducz et al., 1994) and extracellular (Heinemann et al 1977, Borst and Sakmann, 1999; 

Stanley, 2000; Massimini and Amzica, 2001; Rabi and Thoreson, 2002; Rusakov and Fine, 

2003) calcium homeostasis. 

Strontium was also revealing to intra-terminal ionic homeostasis mechanisms, since 

the H+-gradient dissipation was significantly prolonged. This could have arisen from the 

persistence of exocytosis due to sustained [Sr2+]int elevation or by decreased vesicular re-

filling of endocytosed vesicles. This later hypothesis seems unlikely because increasing [Sr2+] 

should result in an increase in the endocytotic rates (Guatimosim et al., 1998) and not the 

opposite. Concordantly, lingering H+-gradient dissipation is consistent with the persistence of 

Sr2+ ions within the synaptosomes reported by Xu-friedman and Regehr, (2000) originating 

consecutive rounds of fusion that maintain H+-gradient dissipation until Sr2+ clearance from 

the cytosol falls [Sr2+]int under the threshold of vesicular fusion activation. In a sense, A.O. 

reported the persistence of [Sr2+]int within depolarised rat hippocampus mossy fibre 

synaptosomes. 

 

3.2.1.7. The pre-synaptic effect of nicotine reported in synaptosomes 

 
 As shown above, when a KCl challenge is applied in the presence of Ca2+ or Sr2+ , 

transmitter release is accompanied by a significant dissipation of the vesicular H+-gradient. 

We expected therefore that this phenomenon will take place in any circumstance where 

transmitter release would be elicited efficiently. To our surprise, it is not the case. We 

applied 25 µM nicotine to mossy fibre synaptosomes, a dose which was sufficient to induce 

Ca2+-dependent glutamate release in an amount equivalent to that released by 30-40 mM KCl 

(Bancila et al., 2004, 2008). However, this was not accompanied by any change in A.O. 

fluorescence (figure 40), nor by any detectable modification of the synaptosomes membrane 
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potential (Bancila et al., 2008). The fundamental difference between the two secretagogues 

may be that while KCl opens VOCCs through a depolarization step, conveying abrupt Ca2+ entry 

at active zones that are packed with vesicles, nicotine binds Ca2+-permeable ACh receptors 

that allow for a slower calcium entry elsewhere, probably triggering the liberation of 

intracellular stores of calcium (Bancila et al.,  2008).  In that case, it seems that there must 

be a robust calcium transient occurring close to synaptic vesicles to elicit measurable H+-

gradient dissipation with A.O. (figure 40). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 40. Although able to efficiently trigger glutamate release, nicotine is unable to elicit 
any transient dissipation of the vesicular proton gradient, in mossy fibber synaptosomes from 
rat hippocampus.  Proton gradient was monitored by adding 10 mg protein/ml synaptosome 
suspension to Krebs solution containing 3 μM acridine orange. Trace shows that vesicular 
transmembrane H+ gradient was not dissipated by nicotine (25 µM) but was transiently 
dissipated by 40 mM KCl in the presence of 2.2 mM Ca2+, and then fully dissipated by addition 
of CCCP (10μM). Representative experiment of n= 10. 
 

3.2.1.8. Can antiports and carriers work at the speed of ion channels? 

 
It is known that Ca2+-pumps that transport Ca2+ at expense of metabolical energy are 

far more slower to completely dissipate Ca2+ than the explosive Ca2+ entry through VOCC’s 

occurring <1ms. Ca2+-ATPase provide slow calcium decay time constants that are typically in 

the time scale of ca. 100 ms in neurons (Helmchen et al., 1996) up to 10 s in chromaffin cells 

(Neher and Augustine, 1992). Particularly high rates of extrusion obtained with Ca2+-ATPAses 

have been demonstrated in the stereo-cilia of bullfrog hair cells where the plasma membrane 
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Ca2+-ATPase isoform 2a clusters at high density (2000/μm2; Yamoah et al., 1998) producing a 

~1.3 pA current and, nevertheless, extrudes Ca2+ with a time constant of ~75ms (Lumpkin and 

Hudspeth, 1998; Dumont et al., 2001). 

On the other hand, secondary active transport provided by carriers that rely on pre-

existent ionic gradients has been viewed until recently as no match for the flow that is 

obtainable with ion channels (Usually ~1000-fold lower; Kirichok et al., 2004; Accardi and 

Miller, 2004).   

Recently, the borderline between carriers and channels has dimmed considerably. The 

mitochondrial calcium uniport was thought to be a carrier, driven by the inner mitochondrial 

electrochemical gradient, with a maximum turnover rate of ~2 x 104 Ca2+s-1 as measured in 

suspension (where apparently transport was saturable). It turned out to be a high affinity ion 

channel with multiple conductance states (2.6 pS up to 5.6 pS) and capable of impressive 

turnover  rates of 5 x 106 Ca2+s-1 at very high [Ca2+] (Kirichok et al., 2004).  

Similarly, some members of the CLC gene family that encode for anion (mainly Cl-) 

channels at plasma, endosomal/lysosomal or vesicular membranes turned out to behave as 

antiports with turnover rates of ~105 s-1, which is rather low for an ion channel but high for 

an antiport (Accardi and Miller, 2004; Piccolo and Pusch, 2005; Scheel et al., 2005; De Angeli 

et al., 2006). These antiports rely on the pre-established gradient of either ion that drives 

the active transport of its exchange partner (Accardi and Miller, 2004). This mechanism has 

revealed itself far advantageous for the accumulation of nitrate into plant vacuoles with an 

accumulation factor of 50 instead of 3 through a nitrate-selective channel (Angeli et al., 

2006).  

Within a nerve terminal microdomain, [Ca2+]int rises rapidly and, especially in the case 

where vesicles constitute an obstacle for free diffusion of Ca2+ and buffers (Roberts, 1994; 

Shahrezaei and Delaney 2005) it might reach very high concentrations. High [Ca2+]int provides 

favourable conditions for the observed very rapid uptake of Ca2+ into synaptic vesicles that 

benefits from both the H+ and the Ca2+ gradients, since most of the vesicular calcium within 

SVs is bound to the vesicular matrix (Mahapatra et al., 2004). 

These observations conjugated with our results point to the conclusion that antiports 

might work fast enough to control sub-millisecond Ca2+-dependent reactions, like rapid 

neurosecretion.  
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3.2.2. Vesicular Ca2+ transport shapes long-lasting intracellular [Ca2+] and 

neurotransmitter release 

 
3.2.2.1. Inhibition of vesicular Ca2+/H+-antiport raises [Ca2+] to desensitization 

levels 

 
Mossy fibre synaptosomes were used to assess the effect of vesicular proton pump 

inhibitors in glutamate secretion (figure 41). MFS were pre-incubated for 20-30 minutes in 

the absence (control) or in presence of V-type H+-ATPase inhibitors (bafilomycin or DCCD). It 

is recalled that after such a treatment, the H+ gradient is fully dissipated (figure 36). MFS 

were then depolarised with 40 mM KCl during 5 min after which the synaptosomal suspension 

was centrifuged and the amount of glutamate in the supernatant was measured by 

chemiluminescence (Fosse et al., 1986; Israël et al., 1993; Helme-Guizon et al., 1998; Bancila 

et al., 2008). 

MFS submitted to bafilomycin or DCCD pre-incubation released approximately the 

same amount of glutamate as control synaptosomes (figure 41). This was a rather unexpected 

result since it had been reported previously a time-dependent inhibition of either glutamate 

release from guinea-pig cerebral cortex synaptosomes with CCCP (Sanchez-Prieto et al., 

1987); aspartate release inhibition from cultured cerebellar granule cells with bafilomycin 

(Cousin and Nichols, 1997) as well as glutamate release inhibition with bafilomycin in rat 

hippocampal synaptosomes (Bradford and Nadler, 2004). However, the later study also 

revealed that aspartate release was slightly increased with bafilomycin instead of decreased 

like glutamate release; the divergent effect was proposed to arise from the putative release 

of aspartate from the cytoplasm by a yet-undescribed Ca2+-dependent mechanism.  

In the MFS preparation one such mechanism might have been involved in Ca2+-

dependent glutamate release, as proposed recently (Israël and Dunant, 2004).  

However, the differences in bafilomycin (and DCCD or CCCP) effects on transmitter 

release might have a simpler explanation related to the calcium load supported by the 

different preparations. Bafilomycin induced a small but steady increase in MFS basal 

[Ca2+]cytosol (figure 42) during 15-20 min that did not compromise further [Ca2+]cytosol increase 

upon depolarization (which was approximately twice that of controls; figure 43) and did not  
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Figure 41.  Effect of vesicular H+-ATPase inhibitors on glutamate release by rat hippocampus 
mossy fibre synaptosomes. Glutamate was released from synaptosome suspension (3 mg 
protein/ml) kept in Krebs medium containing 2.2 mM CaCl2 during 5 minutes. Then, 
synaptosomal suspension was centrifuged and the amount of glutamate released into the 
supernatant was monitored by chemiluminescence. Reactions were carried out in the absence 
of stimulation (Krebs) or after depolarization with KCl. Panel A. Glutamate release from 
synaptosomes pre-incubated for 30 min in the absence (control), or in the presence of 1 µM 
bafilomycin A1. Panel B. Glutamate release from synaptosomes pre-incubated for 20 min in 
the absence (control), or in the presence of 50 µM DCCD. Values show mean ± SEM of 5-6 
experiments. 
 

compromise glutamate release (figure 41). Conversely, pre-incubating Torpedo electric organ 

synaptosomes with bafilomycin for 15 minutes in the presence of 3.4 mM CaCl2 was enough to 

block ACh secretion (figure 44 B and D). A major difference between the two preparations is 

their resting membrane potential: -85 mV in rat MFS (Bancila et al., 2004, 2008) versus -50 

mV in Torpedo (Meunier, 1984). This means that, under resting conditions, rat MFS are 

exposed to minor Ca2+ entry through VOCCs (Catterall, 2000) than synaptosomes of the 

electric organ. 
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Figure 42. Bafilomycin A1 effect on basal [Ca2+]Cytosol increase in rat brain hippocampus, mossy 
fibre synaptosomes. Traces show average fluorescence with Fura-2-AM loaded synaptosomes 
after 15 minutes incubation in Ca2+-free mammalian Krebs in the presence (grey trace) or 
absence (black trace) of bafilomycin A1 (0.5 µM). 1.33 mM CaCl2 was added at 20 s. Values 
show averages ± SEM of 4-5 experiments. Bafilomycin A1 (grey) increased significantly basal 
[Ca2+]Cytosol (Two-way ANOVA: *p<0.05) as compared to control (black). 
 

  
  

 
 

 

 

 

 

 

 

  

 
 
Figure 43. Effect of bafilomycin A1 incubation during 20 minutes in presence of calcium on 
[Ca2+]Cytosol rise after depolarization of rat brain hippocampus, mossy fibre synaptosomes. 
Traces show average fluorescence with Fura-2-AM loaded synaptosomes after incubation for 
20 minutes in 1.33 mM CaCl2 containing mammalian Krebs in presence (grey trace) or absence 
(black trace) of bafilomycin A1 (0.5 µM). Fluorescence was measured for 100 s before (basal) 
depolarization with 40 µM veratridine (arrow). Values show averages + SEM of 3-4 
experiments. Inset shows the basal [Ca2+]Cytosol as the average ± SEM of first 60 seconds 
(basal) and [Ca2+]Cytosol after depolarization as the average ± SEM of last 60 seconds.  
Bafilomycin A1 (grey) increased significantly the [Ca2+]Cytosol before (basal) and after a 
depolarizing stimulus  (Two-way ANOVA: *p<0.0001) as compared to control (black). 
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Figure 44. Bafilomycin A1-induced desensitization of ACh release from Torpedo electric 
organ synaptosomes. Panel A-C: Representative traces of ACh release from the synaptosomal 
fraction (30 µl; with ~60 µg protein), using the chemiluminescent enzymatic method. Panel D: 
Values show mean ± SEM (n=4) of conditions shown in panel A-C. Samples were pre-incubated 
15 min in elasmobranch saline medium containing 3.4 mM CaCl2, with (+, grey and black traces 
and bars) or without (-, blue trace and bars) 2 µM bafilomycin A1. After this pre-incubation, 
samples were either promptly depolarized with 100 µM veratridine to elicit ACh release (blue 
and grey traces) or were allowed to rest in low Ca2+ for 5 min (by adding 3.5 mM EGTA) 
before 100 µM veratridine followed by more 3.4 mM CaCl2 additions to elicit ACh release 
(black trace and bars). Remaining ACh content within synaptosomes was quantified after 
permeabilization with 5 µl Triton X-100 1%. Standards with known amounts of ACh were used 
to calibrate transmitter release and remaining content of synaptosomes. Inset shows total 
ACh obtained by addition of Ca2+-induced ACh release and the remaining ACh revealed using 
Triton X-100. Pre-incubation of synaptosomes with bafilomycin A1 in the presence of calcium 
completely suppressed Ca2+-dependent ACh release (Unpaired T-test: **p<0.0001) and was 
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accompanied by preservation of ACh content remaining within synaptosomes after stimulus 
(Unpaired T-test: *p<0.05). 
 

On the contrary, calcium entry through VOCCs in slightly depolarised Torpedo 

synaptosomes whose calcium clearance is impaired is expected to results in Ca2+-induced 

desensitization of transmitter release (Adams et al., 1985), due to a desensitization of the 

mediatophore (Israël et al., 1987). The experiment illustrated in the figure 44 B and D clearly 

support this explanation. Desensitised terminals could regain ACh release capacity provided 

that intracellular Ca2+ concentration was reduced, during 5 minutes, with EGTA. After that 

period, simultaneous addition of veratridine and normal [Ca2+]out fully recuperated ACh release 

(figure 44 C and D). This later result pinpoints [Ca2+]int rise as responsible for bafilomycin 

action on ACh release, in detriment of any another effect bafilomycin might do. 

Interestingly, there was no desensitization of ACh release in Torpedo synaptosomes 

without bafilomycin (figure 44 A and D), revealing that vesicular Ca2+/H+- antiport activity is 

important in keeping basal calcium under desensitization levels. 

 

3.2.2.2. Inhibition of Ca2+-pumps and desensitization of transmitter release 

 
 Calcium homeostasis and the keeping of very low [Ca2+]int under resting conditions has 

been attributed to the action of Ca2+-pumps (P-type Ca2+-ATPases) at the plasma membrane, 

endoplasmic reticulum and synaptic vesicles (Israël et al., 1980; Michaelson et al., 1980; 

Rephaelis and Parsons, 1982; Fossier et al., 1998; Gonçalves et al., 2000a; Villalobos et al., 

2002; Rizzuto and Pozzan, 2006).  

 We addressed the participation of P-type Ca2+-ATPases in the regulation of synaptic 

transmission in Torpedo electric organ prisms. Figure 45 shows representative experiments 

of prisms kept under continuous perfusion with elasmobranch saline medium (control; figure 

45 A) or supplemented with 10 µM orthovanadate (figures 45 B and C). Electric responses 

were elicited (by paired pulse field stimulation) at indicated times over a ~10h period. Control 

prisms (figure 45 A) constantly held robust electrical responses of approximately constant 

amplitude during the entire experiment. On the contrary, prisms perfused in 10 µM 

orthovanadate-containing saline medium developed a time-dependent decrease of the evoked 

response until full inhibition occurred after 5h55. After that, prisms exposed to 

orthovanadate were either washed out by replacement with normal elasmobranch saline 
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medium (figure 45 B) or supplemented with 50 µM BAPTA-AM to the orthovanadate 

containing medium (figure 45 C). There was a very slow recuperation of transmission resultant 

from orthovanadate washout, with little recuperation after 1h drug washout that evolved to a 

maximum of ~75% of initial amplitude after 3h20 (figure 45 B). Strikingly, BAPTA-AM 

addition to the perfusion medium resulted in ~50% recuperation of original amplitude in less  

than 1h and full recuperation (100%) after 4h20, in spite of the remaining presence of 

orthovanadate (figure 45 C). The fact that the fast calcium chelator (BAPTA) was more 

effective than the simple washout of the Ca2+-pump inhibitor (orthovanadate) supports for an 

intracellular Ca2+-dependent inhibition of transmission that is normally prevented by the 

rather slow pumping activity of Ca2+-ATPases. These are normally responsible for bringing 

Ca2+-levels within the terminals under the threshold of ACh-release machinery 

desensitization.  

 The rather slow nature of the effects of Ca2+-ATPase pumping inhibition are also 

patent in the time-course of 45calcium accumulation and extrusion within stimulated or 

unstimulated prisms with normal Ca2+-ATPase activity (control) or prisms whose Ca2+-pumping 

activity was compromised with 10 µM orthovanadate pre-incubation (figure 46). The rate of 
45Calcium extrusion from prisms was measured by washing them out with standard 

elasmobranch medium (+/- orthovanadate), without 45calcium, during 0, 5, 10, 15 or 30 min 

before placing the tissue in ice-cold medium and proceed with measurement of cellular 
45calcium using a radioassay counting (see figure 19 as well).  

Orthovanadate did not affect the initial content of 45calcium within unstimulated 

prisms or within prisms soon after a 12 s tetanus at 100 Hz. This result is in striking contrast 

to the effect reported with bafilomycin (figure 19) and highlights the little, if any, 

participation of Ca2+-ATPases in the immediate (up to a few seconds) extrusion of Ca2+ that 

entered the terminal during the 12 s train. In contrast to bafilomycin, there was a slowly 

developed retention (or decreased extrusion) of 45calcium within stimulated as well as 

unstimulated prisms that became significant between 15 and 30 min (figure 46).  

It is interesting to notice that there was no greater effect with stimulated prisms as 

compared to non-stimulated ones, highlighting the rather slow nature of Ca2+-ATPases in 

keeping low resting calcium concentrations within nerve endings and contributing to the notion 

that other Ca2+-transporting partners (like the Ca2+/H+-antiport) are responsible for the early 

phases of Ca2+- extrusion (compare figures 19 and 46).  
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3.2.2.2. Ca2+/H+-antiport and Ca2+-ATPase play complementary roles in Ca2+ 

homeostasis  

 
These results highlight the complementary nature of the different vesicular calcium 

transport systems. On the one hand, a Ca2+/H+- antiport which is operative from the near mM 

[Ca2+]int reached within few microseconds of VOCC opening (LLinás et al., 1992; Roberts, 1993) 

until [Ca2+]int drops <100 µM (Gonçalves et al., 2000a) within calcium microdomains at active 

zones, and is capable of modulating the timing of phasic transmitter secretion (see section 

3.2.1). On the other hand, a vesicular Ca2+-ATPase which participates in later (from few ms up 

to several minutes) Ca2+ extrusion when [Ca2+]int drops under 100 µM (Israël et al., 1980; 

Michaelson et al., 1980; Rephaelis and Parsons, 1982; Fossier et al., 1998; Gonçalves et al., 

2000a), helping to bring [Ca2+]int at <1 µM level, where other Ca2+-ATPases working at higher  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 46. Ortovanadate effect on the accumulation into and extrusion of calcium from 
prisms. Excised prisms were incubated in elasmobranch saline medium with 3.4 mM CaCl2 
supplemented with 45Calcium (2 µCi/ml) in the absence (control in black) or presence of 10 µM 
Na-orthovanadate (grey). Then, unstimulated (circles) or stimulated (squares) prisms were 
prepared for quantification 0, 5, 15 and 30 min after the tetanus, by washing in standard 
medium without 45Calcium in absence (control) or presence of 10 µM Na-orthovanadate. 
Traces show mean ± SEM (n=4) 45Calcium accumulated within prisms. Orthovanadate increased 
basal 45Calcium levels above control after 30 min (Unpaired T-test: *p<0.001). 
 
 
Ca2+-affinity (Gonçalves et al., 2000a; Villalobos et al.,2002; Rizzuto and Pozzan, 2006) at the 

plasma membrane and the endoplasmic reticulum help to bring down [Ca2+]int to the 10-7 M 
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range (Rizzuto and Pozzan, 2006). 

 These two, complementary, vesicular Ca2+-transport systems seem to be intimately 

related with the vesicular exo-endocytic cycling rates (estimated by the number of pits at 

any given time) since there is an exocytotic burst of vesicle fusion activity occurring right 

after (but not during) a train of stimuli (Párducz  and Dunant, 1993; Párducz et al., 1994) that 

conveys the recently accumulated Ca2+ by the vesicular Ca2+/H+-antiport (see figure 19) out of 

Torpedo terminals. The exocytotic burst is likely to continue at even higher rates for at least 

one minute more (maximum of ca. 33 pits/100 µm2) and falling back to resting rates after 30 

min. Within this time-frame it is more likely that the Ca2+ transported by the vesicular Ca2+-

ATPase will get to be preferably discharged out of the terminal since bafilomycin has little 

effect on later 45calcium extrusion (figure 19), while orthovanadate significantly affected 

extrusion rates within that period (figure 46).  

 Orthovanadate is not a selective inhibitor of vesicular Ca2+-ATPases alone and the 

extrusion of Ca2+ by Ca2+-ATPases in other locations is probably affected by this drug as well. 

Yet, there seems to be a striking coincidence for the need of fusion events following periods 

of neuronal activity that support the need for Ca2+-extrusion through vesicular fusion 

convergent with periods of vesicular Ca2+-ATPase activity. Moreover, basal fusion rates 

occurring within Torpedo terminals are also rather high (ca. 22 pits/100 µm2) and argue in 

favour of a participation in Ca2+ extrusion even in resting conditions (and to accomplish other 

functions like molecular trafficking at the membrane, etc…).  

This is also consistent with the high calcium levels registered within synaptic vesicles 

in unstimulated (Goffinet, 1978; Mizuhira and Hasegawa, 1997; Pezzati and Grohovaz, 1999) 

as well as stimulated neurons (Párducz et al., 1987; Párducz and Dunant, 1993; Párducz et al., 

1994) and adrenal medulla cells where calcium is first accumulated into vesicles and granules 

and released by exocytosis in later stimulations (Von Grafenstein and Powis, 1989; Mahapatra 

et al., 2004).  

The immense membranous surface area provided by synaptic vesicles seems to 

contribute to dealing with some Ca2+ leaking into cells (Rizzuto and Pozzan, 2006) under 

resting conditions and with any uncoordinated Ca2+ entry occurring through clusters of VOCCs 

at active zones that may participate in resting calcium entry. These notions arise also from 

the data presented on this and the previous sections highlighting a joint action of vesicular 
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Ca2+-ATPases, as well as the vesicular Ca2+/H+-antiport participating in the maintenance of 

resting calcium homeostasis that adds to the participation in calcium dynamics upon activity. 

Indeed, when the antiport is not tampered with (no inhibitor), nerve terminals seem 

quite capable of keeping low basal [Ca2+]cytosol levels (figures 35, 42 and 43) and to sustain 

transmitter release (figures 41 and 44), but fail to sustain ACh release in slightly depolarised 

nerve terminals and show a slight basal increase in [Ca2+]cytosol (figures 42 and 43) if the 

antiport is inoperative. Since bafilomycin has been shown not to affect exocytosis or 

endocytosis (Cousin and Nichols, 1997; Sankaranarayanan and Ryan, 2001; Zhou et al., 2000), 

it seems that nerve terminals rely on the H+-gradient to energise rapid vesicular Ca2+ 

transport followed by Ca2+-rich vesicle fusion that “unload” calcium into the extracellular 

medium. When rapid vesicular calcium transport is compromised vesicles keep fusing with the 

membrane but can no longer occupy themselves of Ca2+-extrusion and probably no longer carry 

their normal calcium load into the extracellular space. On the other side of the membrane 

there is also an additional Ca2+-load within the terminal that seems not to be balanced by 

slower calcium extrusion (figure 19).  

An additional suggestion that the lack of vesicular Ca2+ (or Sr2+) transport can 

implicate a slow accumulation of the divalent within the terminal was obtained under long 

incubations of Torpedo excised prisms with high SrCl2 concentrations in substitution for 

CaCl2. Figure 47 show a concentration-dependent effect of strontium on paired pulse 

stimulated prisms over a 20h period. At 20 mM SrCl2 prisms responded with unperturbed 

amplitude, even after 20h of incubation (figure 47 A). However, with 34 mM SrCl2 there was 

a decrease in the amplitude that was especially evident after 17h30 (figure 47 B). The 

amplitude of the response was strikingly affected with 50 mM SrCl2 with substantial 

amplitude decrease after 4h in SrCl2 and full inhibition after 18h (figure 47 C).  

This result might also explain why there was also a small (non significant) reduction 

both in the amount of [14C]-ACh release and a small reduction in the evoked EPP with 50 mM 

SrCl2 (figures 21 and 22) that could be attributed to an exhaustion of release capacity (or 

partial desensitization) since it was possible to maintain normal responses with high calcium 

concentrations but not with strontium.   

There was also a prolongation of the EPP time-course especially evident in the second 

pulse and with longer incubation times (figure 47). As discussed previously (sections 

3.2.1.2/3), EPP prolongation is the result of the absence of vesicular Sr2+/H+-antiport activity 
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leading to increased levels of residual Sr2+ within the active zones (Xu-friedman and Regehr, 

2000) and prolongation of the second EPP even more than the first stimulus. Desensitization 

was both concentration and time-dependent arguing in favour of an imbalance between slow 

Sr2+ entry and Sr2+-extrusion capacity resulting from the lack of a vesicular Sr2+/H+-antiport 

as well as a decreased efficiency of Ca2+-ATPases for Sr2+ transport (Graf et al., 1982). 

There is some resemblance between the results obtained with strontium and those obtained 

with 100 µM DBHQ (figure 31 C) where both vesicular calcium transport systems were either 

inhibited or overwhelmed with the end result being the desensitization of release over time.   

Lacking or reduced Sr2+ (also valid for calcium) exocytosis could also have contributed 

to the long-term desensitization effect. Indeed, drosophila temperature-sensitive dynamin  

 

 
 

 

 

 

 

 
 

 

 

 

 
 
 
 
Figure 47. Concentration and time dependence of Sr2+-induced desensitization of evoked 
electric response of Torpedo electric organ stacks of electrocytes (prisms). Traces show in 
succession the stimulation artefact, the synaptic delay and the electrical discharge produced 
by excised prisms submitted to paired-pulse field stimulation (20 ms interval between 
stimuli). Prisms were perfused with elasmobranch saline medium where CaCl2 was replaced by 
20; 34 or 50 mM SrCl2 in A; B and C, respectively. Electrocyte responses were registered 
after indicated times in SrCl2. Representative experiments of n= 4. 
 

mutant (shibire) that fails to endocytose above 29ºC show activity-dependent depletion of 

synaptic vesicles in nerve endings (Kosaka and Ikeda, 1983). Shibire mutants show decreased 
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Ca2+ entry even before vesicle depletion (Macleod et al., 2004) that gets accentuated 

(Macleod et al., 2004) or even suppressed (Umbach et al., 1998) after intense stimulation 

leading also to vesicle depletion occurring after complete inhibition of transmission at the fly 

NMJ (Delgado et al., 2000; Macleod et al., 2004). Decreased calcium entry in temperature 

sensitive mutants also seems to derive from VOCCs inhibition (Umbach et al., 1998; Macleod 

et al., 2004, 2006) but could also derive from Ca2+-dependent VOCCs desensitization after 

[Ca2+]int rise (Birman and Meunier, 1985; Forsythe et al., 1998; Lee et al., 1999; Catterall, 

2000; Findlay, 2004; Guo and Duff, 2006; Kreiner and Lee, 2006). Similarly, transmitter 

release blockade could be a direct result of compromised exo-endocytosis or resulting from 

subthreshold [Ca2+]int rise capable of inducing Ca2+-dependent inhibition of transmitter 

release. If so, the original intent of Macleod et al. (2004) to test for a role of vesicular 

calcium transport in pre-synaptic calcium regulation might not have been completely 

frustrated. Their results (as well as Umbach et al., 1998) point-out for an essential 

participation of normal vesicle cycling in the maintenance of calcium homeostasis. To get to a 

conclusion about Ca2+-induced desensitization of calcium entry and transmitter release it 

would have been quite clarifying to reverse the putative desensitization effect (i.e., with 

EGTA for 5 min.; see also figure 44) while maintaining vesicle depletion conditions (>29ºC) and 

assay for calcium entry and transmitter release, which was unfortunately, not done.  If the 

drosophila NMJ synapses also rely on cytosolic ACh release through a mediatophore (like 

demonstrated with Torpedo), transmission would have been recuperated also.  

Besides, to visualize the effects of Ca2+/H+-antiport on rapid (ms) calcium 

homeodynamics rapid detectors like KCa channels or fast post-synaptic detectors of ACh 

release like EPP’s would be the choice of election. Alternatively, one could measure the 

effects of not having synaptic vesicles in the amplitude of bulk [Ca2+]cytosol under conditions 

where rapid calcium transport into synaptic vesicles could contribute to the calcium load, 

instead of rather low CaCl2 (0.5 mM) and 30 times more MgCl2 (15 mM) used by Macleod et al. 

(2004) that, along side with diminished Ca2+-entry, typify conditions where hardly any rapid 

vesicular Ca2+ transport will be elicited.    

From the results presented above we have learned that reduced or compromised 

vesicular calcium transport has both short-term effects on calcium dynamics that affect 

transmitter release time-course and long-term effects dealing with calcium homeostasis that 

affect Ca2+-dependent inactivation processes like transmitter release desensitization (or 
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fatigue) or calcium-dependent VOCCs inactivation (CDI) (Birman And Meunier, 1984; Israël at 

al., 1987; Forsythe et al., 1998; Lee et al., 1999; Findlay, 2004; Guo and Duff, 2006; Kreiner 

and Lee, 2006).  

Both the short and long-term effects must be well present when trying to address 

the role of vesicular calcium in a given system. If for instance, we incubate bafilomycin in a 

system that is not fundamentally idle (like withTorpedo synaptosomes) one could get partial 

or total inhibition of transmission instead of increased secretion. Similarly, the use of 

strontium was quite revealing of the short-term effect but with a 10-fold decreased affinity 

and a slowly-developed desensitization effect at higher concentrations. Another important 

issue is the choice of an appropriate reporter of local Ca2+ microenvironment within active 

zones. We measured post-synaptic currents that result from very rapid highly synchronised 

Ca2+-dependent ACh release, with submillisecond precision. We were also able to register the 

effects of increased Ca2+ entry in the bulk [Ca2+]cytosol by using particularly fit synaptosome 

preparation (rat MFS: resting membrane potential of – 85 mV) and sufficiently strong Ca2+ 

entry to visualise the bafilomycin effects (high Ca2+/Mg2+ ratio).    

 
3.2.3. Ca2+-induced ACh depletion from synaptic vesicles 

 
Besides influencing the calcium concentration transients within synaptic terminals in 

the time scale of the millisecond up to minutes, vesicular calcium transport deeply affects 

the biochemical environment within that organelle.  

In fact, it has long been established a direct relationship between calcium entry into 

stimulated Torpedo nerve terminals and vesicular ACh depletion that is accompanied by Ca2+ 

accumulation within synaptic vesicles (Marchbanks and Israël, 1972; Babel-Guérin, 1974; 

Dunant et al., 1980b; Schmidt et al., 1980; Diebler, 1982). Vesicular calcium slowly increases 

ACh leakage out of vesicles and feeds the cytoplasmic pool of ACh from where the ACh is 

released through plasma membrane mediatophores (Dunant et al., 1972; Dunant et al., 1980b). 

Already in the early studies with Torpedo vesicles it was shown that they contained a 

core of tightly bound ACh and a small compartment of loosely bound ACh (Marchbanks and 

Israël, 1972).  

More recently, it was demonstrated that no more than ~5% of ATP and ACh exists in 

“free” unbound form within the vesicles. The remaining ACh and ATP are found in association 

with a proteoglycan vesicular matrix that is composed mainly by the glycan chains of the SV2 
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protein (Stadler and Wittaker, 1978; Scranton et al., 1993; Reigada et al., 2003). Most 

interesting was last author’s findings that both Na+ and Ca2+ can completely devoid vesicles of 

ACh and ATP with Ca2+ (EC50=~0.27 mM) being 10 x more potent than Na2+ (EC50=~2.6 mM) in a 

cooperative way (HillCa=2; HillNa=4). The effect was exerted by binding of the ions to sulphate 

residues and sialic acid-Ca2+-galactose complexes to which ACh and ATP were bound, 

respectively. 

Vesicular ACh/ATP depletion was reversible by lowering ionic strength (this was 

prevented by EGTA) and re-filled vesicles were again competent for ACh/ATP unbinding upon 

addition of Ca2+ or Na+ (Reigada et al., 2003). They used lysed or Triton X-100 permeabilised 

vesicles where both ions and transmitters were in contact with the assay medium. Ca2+-

binding to the matrix resulted in a substantial hydration, causing a 2-fold increase in matrix 

dimensions (Reigada et al., 2003).   

We wanted to determine whether synaptic vesicles are capable of releasing their ACh 

content in response to calcium challenges with different intensities. For that we isolated 

Torpedo electric organ synaptic vesicles and continuously followed the ACh released from the 

vesicular compartment (Figure 48). Torpedo synaptic vesicles are quite rich in ACh that 

remains stably within the organelles, even in the presence of calcium (first two columns).  

When vesicles were selectively permeabilised to calcium with 3 µM ionomycin free acid, there 

was no significant decrease in ACh content of vesicles provided that Ca2+ was not present. 

However, when as little as 6 µM up to 2.5 mM CaCl2 was also added there was an ~70% 

decrease in the vesicular ACh content that increased to 100 % depletion when the calcium 

salt of ionomycin was used (last two columns to the right). The calcium salt form of ionomycin 

was also capable of eliciting calcium-induced ACh release from Torpedo vesicles much faster 

than the free acid form (inset in figure 48).  

In figure 49 we used synaptic vesicles isolated from sheep brain cortex where ACh 

release from synaptic vesicles was elicited by adding 500 µM CaCl2 even in the absence of 

permeabilisation. It seems therefore that Ca2+/H+-exchange is capable of releasing ~2/3 of 

ACh from this vesicle suspension under the present experimental conditions.  

The results in figures 48 and 49 highlight the existence of an adapted response of 

synaptic vesicles to slow or rapid calcium entry that is capable of partial or total depletion of 

vesicular ACh that diffuses away from the vesicular compartment.  
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Torpedo vesicles are particularly rich in ACh (figure 48). However, when Ca2+ ions 

gained access to the intravesicular compartment by using ionomycin, there was a considerable 

decrease in the total vesicular ACh content that was more pronounced with the calcium salt 

than the free acid form of ionomycin (figure 48). The calcium salt form of ionomycin was also 

faster in depleting Torpedo vesicles from their ACh molecules (inset in figure 48). Similarly, 

sheep brain cortex synaptic vesicles released most of their ACh content when Ca2+ was 

allowed inside the vesicular compartment by the Ca2+/H+-antiport (figure 49).  

The actual mechanism of ACh leakage is still a matter of debate. The vesicular ACh 

transporter (VAChT) working in reverse mode may convey “free” ACh out of SVs. However, 

this hypothesis has been discarded on the account that the over expression of VAChT 

actually increases the quantal size (Song et al., 1997). Another plausible candidate is the  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 48. Modulation of vesicular acetylcholine content by calcium-acetylcholine exchange in 
synaptic vesicles isolated from Torpedo marmorata electric organ.  Vesicles (25 µl of Torpedo 
s.v. fraction) were allowed to release ACh for 20 min in increasing calcium concentrations (0 
to 2.5 mM) in presence or absence of ionomycin (free acid or Ca2+-salt). After that, vesicular 
content was determined by chemiluminescence by addition of 5 µl Triton X-100 1% to the 
synaptic vesicle suspension followed by standard amounts of ACh. Bars show the average ± 
SEM (n=3-11) of remaining ACh within vesicles after 20 minutes. Inset graph shows ACh 
release from Torpedo synaptic vesicles upon addition of 3 µM ionomycin free acid (panel A) or 
3 µM ionomycin calcium salt (panel B) to medium containing 25 µM CaCl2. Whenever calcium 
was allowed inside vesicles there was a significant reduction in vesicular ACh content 
(Unpaired T-test: *p<0.001). 
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Figure 49. Ca2+ transport through vesicular Ca2+/H+-antiport induces ACh release from sheep 
brain cortex synaptic vesicles. Vesicle suspension (0.6 mg protein/ml) was added to medium 
containing 1 mM ATP and enzymes for chemiluminescent ACh detection. Trace shows ACh 
release from vesicles after 500 µM Ca2+ addition, followed by addition of known amounts of 
ACh. After that, the remaining ACh within vesicles was determined by addition of 5 µl triton 
x-100 1% followed by standard amounts of ACh.  
 

plasma membrane choline transporter that is permeable to ACh at high concentrations 

(Marchbanks and Wonnacott, 1979) and is positioned to transport ACh out of synaptic 

vesicles where it is largely concentrated (70-90%) in cholinergic nerve terminals (Ferguson et 

al., 2003; Nakata et al., 2004). Although the choline transporter is a Na+-coupled transport 

system, it is homologous to the Na+-glucose transporter (SGLT1) which is capable of driving 

transport by using the pH gradient (Hirayama et al, 1994).  

 Irrespective of which is the ACh-leakage mechanism out of synaptic vesicles we found 

functional evidences that support for a modulatory role for Ca2+/H+-antiport and Ca2+-ATPase 

vesicular calcium transport in the displacement of ACh out of synaptic vesicles (figure 50). 

Torpedo prisms were incubated in the absence (control) or in the presence of 2 µM 

bafilomycin plus 10 µM orthovanadate and submitted to 12 s tetanus at 100 Hz. Prisms were 

allowed to recuperate and the amount of “bound” or vesicular ACh and total ACh content in 

tissue was determined. Under such conditions, there was a strong reduction of the vesicular 

ACh content, but in the tissue stimulated in the presence of vesicular Ca2+-transport 

inhibitors, vesicular ACh was greatly preserved in the stimulated terminals, as compared to 

untreated controls. 

This result evidences the fact that Torpedo synaptic vesicle ACh content is 

modulated by the action of vesicular calcium transport systems. It was obtained after a 

rather intense stimulation but finds an echo in previous reports where calcium turnover 

between the extracellular medium and tissue calcium happened already in non-stimulated  
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Figure 50. Effect of bafilomycin A1 and orthovanadate on the acetylcholine content of 
prisms after stimulation. Prisms were incubated for 2h in elasmobranch saline medium with 2 
µM bafilomycin A1 and 10 µM Na-orthovanadate; they were stimulated at 100 Hz for 12 
seconds and allowed to rest for 2h30 before extraction of ACh from prisms. Total ACh was 
obtained by homogenizing the tissue in presence of T.C.A. while in the vesicular pool 
homogenization took place in the iso-osmotic medium, with T.C.A. being added 1 min later. 
Bars show average of 4 experiments ± SEM. Vesicular ACh content was significantly higher in 
tissue bathed and stimulated in presence of both bafilomycin A1 and Na-orthovanadate than 
in untreated controls (Unpaired T-test: p <0.05). 
 

tissue (but not in 0 [Ca2+]out) and fastened with stimulation when vesicular ACh was also 

decreased (Babel-Guérin, 1974; Dunant et al., 1980b).  

Synaptic vesicles at Torpedo terminals seem to have many faces. They begin as 

recently arrived organelles, emptied of ATP, ACh and calcium. This population was named VP0 

and is capable of accumulating ACh and ATP but not Ca2+. In resting terminals, they mature 

into a new population (named VP1) of fully charged (with ACh and ATP) vesicles displaying 

little ACh uptake activity but a high capacity of Ca2+ accumulation. Finally there is a third 

population of vesicles (VP2) that are seen preferably after prolonged stimulation, these are 

denser and no longer accumulate Ca2+ but accumulate ACh and ATP again (Kiene and Stadler, 

1987; Stadler and Kiene, 1987; Bonzelius and Zimmermann, 1990). There is good evidence that 

the latter population is composed of vesicles which were emptied either by stimulation or by 

other causes and which are in the process of refilling by newly synthesised ACh from the 
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cytosol. Vesicular filling with either transmitter or metal ions, therefore, seems to determine 

the vesicular pools present within the terminal but also to reflect recent terminal history.  

The very possibility of modulation of vesicular ACh content is hardly accomodable 

under the scope of the so-called “vesicular theory” where the average number of ACh 

molecules “packed” inside a synaptic vesicle is believed to correspond to the well defined 

number of ACh molecules that are released at the same time –the quantum of transmitter 

molecules. Therefore the vesicular theory implies that the vesicular transmitter content 

should not change significantly.  

Conversely, if we assume that a quantum of ACh molecules is generated by transient 

opening of an ACh-conducting pore at the plasma membrane the hypothesis of a decrease in 

vesicular ACh upon stimulation gains considerable momentum. In order to keep steady the  

7000-10000 molecules that compose a quantum in Torpedo nerve terminals (Dunant and 

Muller, 1986; Girod et al., 1993) ACh leakage from within the synaptic vesicle space could 

function as an “on demand” (by exchanging vesicular ACh for the Ca2+ entering vesicles) re-

filing device of the cytoplasmic pool. This would prevent localised transmitter rundown of 

cytoplasmic ACh, near release sites, under intense stimuli at the same time that they capture 

large amounts of Ca2+ before returning them to the extracellular space by exocytosis. In a 

single run of exocytosis a vesicle would have prevented both ACh depletion and [Ca2+] build-up 

in the microdomain and contribute to maintaining the appropriate Ca2+ and ACh gradients 

across the plasma membrane to guarantee steady (quantal-like) fluxes upon stimulation.  

 Although the intimate relationship between synaptic vesicles and ACh secretion has 

been addressed in the past, in most cases the above-mentioned vesicular functions were 

mostly overlooked. In particular, the possibility that synaptic vesicles play a vital role in 

calcium homeostasis within a nerve terminal comes as striking when addressing systems that 

coordinate the release of ca. 10-20 ACh packets (subMEPPs) within less than 300 nm to 

compose a single quantum in response to a sudden [Ca2+] rise in 1/10 of a millisecond (Girod et 

al., 1993). Tampering with vesicular Ca2+ transport may compromise the amazing synchrony of 

mediatophores involved in the composition of a quantum or even compromise ACh release 

altogether by Ca2+-induced desensitization. 

   In the context of this work it is interesting to notice that different types of 

metabolic inhibitors ranging from proton uncouplers like CCCP, creatine kinase inhibitors 

(FDNB), thiol oxidizing agents (diamide) and botulinum toxin (that decreases ATP content by 
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50%; creatine phosphate <20%, and prevents rapid ATP supply by blocking creatine kinase 

activity, in Torpedo tissue) implicate a decrease in ATP availability that evolves into blockade 

of evoked transmission, at the same time that an increase in the frequency of subMEPPs 

(that are now desynchronized) occurs, as well as an increase in the occurrence of the 

otherwise rare giant MEPP (Molgó and Pécot-Dechavassine, 1988; Dunant et al., 1988; Van Der 

Kloot et al., 2000). This could be an early result of ATP depletion within the terminal, with 

Ca2+ transport being compromised everywhere (vesicles included), and consequently 

desensitization of mediatophores and inactivation of VOCCs by subthreshold elevation of Ca2+. 

All these processes will compromise evoked synchronized responses. At the same time 

individual mediatophores increase their open probability due to increased calcium leading into 

de-synchronisation. The same will probably happen to vesicular fusion but this time before 

having incorporated enough Ca2+ to deplete them of ACh. In that case, there will be a slow 

release of ACh from the vesicular matrix by exchange with extracellular Ca2+ and Na+ that 

could be on the basis of giant MEPPs, lasting tens of milliseconds. 

 

3.2.4. Requirement of Synaptotagmin I for vesicular Ca2+/H+ antiport activity 
 

3.2.4.1. Test for a vesicular Ca2+-transporting role for Synaptotagmin I  

 
Action potentials elicit calcium entry through VOCCs, a process which lasts 

somewhere between 0.1 to 1 ms. The corresponding current has been estimated to be ~50 fA 

per channel with ~150 Ca2+ ions entering into an active zone during ~500 µs channel opening 

(Fenwick et al., 1982; Oheim et al., 2006). Active zones are believed to harbour clusters of 

Ca2+-channels spaced at ~40 nm distance (Haydon et al., 1994) that contribute to improve the 

reliability of synchronous transmission (Shahrezaei et al., 2006; Stanley, 1997). Temporal 

fidelity is accomplished by close proximity of calcium sensors for transmitter release that 

are endowed with particularly low Ca2+-affinity in a universe of 1000-1500 VOCCs µm-2 

(Heuser et al., 1974; Pumplin et al., 1981; Roberts et al., 1990; Naoum and Hudspeth, 1994). 

Candidates for low affinity Ca2+ sensing are mediatophores at Torpedo synapses (at least 200 

µm-2; Israël et al., 1981; Muller et al., 1987; Brochier et al., 1992; Dunant and Israël, 2000; 

Morel et al., 2003; Dunant and Bloc, 2003; Dunant, 2006), and synaptotagmin I in synaptic 

vesicles (Chapman 2002;).  
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 The proximity of calcium sensors to VOCCs guarantees their activation only few µs 

after calcium entry (Pumplin and Reese, 1978; Llinás et al., 1981b; Roberts, 1994) On the 

other hand, calcium rises steeply within 50 nm away from the membrane, forming a 

microdomain of elevated [Ca2+]int within the same time course of transmitter activation and 

remains very high until it subsides immediately after channel closure (Roberts, 1994) that 

results in switching off transmitter release.  

 As we have seen above, the vesicular Ca2+/H+-antiport is able to shorten by at least 

~2-fold the duration of transmitter release by rapidly sequestrating the divalent into nearby 

synaptic vesicles. Since the operational range of the antiport assessed in vitro ranged from 

~100 µM up to near mM Ca2+ (being maximum around 500 µM Ca2+; Gonçalves et al., 2000a), it 

is likely that the protein responsible for activating the Ca2+/H+ exchange in the synaptic 

membrane has a rather low affinity for Ca2+ and operates only at high metal concentrations 

(i.e., after local [Ca2+]int within the microdomain builds-up above 100 µM). It should also be 

rather abundant within synaptic vesicle membranes to cope with the demands for swift Ca2+ 

clearance from the microdomain.  

Synaptotagmin I (Syt I) is one of the most abundant vesicular proteins (ca. 15 copies 

per SV; Takamori et al., 2006), with a short, intravesicular and glycosilated N-terminal, one 

transmembrane domain followed by a spacer domain, a membrane proximal C2A domain and 

finally by a distal C2B domain near the C-terminal (Reviewed by Marquèze et al., 2000). The 

intralumenal N-glycosilated domain is essential to address Syt I specifically to the vesicular 

membrane (Han et al., 2004). Syt I forms macrostructures through homo or hetero 

oligomerization with Syt I or with other synaptotagmins, respectively (Fukuda et al., 1999). 

Syt I (and II) forms stable SDS-resistant Ca2+-independent oligomers via fatty acylated 

cysteine clusters between the transmembrane and the spacer (cytoplasmic) domain assembled 

near the amino terminal (Fukuda and Mikoshiba 2000; Fukuda et al., 2001).   

The calcium-independent pre-assembly (probably at the endoplasmic reticulum) of Syt 

I into oligomers is a necessary step allowing the subsequent, much faster, Ca2+-dependent 

oligomerization step (Fukuda and Mikoshiba 2000). This is thought to occur during 

transmission through C2B domain interactions (Chapman et al., 1995, 1998; Sugita et al., 

1996), early after Ca2+-entry and prior to Syt I interaction with syntaxin and other members 

of the SNARE complex (Davis et al., 1999). The process involves low affinity reactions with 
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[Ca2+]1/2 from ~140 up to 400 µM for the hetero-oligomerization of Syt I and II (Davis et al., 

1999; Fukuda and Mikoshiba, 2000). 

Both C2A and C2B can penetrate either the vesicular or the plasma membranes. In 

vitro kinetics of C2A Cis-membrane (vesicular) binding occurred within 500 µs while trans-

membrane (plasma) interaction occurred far more slowly (>50 ms) (Bai et al., 2000), but could 

be much faster in vivo (Chapman, 2002). On the other hand the C2B domain is capable of 

driving Ca2+-dependent oligomerization in the sub-millisecond range and before interacting 

with SNARE proteins (Davis et al., 1999). Moreover, it is sufficient for the Ca2+-dependent 

binding of Syt to two membranes (Araç et al., 2006).   

Ca2+ binding to isolated membrane bound C2B-C2A Syt I cytoplasmic domains form 

barrel-like structures constituted by seven bar-like C2B-C2A monomers that are linked into 

an 11 nm wide ring-like heptamer (Wu et al, 2003). The formation of C2B-driven oligomers is 

regulated by RNA and requires the interaction with anionic lipids (Earles et al., 2001; Bai et 

al., 2002; Fernandez et al., 2001; Wu et al, 2003). The fast, Ca2+-dependent, assembly of Syt 

into ordered multimers constituting 11 x 11 nm heptameric barrels was proposed as a putative 

regulator of membrane embedded proteins, like fusion pores (Wang et al., 2001; Wu et al., 

2003). In the frame of this work, we propose that it may participate in the regulation or 

constitute the functional protein that codes for the low affinity Ca2+/H+-antiport that drives 

vesicular calcium transport. 

The functional role of synaptotagmin I has been chiefly investigated by using 

genetically modified animals and cell lines, as well as antibodies or other approaches. 

Different and sometime contradictory results were obtained. In synapses of synaptotagmin 

I-deficient mice or drosophilae, the rapid, phasic secretion of transmitter is impaired while 

asynchronous or late release may be either increased or not modified (DiAntonio et al., 1993; 

Littleton et al., 1993; Geppert et al., 1994; DiAntonio and Schwartz, 1994; Broadie et al., 

1994; Mackler et al., 2002; Pang et al., 2006). This lead to the hypothesis that synaptotagmin 

I could be a specific calcium sensor involved in a rapid type of release, while asynchronous 

release would require another sensor, maybe another isoform of synaptotagmin (Sullivan, 

2007; Xu et al., 2007). In other studies, it is mainly the parameters of the calcium 

dependency of release (apparent Km, co-operativity) which are altered in Syt I-modified 

systems (Marek and Davis, 2002). Conversely, in other systems, release, either phasic or 
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asynchronous, is surprisingly enhanced in synaptotagmin-deficient synapses or cells (Shoji-

Kasai et al., 1992; Koh and Bellen, 2003; Tokuoka and Goda, 2003).  

In this work we tested for a role of synaptotagmin I in vesicular calcium transport 

through a low affinity Ca2+/H+-antiport. The hypothesis arises from the above mentioned 

characteristics and may help to elucidate some discrepancies found in Syt literature. It is 

also readily testable by using PC 12 cells, which are particularly rich in electron lucent 

synaptic-like vesicles and large dense-core vesicles that generate robust A.O. fluorescence 

signals reflecting bafilomycin-dependent transvesicular H+-gradients (Bloc et al., 1999; figure 

14). The fluorophore acridine orange was used to monitor the gradient in post nuclear 

supernatant (PNS) fractions of PC-12 cell clones in order to compare Ca2+-induced  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 51. Ca2+-induced dissipation of the proton gradient across acidic compartments of the 
synaptotagmin I containing G11 PC12 cell clone. Traces show fluorescence of acridine orange 
dye (3 μM).  The probe is sensitive to the proton gradient across acidic compartments of the 
post nuclear supernatant (PNS) suspension (300 µg of protein/ml). After a period of 
stabilization, 0.5 mM ATP was added to allow the formation of H+ gradient within acidic 
organelles. Quenching of the probe's fluorescence occurs when the dye is exposed to acidic 
medium within acidic compartments, where it dimerises and accumulates. After complete 
gradient formation H+ gradient dissipation was assayed in the absence (black trace) or 
presence of 500 µM free [Ca2+] (grey trace). Full dissipation of the proton gradient was 
induced by addition of the protonophore CCCP (10 μM). Traces are representative 
experiments of n= 4. Inset:  Bars show proton gradient dissipation 30 s after calcium addition 
as compared to control (no addition). Values are average fluorescence increase ± SEM (n=4) in 
percentage of total gradient dissipation (with CCCP). Calcium induced a significant proton 
gradient dissipation from the acidic organelles of G11 PC-12 cells (Unpaired T-test: *p<0.01). 
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proton fluxes out of acidic compartments of synaptotagmin I-positive (G11) and 

synaptotagmin I-negative (F7) PC12 subclones, that had been selected by Shoji-Kasai et al. 

(1992). Figure 51 shows A.O. fluorescence assays with PNS from G11 subclones. Samples were 

introduced into a reaction saline medium which was fixed at pH 8.5. This ensures optimal 

assessment of the pH gradient established across acidic organelles. After equilibration, 

0.5 mM Mg-ATP was added and the intensity of A.O. fluorescence rapidly decreased, 

revealing formation of the gradient. When the gradient was fully established, a reduction in 

A.O. fluorescence quench was elicited by adding 500 µM free [Ca2+] to the reaction medium  

 

 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 52. Ca2+-effect on the proton gradient across acidic compartments of synaptotagmin I 
deficient F7 PC12 cell clone. Traces show fluorescence of acridine orange dye (3 μM) under 
the same experimental conditions as in figure 51. After complete H+ gradient formation, 
dissipation was assayed in the absence (black trace) or presence of 500 µM free [Ca2+] (grey 
trace). Blue trace shows a similar experience where 500 µM BaCl2 was added instead of CaCl2. 
Traces are representative experiments of n= 4. Inset: Bars show proton gradient dissipation 
30 s after calcium addition as compared to control (no addition). Values are average 
fluorescence increase (or decrease in this case) ± SEM (n=4) in percentage of total gradient 
dissipation. Calcium and barium were unable to induce proton gradient dissipation from the 
acidic organelles of F7 PC-12 cells. 
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 (grey trace and bar) which is suggestive of H+-gradient dissipation presumably by a Ca2+/H+ 

antiport activity. Fluorecence dequench was compared to PNS samples not exposed to Ca2+ 

(black trace and bar). 

In opposition to G11 subclones, synaptotagmin I-deficient cells (F7 -/-) assayed under 

similar conditions, failed to display a Ca2+-dependent A.O. fluorescence dequench (figure 52).  

In fact, there was a slight increase in A.O. fluorescence quench when 500 µM CaCl2 was 

added (grey trace and bar) that was similar to that displayed upon BaCl2 addition instead of 

CaCl2 (blue trace and bar) arguing in favour of an increase in the proton gradient rather than 

a dissipation induced by CaCl2. BaCl2 was used as a negative control since it was shown 

previously not to be able to dissipate the vesicular H+ gradient (Gonçalves et al., 1999a). 

Addition of BaCl2 under these conditions also provoked a slight A.O. quench (blue trace in 

figure 52) that could correspond to an increase in the pH gradient across acidic organelles, 

and could reflect a close dependence of ∆pH on Cl- ions reported previously (Gonçalves et al., 

1999b). 

To confirm the results obtained with the subclones we proceeded with the 

transfection of the synaptotagmin negative subclone (F7 -/-) with the full synaptotagmin-I 

gene (Syt I) (figure 54). Moreover, we transfected the F7 -/- subclone with a transgenically 

encoded tagged synaptotagmin I (Syt_tagg) consisting of a 17-amino-acid tetracysteine motif 

engineered into the C-terminus of synaptotagmin-I that enables labelling with the membrane 

permeable fluorescein derivative, FlAsH (Syt_tagg) (Griffin et al., 1998; Gaietta et al., 2002; 

Marek and Davis, 2002). In this way we could test the effect of acute inactivation of 

synaptotagmin I transiently expressed in F7 (-/-) cells by FlAsH-FALI (Marek and Davis, 

2002; figure 53).  

Figure 53 shows that expression of FlAsH-bound synaptotagmin I (Syt_tagg) 

successfully recuperated Ca2+-induced A.O. fluorescence dequench in F7 (-/-) cells (Panel A). 

Using F7 cells that are devoid of any endogenous synaptotagmin guarantees that all 

transfected synaptotagmin I molecules have a tetracysteine motif that binds FlAsH 

molecules with a dissociation constant of 10-11 (Gaietta et al., 2002). FlAsH labels nearly 100% 

of transfected Syt_tagg molecules allowing for complete synaptotagmin I photoinactivation 

within less than 2 minutes (Marek and Davis, 2002; Poskanzer et al., 2003; 2006). Complete 

synaptotagmin I photoinactivation was achieved by illuminating Syt_tagg PNS suspension 

during 1 minute with a 200W HBO U.V. lamp. Photoinactivated vesicles readily formed 



Results and discussion - experimental findings 

 141

transvesicular pH gradient upon Mg-ATP addition but Ca2+-addition was no longer capable of 

inducing any A.O. fluorescence dequench (panel B in figure 53). This demonstrates that 

photoinactivation is specific for synaptotagmin I and does not affect nearby proteins (like 

the vesicular H+-ATPase). In fact it has been suggested that it is mainly (if not only) the C2B 

domain of synaptotagmin I, that is adjacent to the FlAsH-binding epitope that is under the 

effects of photoinactivation (Marek and Davis 2002). The specificity of photoinactivation was 

also patented by the lack of inactivation after 1 minute irradiation of FlAsH-labelled G11 or 

Syt I cells that do not have the tetracysteine FlAsh-binding domain (not shown).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 53. Ca2+/H+-antiport-dependent proton gradient dissipation associated with the 
presence of active synaptotagmin I in PC-12 cells acidic compartments. The F7 -/- clone was 
transfected with synaptotagmin I construct gene and labelled with FlAsH (Syt_tagg). The 
proton gradient within acidic compartments was monitored with acridine orange like in figure 
51. Panel A: Transfection of Syt_tagg into PC-12 cell clones results in gain of Ca2+-induced 
proton gradient dissipation. After complete H+ gradient formation, dissipation was assayed in 
the absence (black trace) or in presence of 500 µM free [Ca2+] (grey trace). Full dissipation 
of the proton gradient was induced by addition (arrow) of the protonophore CCCP (10μM). 
Traces are representative experiments of n= 4. Panel B: Shows the same PNS preparation 
after being irradiated with a 200W HBO U.V. lamp for 1 min. Notice the lack of proton 
gradient dissipation upon calcium addition to irradiated Syt_tagg PNS. Traces are 
representative experiments (n=4-14). Insets: Bars show proton gradient dissipation 30 s 
after calcium addition as compared to control (no addition). Values are average fluorescence 
increase (or decrease) ± SEM (n=4-14) in percentage of total gradient dissipation. Calcium 
induced significant proton gradient dissipation from the acidic organelles of F7 PC-12 cells 
transfected with the Syt_tagg construct (Unpaired T-test: *p<0.01). However, 1 min 
irradiation with U.V. light was sufficient to eliminate the calcium dependent dissipation from 
the same preparation.  

Not Irradiated
-2

0

2

4

6

8

10

12

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

+ Ca2+ - Ca2+

500 µM Ca2+

A
.O

. f
lu

or
es

ce
nc

e 
in

te
ns

ity
(A

.U
.)

500 µM ATP

CCCP

3 min

A. Not irradiated

After
1’Irradiation -8

-6

-4

-2

0

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

+ Ca2+ - Ca2+

3 min

500 µM Ca2+

B. After 1 min U.V. 
500 µM ATP

CCCP

Not Irradiated
-2

0

2

4

6

8

10

12

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

+ Ca2+ - Ca2+

500 µM Ca2+

A
.O

. f
lu

or
es

ce
nc

e 
in

te
ns

ity
(A

.U
.)

500 µM ATP

CCCP

3 min

A. Not irradiated

Not Irradiated
-2

0

2

4

6

8

10

12

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

+ Ca2+ - Ca2+

500 µM Ca2+

A
.O

. f
lu

or
es

ce
nc

e 
in

te
ns

ity
(A

.U
.)

500 µM ATP

CCCP

3 min

A. Not irradiated

Not Irradiated
-2

0

2

4

6

8

10

12

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

+ Ca2+ - Ca2+

Not Irradiated
-2

0

2

4

6

8

10

12

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

-2

0

2

4

6

8

10

12

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

+ Ca2+ - Ca2++ Ca2++ Ca2+ - Ca2+- Ca2+

500 µM Ca2+

A
.O

. f
lu

or
es

ce
nc

e 
in

te
ns

ity
(A

.U
.)

A
.O

. f
lu

or
es

ce
nc

e 
in

te
ns

ity
(A

.U
.)

500 µM ATP

CCCP

3 min3 min

A. Not irradiated

After
1’Irradiation -8

-6

-4

-2

0

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

+ Ca2+ - Ca2+

3 min

500 µM Ca2+

B. After 1 min U.V. 
500 µM ATP

CCCP

After
1’Irradiation -8

-6

-4

-2

0

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

+ Ca2+ - Ca2+

After
1’Irradiation -8

-6

-4

-2

0

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

-8

-6

-4

-2

0

Fl
uo

re
sc

en
ce

 d
eq

ue
nc

h
(%

 m
ax

im
um

) 

+ Ca2+ - Ca2++ Ca2++ Ca2+ - Ca2+- Ca2+

3 min3 min

500 µM Ca2+

B. After 1 min U.V. 
500 µM ATP

CCCPCCCP



Results and discussion - experimental findings 

 142

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 54. Synaptotagmin I is necessary for Ca2+/H+-antiport activity observed in PC-12 cell 
clones. Synaptotagmin I deficient F7 PC12 cell clones were transfected with either a non-
encoding gene (moch transfected in panel A) or with synaptotagmin I gene (Syt I in panel B). 
Proton gradient across acidic compartments was monitored with the acridine orange dye as 
shown in figures 51-55. Insets: Bars show the proton gradient dissipation 30 s after calcium 
addition (grey traces) as compared to control (no addition; black traces). Values are the mean 
fluorescence increase ± SEM (n=4) in percentage of total gradient for each cellular 
preparation. Calcium induced significant proton gradient dissipation from the acidic organelles 
of F7 PC-12 cells transfected with the gene encoding synaptotagmin I (Unpaired T-test: 
*p<0.01). 
 
 

Moreover, gain of function of F7 (-/-) clones did not occur with “moch” transfected 

(transfection of the insert without the synaptotagmin gene) cell PNS preparations (panel A in  

figure 54) but was evident in PNS prepared from F7 cells transfected with Syt I full gene 

(without the tetracysteine tag) (panel B in figure 54).    

Briefly, a significant Ca2+-induced A.O. fluorescence dequench was found only in the 

clones where an active synaptotagmin-I was expected to be present (figures 51-54). We can 

presume that the fluorescence dequench could have arisen from Ca2+-induced H+-gradient 

dissipation (presumably upon activation of Ca2+/H+-antiport activity). However, alternative 

explanations like the displacement of H+ upon Ca2+ binding to synaptotagmin I were not 

discarded.  

A second way to asses Ca2+-H+ antiport activity was to measure Ca2+ accumulation into 

organelles in the presence or absence of 0.6 µM bafilomycin A1 (figure 55). By selectively 

blocking the V-type H+-ATPase, bafilomycin A1 prevents formation of the vesicular H+ 
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gradient. Thus, only the bafilomycin-sensitive fraction of Ca2+ accumulation is attributable to 

Ca2+/H+ exchange. Samples of PNS were allowed to equilibrate for 6 min in pH 8.5 saline 

medium containing 10 µM orthovanadate (to inhibit Ca2+ accumulation through Ca2+-ATPases). 

Then 0.5 mM Mg-ATP was added and a pH gradient was allowed to form during 2 min before 

application of 45Ca2+ plus non radioactive 40Ca2+ (final free concentration 550 µM; 

0.5 mCi/mmol). Rapid filtration took place 2 min later.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55. Synaptotagmin-dependent Ca2+ accumulation in bafilomycin sensitive organelles of 
PC-12 cells. PNS fractions were prepared from cells of either: synaptotagmin I containing G11 
PC-12 cell clone; synaptotagmin I deficient F7 PC12 cell clone; in F7 cells transfected with 
either a non-encoding gene (moch transfected); the synaptotagmin I gene (Syt I) or with the 
Syt_tagg gene construct labelled with FlAsH (Syt_tagg). Where indicated, the Syt_tagg PNS 
preparation was irradiated with U.V. light during 1 min before the assay. 45Ca2+-accumulation 
assays were carried out in presence (grey bars) or in the absence (black bars) of 0.6 µM 
bafilomycin A1. All PNS (0.3 mg protein/ml) were allowed to equilibrate for 6 minutes in 
reaction medium containing 10 µM Na-orthovanadate. Then, 1 mM ATP was added and a pH 
gradient was allowed to form for 2 minutes before 45Ca2+ (550 µM free; 0.5 mCi/mmol 
calcium) addition. Rapid filtration took place 2 minutes after.  Bars show the average ± SEM 
(n=3 to 11) 45Ca2+ retained after rapid filtration. PNS from PC-12 cells carrying an active 
synaptotagmin I showed significant proton gradient-dependent 45Ca2+ accumulation into their 
acidic organelles (Unpaired T-test: *<0.05; **p<0.01; ***p<0.001). 
 

In PNS prepared from the clones containing an active synaptotagmin I (G 11 (+/+), Syt 

I, and non irradiated Syt_tagg), a substantial amount of Ca2+ was found to accumulate into 
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organelles (black bars in figure 55) over the value found in the correspondent bafilomycin A1 

treated preparations (grey bars in figure 55). Such a H+ gradient-dependent Ca2+ 

accumulation did not take place in PNS from clones where synaptotagmin I was either absent 

or inactivated by FALI (F7 (-/-), “moch”, and UV irradiated Syt_tagg; black bars in figure 

55). 

A third approach consisted of adding PNS samples of PC12 cells (prepared as usual in 

a pH 7.4 medium) to the ATP-free pH 8.5 reaction saline already containing 45Ca2+and 40Ca2+ 

(concentration as before), as well as 10 µM orthovanadate. Under these conditions, taking 

advantage of the pH difference, Calcium can accumulate into organelles only if a Ca2+/H+ 

exchange antiport is present (+pH jump; grey bars in figure 56). Non specific accumulation 

was measured by pre-incubating PNS for 6 min in the ATP-free saline (pH 8.5) before adding 

Ca2+. Such a pre-incubation annihilated the H+ gradient and provided adequate controls (-pH 

jump; black bars in figure 56). Again, the G 11 (+/+), Syt I, and non irradiated Syt_tagg clones 

significantly accumulated Ca2+ over the non specific level (figure 56). Strikingly, the amounts 

of gradient-dependent Ca2+-accumulation observed with these clones reached values similar to 

those observed with the previous approach using ATP-dependent H+-gradient formation in 

presence or absence of bafilomycin A1 (figure 55). This seems to be indicative that pre-

established H+-gradients are sufficient for a vesicular Ca2+/H+-antiport activity under the 

present conditions. As for the F7 (-/-), the “moch”, and the UV irradiated Syt_tagg clones, 

they did not show any Ca2+ accumulation attributable to Ca2+/H+ exchange (figure 56). 

It should be noticed that the whole pH gradient observed in PC-12 cell PNS under the 

present conditions is attributable to the V-type H+-ATPase activity (figure 14): It is fully 

dissipated by addition of 0.6 µM bafilomycin A1 (no further dissipation with CCCP). 

An obvious control consisted of testing Ca2+ accumulation induced in a non specific 

manner by ionomycin, a Ca2+ ionophore (figure 57). PNS samples were added to an ATP-free 

medium containing 2 µM ionomycin, 45Ca2+ (as before), and 10 µM othovanadate (grey bars; + 

ionomycin). Controls were like in figure 56 (black histograms). The level of non specific 45Ca2+ 

binding was very similar to all cells. These basal 45Ca2+ levels were also undistinguishable from 

the unspecific binding of 45Ca2+ obtained in presence of ATP and bafilomycin (controls in 

figure 55). This indicates that the basal calcium levels are not significantly different among 

the (+/+) or (-/-) clones and are not sensitive to the addition of ATP when both the proton 

pump and Ca2+-ATPases are inhibited (by bafilomycin and orthovanadate, respectively).  
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As for the amount of 45Ca2+ retention in presence of ionomycin there was no 

statistical difference between the synaptotagmin containing (G11 and Syt I) versus 

synaptotagmin deficient (F7 and moch transfected) groups (figure 57). However, when we 

compare the G11 (+/+) subclone directly with F7 (-/-) there is a significantly lower Ca2+ 

retention capacity in synaptotagmin containing G11 cells (p<0.01). This could arise from having 

higher levels of free or bound calcium within the organelles of G11 (+/+) subclone when 

compared to F7 (-/-). Under such conditions radiolabelled calcium in the reaction medium 

would reach equilibrium with the free 40Ca2+ ions already existent within the lumen of 

organelles and accumulate less 45Ca2+.  

Yet the amount of 45Ca2+ accumulated within G11 clones energised with ATP in the 

absence of bafilomycin (figure 55) was significantly higher than the levels of 45Ca2+ retained 

with ionomycin (p<0.05). This indicates that there must have been active transport capable of 

accumulating a surplus of 45Ca2+ above the equilibrium level reached with ionomycin, since the 

amount of basal 45Ca2+ retained in cells is similar. Furthermore, the existence of a pre 

established H+-gradient seems to be sufficient to drive this active transport since pH-jump-

dependent 45Ca2+ retention with G11 preparation (figure 56) was similar to ATP-driven 

accumulation with the same subclone (figure 55). This is consistent with the operation of a 

secondary active transport system for Ca2+ provided by a vesicular Ca2+/H+-antiport. 

The Ca2+/H+ antiport activity was not present in cells devoid of active synaptotagmin I 

(figures 55 and 56), which is also supported by the fact that they keep a considerable 45Ca2+ 

retention capacity when permeabilized to Ca2+ by ionomycin (figure 57) for they are bound to 

be less Ca2+-loaded in their acidic organelles at harvest time for PNS preparation. Such an 

increase in 45Ca2+ retention capacity of F7 (-/-) subclones compared to G11 (+/+) is coincident 

with the data presented in previous chapters pointing out for a role of the Ca2+/H+-antiport in 

Ca2+ homeostasis if synaptotagmin I really is involved in such activity. Figure 57 shows also 

that F7 cells transfected with the Syt I gene accumulated significantly higher amounts of 
45Ca2+ than the G11 subclones (p<0.001). In this case the synaptotagmin deficient genetic 

background of F7 (-/-) cells probably overcomes the effects of transfecting Syt I genes into 

as much as 20% of cells (maximum transfection efficiency). Meaning that ~80% of the cells 

did not express functional antiport-driven Ca2+ transport at time of harvest (less basal 

calcium within organelles) against 20% of cells with a functional antiport (and higher basal 

calcium within organelles). Conversely, in figure 56 the results obtained with the same 20% of 
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Figure 56. pH gradient-dependent Ca2+ accumulation associated with the presence of active 
synaptotagmin I in the acidic compartments of PC-12 cells. 45Ca2+-transport was evaluated in 
PNS from the same PC12 clones as in figure 55. 45Ca2+-accumulation assays were carried out 
by adding PNS (0.3 mg protein/ml prepared at pH 7.4) to ATP free saline medium (pH 8.6) 
already containing 45Ca2+ (550 µM free; 0.5 mCi/mmol calcium) and 10 µM Na-orthovanadate 
(+pH-Jump in grey). Controls were carried out by allowing PNS to equilibrate for 6 min in ATP 
free saline medium (pH 8.6) before 45Ca2+ (550 µM free; 0.5 mCi/mmol calcium) addition (-pH-
Jump, in black). Rapid filtration took place 2 minutes after. Bars show the average ± SEM 
(n=3 to 10) of 45Ca2+ retained after rapid filtration. PNS from PC-12 cells carrying active 
synaptotagmin I showed significant pH-jump dependent 45Ca2+ accumulation into their acidic 
organelles (Unpaired T-test: *p<0.05; ***p<0.001). 
 
Syt I transfected cells benefit from the Syt (-/-) background which is now essentially silent 

(null cells do not respond to ATP). In the context of this discussion it is equally interesting to 

notice that F7 (-/-) cells transfected with either synaptotagmin I constructs (Syt I or 

Syt_tagg) accumulated slightly less calcium than G11 cells. The difference is not significative 

but could result from having 20% instead of 100% of cells with active Syt I (figure 55). 

The overall results presented above suggest the involvement of synaptotagmin I in H+ 

gradient-dependent Ca2+ transport into acidic organelles in PC12 cells. Moreover, complete 

photoinactivation of Ca2+ transport (figures 53; 55 and 56) of Syt_tagg expressed in a 
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background with no endogenous synaptotagmin suggests that the C2B domain (near the 

FlAsH-binding motif) is essential for the putative Ca2+/H+-antiport activity observed since it 

has been suggested that only the domains nearer to the FlAsH binding tetracysteine domain 

will be affected by the destructive effects of FALI (Wang et al., 1996; Marek and Davis, 

2002). 

 

 
 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

 
Figure 57. Ionomycin-induced Ca2+ retention in post nuclear supernatant (PNS) of PC-12 cells. 
45Ca2+-transport was evaluated in PNS of synaptotagmin I containing G11 PC-12 cell clones;  
synaptotagmin I deficient F7; F7 cells transfected with either a non-encoding gene (moch 
transfected) or with the synaptotagmin I gene (Syt I). 45Ca2+-accumulation assays were 
carried out by adding PNS (0.3 mg protein/ml) to ATP free saline medium containing 2 µM 
ionomycin free acid; 45Ca2+ (550 µM free; 0.5 mCi/mmol calcium) and 10 µM Na-orthovanadate 
(+ ionomycin). Controls (- ionomycin) were carried out by allowing PNS to equilibrate for 6 min 
in ATP free saline medium before 45Ca2+ (550 µM free; 0.5 mCi/mmol calcium) addition. Rapid 
filtration took place 2 minutes after. Bars show the average ± SEM (n=3 to 9) of 45Ca2+ 
retained after rapid filtration. Ionomycin induced calcium accumulation both in synaptotagmin 
I expressing or synaptotagmin I deficient subclones. 
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3.2.4.2. Ion permeable pore-forming oligomers 

  
Here we report for the first time the involvement of synaptotagmin I in H+-dependent 

vesicular calcium transport. The proximity of the C2B domain of synaptotagmin I to the 

FlAsH-binding motif of Syt_tagg points to the participation of C2B in this activity. Rapid high 

Ca2+-dependent C2B-mediated oligomerization step (Chapman et al., 1996; Davis et al., 1999) 

could rapidly couple functional antiports to local high [Ca2+] favouring rapid Ca2+ entry into 

vesicles at expense of a pre-established H+-gradient.  

Indeed, several proteins of the secretory apparatus that mediate rapid fluxes 

operate as oligomers. The synaptic tetra-spanning vesicle membrane protein synaptophysin is 

an hexameric homo-oligomer forming a large 150 pS channel (Thomas et al., 1988). The plasma 

membrane mediatophore is another homo-oligomer (~220 kDa) composed of 15 monomers of a 

15 kDa protein that is homologous to the c sub-unit of the V0 sector of V-type H+-ATPases 

(Israël et al., 1981; Muller et al., 1987; Brochier et al., 1992; Dunant and Israël, 2000).  

There is also a striking resemblance between C2 domain-mediated synaptotagmin 

oligomerization and many hydrophilic pore-forming toxins forming amphipathic cyclical 

oligomers that are capable of penetrating into target membranes (Gouaux, 1997; Madeddu et 

al., 1985; Gilbert et al., 1999; Orlova et al., 2000).  

Among those, one of the best studied proteins is a toxin extracted from black widow 

spider venom called α-latrotoxin. It is a hydrophilic ~130 kDa protein (determined under 

denaturating conditions; Dulubova et al., 1996) that spontaneously forms ~230-260 kDa 

asymmetric dimers. These dimers predominate in the absence of divalent cations (Ca2+, Mg2+) 

but acquire amphipaticity and ability to make membrane spanning pores upon divalent cation-

regulated oligomerization into symmetrical cyclical tetramers of ~520 kDa (Orlova et al., 

2000). Toxin action requires first the binding to one of the three receptor types 

(latrophilins, neurexins and receptor-like protein-tyrosin phosphatase σ; see Rohou et al., 

2007; Ushkaryov et al., 2004, 2008) that facilitates membrane insertion of functional α-

latrotoxin tetramers endowed with a 25 Å high conductance (220-400 pS) pore (Hurlbut WP 

et al., 1994; Hlubek et al., 2000; Van Renterghem et al., 2000; Hlubek et al., 2003).  Pores 

cause large influx of Na+, Ca2+ and water or the efflux of K+, small transmitter molecules and 

ATP that are capable of eliciting Ca2+-dependent or Ca2+-independent transmitter release 

either directly or indirectly (McMahon et al., 1990; Krasilnikov and Sabirov, 1992; Adam-Vizi 
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et al., 1993; Deri et al., 1993; Hurlbut WP et al., 1994; Davletov et al., 1998; Ashton et al., 

2000; Hlubek et al., 2003).  

α-Latrotoxin and synaptotagmin I use oligomerization as an energy-efficient 

mechanism to hide the protomer hydrophilic domains within the oligomer, whilst exposing 

hydrophobic regions that are capable of insertion into membranes (Orlova et al., 2000; 

Chapman et al., 1996; Fukuda and Mikoshiba, 2000; Wu et al., 2003).  

It is conceivable that the membrane insertion of the cytoplasmic domain of 

synaptotagmin I might be capable of creating a pore (similarly to α-latrotoxin) in the synaptic 

vesicle after the Ca2+-dependent C2B-mediated rapid oligomerization step. The pore formed 

by synaptotagmin I oligomeric structure would then mediate rapid Ca2+/H+-antiport activity. 

This hypothesis is strengthened by the recently reported structure of the bacterial YiiP 

Zn2+/H+-antiport that forms homodimers that bind zinc through tetrahedral Zn2+-binding 

sites located in a membrane spanning cavity (Lu and Fu, 2007). 

 

3.2.4.3. Synaptotagmin I function(s) in transmitter release 

 
The functional consequences of having a Ca2+/H+ antiport activity participated by 

synaptotagmin I range from the control of secretion timing to the maintenance of calcium 

homeostasis (as presented in earlier chapters of this thesis). It could also help to conciliate 

apparently contradictory results obtained with Syt I null mutants or with acutely inhibited 

Syt I. On one hand loss-of-function mutations of synaptotagmin I cause severe secretion 

impairment in evoked transmitter release while increasing spontaneous uncoupled release in 

mouse hippocampal neurons (Geppert et al., 1994) and at Drosophila NMJ (DiAntonio et al., 

1993; Littleton et al., 1993; DiAntonio and Schwartz, 1994; Broadie et al., 1994; Mackler et 

al., 2002; Pang et al., 2006). Evoked transmission seemed to be enhanced either by rather 

high basal activity (Marek and Davis, 2002) or increasing [Ca2+]out (Yoshihara and Littleton, 

2002). The later conditions would favour subthreshold intra-terminal Ca2+-accumulation that 

could speed-up Ca2+-inactivation processes like the desensitization of VOCCs, mediatophore, 

etc. This view is supported by an initially normal post-synaptic response followed by a time-

dependent decrease in evoked transmission at squid giant synapses injected with either anti 

synaptotagmin I C2A (Mikoshiba et al., 1995) or anti C2B (Llinás et al., 2004) antibodies. The 

effects were attributed to decreased C2A-mediated exocytosis and C2B-mediated 
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endocytosis, respectively. This is to be expected if vesicular Ca2+-transport is halted by 

either the lack of fusion of Ca-filled vesicles or compromised formation of Ca-empty vesicles 

by endocytosis and is consistent with ~2/3 reduction in the number of vesicles observed in 

synaptotagmin drosophila mutants (Reist et al., 1998). A time-dependent decrease in squid 

giant synapse transmission occurred also after compromising vesicle docking with a blocking 

peptide (Fukuda et al., 2000), evidencing the need for proximity to the Ca2+ source to activate 

the low Ca2+-affinity vesicular Ca2+/H+-antiport activity. Furthermore, it was observed 

reduced transmission in flies without the C2A domain (Mackler et al., 2002) or with mutations 

in the C2B domain of synaptotagmin (Robinson et al., 2002). Therefore the C2B domain 

(rather than C2A) may be implicated in the process. More recently, three mice with mutations 

reported to affect Ca2+-dependent self-oligomerization effectively reduced transmission also 

(Borden et al., 2005). This supports the idea that defective synaptotagmin C2B-mediated 

Ca2+-dependent oligomerization may affect transmission by compromising vesicular Ca2+/H+-

antiport Ca2+-transport and activate Ca2+-desensitising pathways in synapses working at 

rather high basal frequencies.  

 Conversely, in low frequency-stimulated systems like PC12 cells, secretion of 

dopamine and ATP was increased by ~70% and 600%, respectively in Syt -/- subclones (Shoji-

Kasai et al., 1992) without affecting the time course of secretion (minutes). Secretion 

increase could have arisen from increased [Ca2+]int transient due to the absence of rapid 

vesicular calcium transport. There was also an >6 fold increase in the ATP/dopamine release 

ratio in Syt I -/- subclones. Those transmitters are thought to be co-released from large 

dense-core vesicles and such ATP preservation in Syt I -/- could have arisen from the 

decrease in Ca2+/ATP exchange from the vesicular matrix (Reigada et al., 2003) in the 

absence of a vesicular Ca2+/H+-antiport activity in those clones.  With less Ca2+ entering the 

vesicle prior to fusion there would be less ATP displacement from the vesicular matrix and 

more ATP to be released by Syt -/- dense-core vesicles. An increase in the calcium transient 

in PC12 cells without Syt I is further supported by a significant increase in membrane 

accretion with the Syt I -/- as compared with Syt I +/+ PC12 subclones (Almers et al., 1994). 

Although rather slower fusion rates were obtained with freshly isolated chromaffin cells 

from Syt I null mice (Voets et al., 2001; Nagy et al., 2006) where Syt I and Syt II rescued a 

ready releasable pool while decreasing a slowly releasable pool (Nagy et al., 2006), therefore 

restoring synchronous transmission where the C2B domain is also involved (Nishiki and 
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Augustine, 2004). Again, if the Ca2+-microdomain is sharpen in time and in space by a rapid 

vesicular Ca2+/H+-antiport one should expect the restoration of synchronous release (by 

activating only Ca2+-sensors close to VOCCs) and reducing asynchronous release (high 

micromolar calcium is not expected to reach sensors away from the Ca2+-source).  

 

3.2.4.4. The C2A and C2B domains of synaptotagmin I 

 
Work conducted at Graeme Davis’s laboratory using a synaptotagmin I construct 

similar to the one used in this study implicated synaptotagmin I C2B domain acute disruption 

by FlAsH-FALI in the loss of calcium cooperativity of release (Marek and Davis, 2002) and 

loss of endocytosis capacity in Drosophila NMJ (Poskanzer et al., 2003) involving residues 

that are not involved in the C2B-mediated Syt I oligomerization (Poskanzer et al., 2006). In 

fact the C2B domain interacts also with Ca2+-channels (Sheng et al., 1998); phospholipids 

(Schiavo et al., 1996; Fernandez et al., 2001) and the clathrin adaptor complex AP-2 (Zhang et 

al., 1994; Jorgensen et al., 1995; Chapman et al., 1998; Haucke and De Camilli, 1999). The 

interaction of synaptotagmin I with diverse molecular partners highlights the participation in 

multiple stages of the vesicular cycle. Tampering with Syt I binding to Ca2+-channels might 

affect Ca2+-cooperativity if the calcium sensors for transmitter release “drift away” from 

high [Ca2+]int reached near the calcium source. Disrupting the poly-lysin motif within the C2B 

domain of Syt I affects phospholipids and AP-2 interaction (Zhang et al., 1994; Fukuda et al., 

1995; Chapman et al., 1998; Haucke and De Camilli, 1999; Mackler and Reist, 2001) that 

control vesicular size while the endocytic rate is controlled by Ca2+-coordinating aspartate 

residues within the C2B domain of Syt I (Poskanzer et al., 2006). Synaptotagmin I interacts 

also with phospholipids and syntaxin through its C2A domain (Kee and Scheller, 1996; Ubach 

et al., 1998; Fernandez et al., 2001) and has been recently implicated in the temporal control 

of phasic transmission in crayfish NMJ (Hua et al., 2007). Binding of Syt I to P/Q VOCCs 

(Charvin et al., 1997) and to SNARE proteins syntaxin and synaptobrevin (see above) might 

also contribute to some perturbations observed in Syt I-deficient systems. For instance, 

SNAP-25 has been shown to depress the voltage sensitivity of P/Q channels. This inhibitory 

effect is unblocked when the active SNARE complex is formed and Syt I is needed for this 

formation (Zhong et al., 1999). Therefore, by this effect as well, phasic calcium entry as well 

can be perturbed in the absence of an active Syt I. 
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3.2.4.5. High versus low basal release rates  

 
An increase in rapid transmission similar to the one reported with nerve-electroplaque 

synapses of Torpedo prisms intoxicated with bafilomycin (section 3.2.1.1.) was possible to 

observe in systems working with low resting release probability where subthreshold Ca2+ rise 

is less likely to occur. Synaptotagmin I overexpression in both buccal ganglia and sensory-

motor neurons of Aplysia resulted in a decrease in the amplitude of the EPP by 32% and 26%, 

respectively. Conversely, when a synaptotagmin antisense oligonuclotide was applied to 

sensory-motor neurons there was an increase in 50-75% in the amplitude (Martin et al., 1995). 

Concordantly, Hua et al. (2007) demonstrated a facilitatory effect of an antibody directed 

against C2A domain of Syt I in the phasic nerve terminal EPP from crayfish NMJ. The anti-

Syt antibody increased the amplitude and reduced the rise time of the evoked synaptic 

response. The effect was more obvious in lower [Ca2+]out, where an increase in intra-terminal 

[Ca2+], due to compromised Syt I should be more effective than at high calcium, closer to 

maximum activation of secretion (see also discussion in section 3.2.1.1).  

Interestingly, crayfish NMJ were shown to respond to increases in [Ca2+]out with 

enhanced and enlarged EPPs. However, even if stimulated at low frequency, there was a 

gradual decrease of synaptic transmission that affected the estimation of the Hill 

coefficient for Ca2+ tested over time from low [Ca2+]out to high [Ca2+]out and was further 

reduced in fibbers submitted to the Syt I antibody (Hua et al., 2007). 

 A parallel can be established between the effects of bafilomycin in Torpedo 

synaptosomes (partially depolarized) and systems working at high basal rates of release since 

both have to cope with high Ca2+-turnover rates to cope with persistent Ca2+-entry. When 

rapid extrusion through the vesicular Ca2+/H+-antiport is compromised (for instance CCCP; 

bafilomycin or absence of functional Syt I) basal calcium levels will slowly rise; increase 

spontaneous MEPPs (Molgó and Pécot-Dechavassine, 1988; Van Der Kloot et al., 2000); 

decrease evoked release (Sanchez-Prieto et al., 1987); while increasing asynchronous release 

(as mentioned above with Syt I null mutants) or simply subside due to Ca2+-desensitization (or 

fatigue) of calcium channels or of the release apparatus (Birman and Meunier, 1985; Israël et 

al., 1987; Forsythe et al., 1998; Lee et al., 1999; Findlay, 2004; Guo and Duff, 2006; Kreiner 

and Lee, 2006). 
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On the other hand, if the system works at low basal frequency, like with Torpedo 

prisms or PC12 cells, calcium entry will be accommodable by slower Ca2+-extrusion systems 

that depend on metabolic energy, like Ca2+-pumps. No desensitization will occur and an 

increase in the phasic calcium transient will be the prevailing effect of tampering with Syt I-

mediated Ca2+/H+-antiport activity. 

 

3.2.4.6. Role of local pH changes  

 
 It is tempting to propose complementary roles for the antiport like the modulation of 

vesicular fusion itself by inducing a local pH drop. Low-pH-mediated membrane fusion after 

the acidification of endosomes was established for virus (Wahlberg and Garoff, 1992; 

Klimjack et al., 1994; Bentz, 2000; Stegmann, 2000; Bentz and Mittal, 2003). Virus acquire 

coiled coil trimeric structures when exposed to low pH (Bentz, 2000; Stegmann, 2000; 

Gibbons et al., 2004; Modis et al., 2004). Similarly, mammalian v-SNARE-t-SNARE pairing 

lead to the formation of coiled-coil tetrameric structures (Sutton et al., 1998; Weber et al., 

1998). On the other hand the targeting of cytosolic proteins that regulate intracellular 

trafficking events can itself be regulated by low pH (Zeuzem et al., 1992; Gu and Gruenberg, 

2000; Maranda et al., 2001; Lee et al., 2005) either through transduction of intra-organelle 

pH status influencing cytosolic partners though pH-dependent conformational changes in 

transmembrane proteins (Gu and Gruenberg, 2000) or through H+-leak pathways (Miedema et 

al., 1996; Wu et al., 2001) that could be produced by antiports (Akhter et al., 2002; Lee et al., 

2005). Localized acidic microenvironments are emerging as important signalling events capable 

of influencing the recruitment of proteins relying on specific epitopes like the FYVE domain 

that interacts with phosphatidylinositol 3-phosphate [PtdIns(3)P]-enriched membranes that 

selectively address proteins to specific membrane localizations according to local acidic 

microenvironments (Lee et al., 2005). Conversely, H+ microenvironment inhibits the binding of 

phosphatidylinositol-4,5-phosphate (PtdIns-4,5-P2) to the cardiac Na+/Ca2+ exchanger 

irrespective of hole PtdIns-4,5-P2 membrane concentration and down-modulates its Ca2+ 

affinity (Posada et al., 2007). 
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3.2.4.7. Synaptotagmin I interaction with phospholipids  

 
 Phosphatidylinositol phosphates are important signalling molecules that are targeted 

by synaptotagmin I. The C2B domain of synaptotagmin binds preferentially 

phosphatidylinositol-3,4,5-phosphate (PtdIns-3,4,5-P3) at resting Ca2+ but shifts to PtdIns-

4,5-P2 in high calcium (Schiavo et al., 1996). Both lipids are more abundant at the plasma 

membrane but could also be found in the vesicular membrane (Holz et al., 2000; Manna et al, 

2007).  PtdIns-4,5-P2 was proposed to participate both in exo and endocytosis (Reviewed by 

Chapman, 2002 and Rohrbough and Broadie, 2005). By analogy to FYVE domain-bearing 

proteins and to the cardiac Na+/Ca2+ exchanger, synaptotagmin could direct its preferential 

lipid (specially to PtdIns-4,5-P2 and Phosphatidylserine)  binding to cis (vesicle) or trans 

(plasma) membranes at different stages of the secretory cycle through the influence of local 

H+ environment created by its own Ca2+/H+-antiport activity. Even if rapid exocytotic burst is 

strictly Ca2+-dependent the slower exocytotic phase determined in melanotrophs by 

membrane capacitance is inhibited at  low pH (6.2) (Thomas et al., 1993, 1994; Almers et al., 

1994). Synaptotagmin -/- subclones showed an increase in both the rapid Ca2+-dependent 

exocytotic burst (probably due to increased high Ca2+-transient) but also in the slower H+-

inhibited phase (Almers et al., 1994) where the putative H+-sensitivity of PtdIns-4,5-P2-

protein interactions could play an important role in exo-endocytic rates. 

Even though the lipidic aspects of synaptotagmin I interactions were not addressed 

experimentally here they will be considered as hypothesis included in the sequence of events 

supported by the experimental work presented throughout this thesis.  
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4.1. Conclusions 

 

The results presented in this thesis as well as experimental evidences reported by 

others lead to the proposition of a model contemplating the effects of vesicular calcium 

transport by synaptic vesicles in neurotransmission.  

We hypothesise the following sequence of events in a cholinergic synapse submitted 

to stimulation:  

  1) Synaptic vesicles begin as organelles that are actively, but slowly, filled 

with transmitter within the terminal (Schmidt et al., 1980; Kiene and Stadler, 1987; Stadler 

and Kiene 1987; Reviewed by Williams in 1997); ACh is synthesised in the cytoplasm and 

transported against protons into synaptic vesicles where it binds to a charged matrix 

(Reigada et al., 2003). 

2) At rest, Ca2+ entering nerve terminals are pumped-up into synaptic vesicles 

by a Ca2+-pump working in the low micromolar range (Israël et al., 1980; Michaelson et 

al., 1980; Rephaelis and Parsons, 1982; Gonçalves et al., 2000a) that contributes, along 

with reticulum and plasma membrane pumps, to long-term Ca2+ homeostasis (figure 58 

C and section 3.2.2). As the vesicles move closer to the first row directly above the 

plasma membrane in an active zone they probably have already pumped a considerable 

amount of Ca2+. 

3) Ca2+-ACh exchange promotes the dissociation of ACh from the internal 

vesicular matrix (Reigada et al., 2003). ACh leaks-out into the cytosol feeding the 

cytoplasmic pool in a stimulus-dependent manner (the more calcium enters the 

terminal, the more Ca2+-ACh exchange will occur within vesicular matrices; see section 

3.2.3). Ca2+ binding to the vesicular matrix under dehydrated conditions results in the 

shrinking of vesicular matrix by glycosaminoglycan cross-linking facilitated by 

ACh/ATP unbinding and is directly related to SV volume and density (Maler and 

Mathieson, 1985; Kiene and Stadler, 1987; Stadler and Kiene 1987; Reviewed by 

Williams in 1997); 

4) Once in close proximity to the active zone, vesicles will participate in very 

rapid calcium sequestration by the Ca2+/H+-antiport (figure 58 A/B and section 3.2.1) 

whose effective range lies within ~100 to 800 µM (max at ~500 µM) Ca2+ 

concentration (Gonçalves et al., 2000a). Such Ca2+ concentrations develop very rapidly 
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(<50 µs) within nanodomains near Ca2+-channel mouths (Roberts, 1994) and activate 

mediatophores and synaptotagmin I that are physically attached to VOCCs.  

5) Both Ca2+-sensors (Mediatophores in plasma and synaptotagmin I in the 

vesicular membranes) suffer rapid (µs) conformational changes resulting in the 

opening of the ACh-permeable mediatophore that releases ACh within <300 µs of Ca2+ 

entry (Girod et al., 1993); 

6) At the same time synaptotagmin I accomplishes its Ca2+-dependent 

oligomerization step providing for the active form of the vesicular Ca2+/H+-antiport 

(section 3.2.4) that uses the steep Ca2+ and H+ gradients across SV membranes to 

remove Ca2+ swiftly (µs up to ms range) from the active zone (figure 58 A and sections 

3.2.1 and 3.2.4).  

7) Very rapid calcium sequestration by the vesicular Ca2+/H+-antiport shortens 

the time-course of secretion by abruptly decreasing the number of Ca2+ ions within an 

active zone and helping to lower [Ca2+] to subthreshold values (otherwise ACh release 

is prolonged from <300 µs to over 1 ms (figure 58 B and section 3.2.1)). A brief calcium 

transient also prevents asynchronous ACh release from mediatophores located away 

from the active Ca2+-channel by lowering the Ca2+ load within the terminal. When rapid 

Ca2+ sequestration is absent local [Ca2+]-microenvironments away from the calcium 

sources may develop rather slowly (ms instead of µs) and contribute to asynchronous 

transmitter release.  

8) Additionally, rapid vesicular Ca2+-transport will add an extra amount 

(possibly final) of Ca2+ into the vesicle, filling it up, exchanging the last ACh molecules 

for Ca2+ ions and finishing loading the vesicle with Ca2+ before fusion occurs a 

millisecond up to few minutes later (see section 3.2.3).  

9) Rapid vesicular Ca2+-sequestration through the antiport contributes to 

maintain calcium homeostasis (figure 58 and sections 3.2.1 and 3.2.2) by preventing 

excessive Ca2+-binding to large quantities of endogenous mobile buffers responsible to 

lower [Ca2+] through buffered diffusion. Vesicular sequestration prevents both the 

rundown of unbound Ca2+ buffers within an activated active zone; at the same time it 

prevents excessive Ca2+ binding to large quantities of mobile buffer that have the 

ability to bind Ca2+ and unbind it after diffusing away from the Ca2+-source. This  
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Figure 58. Vesicular calcium transport participation in Ca2+ dynamics in cholinergic nerve 
terminals. Panel A illustrates how vesicular calcium transport though the vesicular Ca2+/H+ 
antiport may abbreviate the duration of ACh release. Panel B show how inactivation of the 
vesicular antiport with bafilomycin causes a rise in bulk cytosolic calcium and an extension of 
the Ca2+ microdomain, leading to increased ACh release. Panel C represents a nerve terminal 
desensitized by subthreshold [Ca2+] rise after compromising Ca2+-ATPases with 
orthovanadate. 
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simple mechanism may provide a mean to endure subthreshold Ca2+-load (ca. 1 µM) and 

desensitize molecules like VOCCs and mediatophores. 

Therefore there seems to be a joint participation of both the vesicular 

Ca2+/H+ antiport along with Ca2+-ATPases (including the vesicular Ca2+-ATPase) in 

keeping resting calcium under the threshold of activation of Ca2+-desensitization 

mechanisms. 

10) Protons ejected from SVs by the Ca2+/H+-antiport activity will rapidly 

raise local cytosolic pH that may catalyze reactions involving PtdIns polyphosphates 

(like PtdIns-4,5-P2) with synaptotagmin and SNARE proteins adding a H+ switch to 

the Ca2+ signalling that is engaged after (>350 µs) normal secretion time for rapid 

secretion.    

11) Calcium accumulated within a vesicle re-gains the extracellular space upon 

fusion by unbinding from the vesicular matrix now exposed to a largely neutral (pH~7) 

and Na+-rich environment. Ca2+ exocytosis seems to be a cost-effective manner of 

disposing of the large amounts of Ca2+ accumulated within a nerve cell at the same 

time that provides a means to maintain the large fluxes of Ca2+-ions occurring at high 

frequencies with minimal amounts of Ca2+-ions accommodable in the tiny synaptic 

space. 

12) The vesicle gets endocytosed back into the terminal along with the matrix 

that is mostly linked to transmembrane proteins (Kuhn et al., 1988; Reigada et al., 

2003). After endocytosis vesicles will be refilled with transmitter back again through 

ACh active transport under internal SV acidic environment. This favours Na+/ACh ion 

exchange from the vesicular matrix (Reigada et al., 2003) and the cycle may begin 

once more. 

 

A final note concerning slower mechanisms of secretion depending on fusion to 

secrete active substances (rather than mediatophore-like plasma membrane proteins) should 

be added. At least some of them are also endowed with synaptotagmin I and a Ca2+/H+-

antiport activity (as seen in PC12 cells) where most of the above described steps are likely to 

occur to control both calcium dynamics (see Shoji-Kasai et al., 1992) as well as homeostasis, 

even if no microsecond control of secretion will be conceivable or necessary.  
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4.2. Perspectives 

 

 In the course of this work it was possible to pin-point for the first time rapid and 

slow functions of vesicular Ca2+ transport in neurosecretion that had been missing since Ca2+ 

was described to be actively accumulated within vesicles almost 30 years ago. It was also 

possible to identify synaptotagmin I as an essential partner responsible for the vesicular 

Ca2+/H+-antiport activity enabling to relate information on vesicular Ca2+ transport with that 

of the secretory activity of other synaptic partners like SNAREs, mediatophores and 

membrane lipids. 

As usual, the answers provided by this work raise new questions that may outnumber 

the answers provided. For instance: 

 1) Will other secretory systems (namely those working with slower kinetics) 

be equally sensitive to the inhibition of vesicular Ca2+-transport systems? 

 2) What is the exact relationship between vesicular Ca2+-transport and 

extracellular Ca2+ homeostasis? 

 3) What will be the effects of not having vesicular Ca2+-transport in the 

quantic content of cholinergic and other transmitter synapses? 

 4) Is there really a dual Ca2+/H+ code ruling the secretory orchestra?   

  5) What are the effects of the vesicular Ca2+/H+ transport on other fast 

secretory systems using GABA or glutamate? 

  6) What will be the effects of the vesicular Ca2+/H+ transport in the release 

of monoamines by the kiss-and-run mechanism?  

  7) What are the relative contributions to cellular calcium dynamics and 

homeostasis of the different sequestering (endogenous buffers) and extruding (pumps, 

exchangers and channels) in excitable and non-excitable cells? 

  

While at the molecular level one could ask: 

  8) Can the antiport behave as a relatively large conductance pore? 

  9) What are the maximal Ca2+-transport rates attainable by the Ca2+-ATPase 

and the antiport? 

  10) What is the stoichiometry of Ca2+ transport against H+ efflux? 
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  11) Is there an antiport activity in systems that do not express synaptotagmin 

I and II, like the mammalian inner hair cell synapse? If so, who codes for that activity?  

  12) Who codes for the Ca2+-ATPase activity? 

  13) What is the molecular counterpart allowing for ACh leakage out of 

synaptic vesicles? 

  14) Are there similar counterparts for other fast transmitters like GABA, 

glutamate? 

15) Is there any regulation of the vesicular transmitter content for slower 

secretory systems like monoamines and peptides? 

 

 At the level of complex systems this work allows to address at least a couple of 

questions more: 

  16) Is there an involvement (or the lack of it) of vesicular Ca2+-transport 

systems in the aetiology of mental illness (including neurodegenerative disorders)?   

  17) Could we envisage the targeting of vesicular Ca2+-transport systems to 

boost neural network performance (i.e., increase ACh release in Alzheimer’s disease 

patients)? 

  

 It looks like we have pulled a thread from a long and interesting yarn. 

 Let there be funding.  
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