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palavras-chave 
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resumo 
 

 

O objectivo do presente trabalho é o de mostrar a influência de vários iões 
funcionais (Y

3+
, Cu

2+
, F

1-
, Mn

2+
 e Ti

4+
) na capacidade de formação de vidro, na 

sua estrutura, aptidão para serem sinterizados, no comportamento na 
cristalização e nas várias propriedades termofísicas de vidros e vitro-cerâmicos 
obtidos a partir de um vidro base formulado no sistema diópsido – pirofosfato 
de cálcio. 
Ao vidro base foram adicionadas três quantidades diferentes de cinco 
compostos dopantes de modo a obter cinco séries de vidros por fusão. A 
análise estrutural dos vidros foi feita por ressonância magnética nuclear (NMR) 
dos elementos 

29
Si e 

31
P e por espectroscopia de infravermelho associada a 

transformas de Fourier (FTIR). A rede de silicato em todos os vidros 
investigados encontra-se predominantemente coordenada em unidades Q

2
 

(Si), enquanto o fósforo tende a permanecer no seu ambiente de ortofosfato 
(Q°). Todos os vidros apresentaram taxas rápidas de biomineralização, 
tornando-os bons candidatos para aplicações biomédicas. 
Os comportamentos dos pós de vidro na sinterização e na cristalização foram 
estudados por análise termal diferencial (DTA), enquanto a dilatometria foi 
usada para determinar os valores do coeficiente de expansão térmica de todos 
os vidros. A evolução das fases cristalinas e a microestrutura dos vitro-
cerâmicos foram analisadas por difracção de raio x (XRD) e por microscopia 
de electrónica de varrimento (SEM). Os vitro-cerâmicos foram obtidos por 
sinterização e cristalização dos pós dos vidros respectivos por tratamento 
térmico a 800, 850, e 900 °C durante 1 h. 
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abstract 

 
The aim of the present work is to show the influence of various functional ions 
(Y

3+
, Cu

2+
, F

1-
, Mn 

2+
 and Ti

4+
) on the glass forming ability, structure, sintering 

ability, crystallization behaviour and various thermo-physical properties of 
glasses and glass-ceramics in the diopside–calcium pyrophosphate system. 
Five series of glasses have been prepared by melt-quenching technique, by 
doping the parent glass with 3 different percentages for each doping additive. 
The structural analysis of glasses has been made by 

29
Si and 

31
P-nuclear 

magnetic resonance (NMR) and Fourier transforms infrared spectroscopy 
(FTIR). The silicate network in all the investigated glasses is predominantly 
coordinated in Q

2
 (Si) units while phosphorus tends to remain in 

orthophosphate (Qº) environment. All glasses exhibited fast biomineralization  
rates, making them promising candidates for biomedical applications. 
The sintering and crystallization behaviours of glass powders were studie by 
differential thermal analysis (DTA), while dilatometry was used to get the 
results about the coefficient of thermal expansion for all glasses. Crystalline 
phase evolution and microstructure of glass-ceramics has been followed by X-
ray diffraction (XRD) and scanning electron microscopy (SEM). Glass ceramics 
were obtained by sintering and crystallization of glass powder compacts from 
all the glasses at 800,850 and 900 ºC for 1 h. 
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1.  State of the art 

1.1 Introduction 

 The development of first generation bio-inert materials in the 1960s and 1970s for 

application in human body laid the foundation stone in the field of biomaterials. Since 

then, a tremendous advancement has been made in this research area, which has led to the 

development of second generation bioactive materials during 1980s. Bioactive materials 

have the ability to bond to bone tissue through the formation of hydroxyapatite layer on 

their surface via a series of controlled reactions in the physiological environment [1]. In 

today’s era, third generation biomaterials are being designed to stimulate specific cellular 

responses at the molecular level [2]. While the second generation of biomaterials was 

designed to be either resorbable or bioactive, the third generation biomaterials is 

combining these two properties, with the aim of developing materials that once implanted, 

will help the body heal itself  [3]. Bioactive glasses and glass-ceramics are typical 

examples of third generation biomaterials as they have the ability to exhibit surface 

reactivity when in contact with body fluids leading to the release of ionic dissolution 

products (example: Si
4+

, Ca
2+

, P
5+

, Mg
2+

, F
1-

), which further stimulate the various vital 

mechanisms in human body like gene expression, osteoblast proliferation, angiogenesis 

and also provide anti-bacterial as well as anti-inflammatory effects [2-6]. There has been 

increasing evidence in the literature that ionic dissolution products from inorganic 

materials are the key to understand the behaviour of these materials in vitro and in vivo, in 

the context of tissue engineering applications [7]. 

Since the role of major functional ions (Ca
2+

, Mg
2+

, Si
4+

, P
5+

) in bone regeneration 

and soft tissue engineering has been well established and documented [2, 6, 8, 9], the focus 

of research is shifting towards exploring the role of different functional ions that although 

being present in trace quantities in human body, are essential for good metabolism. For 

example: zinc is an essential trace element which plays a vital role in bone formation, 

resorption and tissue engineering as it directly activates aminoacyl-tRNA synthetase (a 

rate-limiting enzyme at translational process of protein synthesis) in osteoblastic cells and 

stimulates cellular protein synthesis [10]. Also zinc has been shown to stimulate gene 

expression of the transcription factors: runt-related transcription factor 2 (Runx2) that is 

related to differentiation into osteoblastic cells. Moreover, zinc inhibits osteoclastic bone 

resorption by inhibiting osteoclast-like cell formation from bone marrow cells and 
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stimulating apoptotic cell death of mature osteoclasts [10]. Similarly, other ions like 

yttrium, copper and fluoride are being incorporated in small quantities to biomaterials in 

order to enhance the cellular response and stimulate gene expressions through dissolution 

of these ions into body fluids in vivo [11-13]. 

Our work is aimed at investigating influence of different functional ions (Cu
2+

, Mn
2+

, Y
3+

, 

F1
-
, Ti

4+
) on structure, thermal behaviour and in vitro apatite forming ability of 

phosphosilicate based bioactive glasses. This study is scientifically relevant owing to the 

fact that the structure of glasses plays a crucial role in deciding their bioactivity [14]. 

Because of that, several literature reports [15-21]attempted to document the influence of 

the most commonly used functional ions present in the bioactive glasses (i.e. Ca
2+

, Mg
2+

, 

Si
4+

, P
5+

) on their structure and bioactivity. However, literature survey reveals that almost 

negligible amount of data has been reported on the structure-property relationships in 

bioactive glasses with respect to the influence of various functional ions. Therefore, this 

study is an attempt to fill in the existing lacuna. 

 

 

1.2 Design of glass compositions 

The parent glass composition has been chosen in the diopside (CaMgSi2O6; 

hereafter referred as Di) - calcium pyrophosphate (Ca2P2O7; hereafter referred as CaPP) 

binary system with the ratio of Di/CaPP = 90/10 (wt. %). The choice of Di-CaPP binary 

system was made owing to the fact that the structure of amorphous Di glass is dominated 

by Q
2
 (Si) species [22], which is an important and positive attribute, as it is well known 

that the highest bioactivity from a phospho-silicate glass can be expected if Q
n
 (Si) units 

(n: number of bridging oxygens) are dominated by chains of Q
2
 metasilicates, which are 

occasionally cross-linked through Q
3
 units, whereas Q

1
 units terminate the chains [14]. 

Further, Di is known to exhibit good sintering behaviour, thus resulting in mechanically 

strong bioactive materials [23]. However, the major drawback of Di-based glasses and 

glass-ceramics is their low dissolution rate [24], which could be controlled by 

adding/substituting some bioresorbable material (for example: CaPP) in the final product. 

Therefore, the addition of CaPP at the expenses of Di in the glass compositions is expected 

to enhance their solubility as well as their bioactivity in physiological fluids. Also, the 

phosphate component in these glasses has been intentionally kept lower because if P2O5 in 

the glass is lower than 10 mol.%, the resulting phosphate species in bioactive glass can 
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coordinate themselves in orthophosphate environment (Q
0
), thus enhancing the bioactivity 

of glass  [21]. The parent glass will be doped with 1, 3, and 5 wt. % of different oxides, 

and calcium fluoride according to the table 1 

 

Table 1 shows the different wt. % of the additives and their designations. 

Wt% Y2O3 CuO MnO CaF2 TiO2 

1 Y-1 Cu-1 Mn-1 F-1 Ti-1 

3 Y-3 Cu-3 Mn-3 F-3 Ti-3 

5 Y-5 Cu-5 Mn-5 F-5 Ti-5 

 

 With respect to the choice and amount of functional ions to be incorporated in the 

bioactive glasses, there selection was made on the basis of their biological role in various 

cellular activities in human body as described below: 

 

(i) Yttrium: Yttrium is known to enhance the mechanical properties of ceramics and 

promotes osteoblast adhesion. Webster et al. [25] investigated the osteoblast 

adhesion on hydroxyapatite doped with either cadmium (Cd), Zinc (Zn), 

magnesium (Mg) or yttrium (Y). They observed that osteoblast adhesion was 

significantly greater for Y-containing hydroxyapatite in comparison to samples 

doped with other ions. Similar results have also been reported by Sato et al. [26]. 

Also, it has been demonstrated that the presence of yttrium in biomaterials 

increases their electrical conductivity [27] which is presumably beneficial for bone 

regeneration and orthopaedic implants as cell proliferation has been shown to be 

sensitive to electrical currents [28]. Although, the optimum concentration level of 

yttrium for promoting osteoblast differentiation and proliferation is still ambiguous, 

however, the beneficial aspects of this element have been reported to be dose-

dependent [29]. Yttrium containing bioactive glasses are not only in demand for 

their enhancing effect on osteoblast proliferation, but they are also potential 

candidates for a new generation of radionuclide vectors for cancer therapy, with 

high biocompatibility and controlled biodegradability [30]. However, a very 

delicate balance must be struck in this case as the glass compositions suitable for 

radiotherapy application should be stable enough to avoid releasing any radioactive 

yttrium into the blood stream in the initial stages of treatment, while at the same 

time maintaining its unique surface reactivity and ability to interact with biological 
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host. The structure of glasses plays a crucial role in deciding their ion release 

behaviour; especially the release of yttrium ion from glass in aqueous medium is 

controlled by its coordination environment and its clustering behaviour. Therefore, 

it becomes mandatory to study the influence of yttrium on the structure of bioactive 

glasses in order to understand the correlation between molecular structure and 

chemical durability of glasses as a function of yttrium content.  

 

(ii) Fluoride: Fluoride is well known to prevent dental decay by inhibiting enamel and 

dentine demineralization, enhancement of demineralization and inhibition of 

bacterial enzymes. Also, it is a well-documented as anticarcinogenic agent. In a 

number of studies reduced caries experience has been attributed to elevated salivary 

fluoride levels. It has been stated that a constant supply of low levels of intraoral 

fluoride is of most benefit in preventing caries. An elevation of the fluoride level in 

saliva from 0.001 to 0.005–0.010 mmolL
-1

, e.g. 5–10 times, for prolonged periods 

may be efficient for caries control [31]. Fluoride is also known to increase bone 

density and despite some dispute on dose and effectiveness in prevention of 

fractures, it is of interest for treatment of osteoporosis [32, 33]. According to Pak et 

al. [34], fluoride exerts a biphasic action at the level of osteoblasts, on bone 

mineral, on bone structure and function, and in treatment of osteoporosis. At low 

circulating concentrations (≤ 500 ng mL
-1

), skeletal uptake of fluoride is limited 

and the effects are beneficial (stimulate osteoblasts proliferation) while at higher 

concentrations and greater skeletal uptake, fluoride may cause osteoblast 

suppression leading to the formation of abnormally mineralized bone of impaired 

quality. These results have also been verified by clinical trials on human patients 

during treatment of spinal fractures [34]. This limits the fluoride content in 

bioactive glasses to low amounts.  

 

(iii) Copper: Copper containing phosphate glasses with antimicrobial activity were 

prepared by Mulligan et al. [13] for potential applications in the treatment of oral 

infections. The aim was to develop glass devices that could be placed at the site of 

an infection such as in a periodontal pocket to treat the infection with the 

antimicrobial ions released as the glass degrades. Mulligan  et al. [13] study has 
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been focused on glass systems with a fixed P2O5 concentration of 45 mol%, and 

concentrations of the antibacterial ions, Cu
2+

 or Ag
+
, of 0, 1, 5, 10 and 15 mol%. 

Apart from that, copper is known to play an essential role in angiogenesis as 

significant amount of Cu is found in human endothelial cells when undergoing 

angiogenesis. In a recent study by Gerard et al. [35], the synergistic stimulating 

effect of copper ions on angiogenesis in combination with two major angiogenic 

factors (FGF-2 and VEGF) has been demonstrated. In another study by Dahl et al. 

[36], it has been shown that a gradual increase in copper ion concentration in 

culture medium enhanced the growth of engineered arterial tissue while low copper 

concentration or a sudden increase in copper ion concentration in culture media 

retarded the tissue growth. This shows that a gradual and controlled release of ions 

in culture media is required for the optimal cell proliferation. Even more, copper 

plays important functional roles in bone metabolism and turnover. It is known that 

it is essential for normal growth and development of the skeleton in humans and in 

animals. Although at present, the exact role that copper plays in bone metabolism is 

unknown, bone abnormalities are a feature of severe copper deficiency [37]. 

 

(iv) Manganese: The motivation for addition of Mn is due to good biological 

properties. The biologically important metal manganese is an essential key cofactor 

for metalloenzymes (oxidases and dehydrogenases), DNA polymerases and kinases 

[38]. Furthermore, this divalent cation is known to strongly influence the integrin 

avidity and the integrin affinity to ligands and – in consequence – cell adhesion to 

extracellular matrix proteins [39]. Mn influences regulation of bone remodelling, 

and its deficit causes reduction of organic matrix synthesis and retards 

endochondral osteogenesis, increasing the possibility of bone abnormalities such as 

decrease of bone thickness or length [40]. Mn supplement was found to be an 

effective inhibitor of loss of bone mass after ovariectomy [41]. Luthen et al. [42] 

investigated the influence of manganese ions on cellular functions like spreading, 

proliferation and gene expression in human osteoblasts. They suggested that the 

effect of Mn cations on cell functions is strongly concentration dependent as higher 

Mn concentration resulted in reduced spreading, proliferation as well as 

phosphorylation of signalling proteins. While the deficiency of manganese may 
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result in the delayed osteogenesis process due to lower activity of osteoblasts. This 

may lead to bone deformation, growth inhibition, and even to bone resorption 

[43].This justifies the lower concentration of these elements used in the present 

study. 

 

 

(v) Titanium: Owing to the bioinert nature of Ti, its alloys are frequently used for 

dental and orthopaedic implants because of low toxicity, superior corrosion 

resistance, favourable mechanical properties and good biocompatibility [44]. 

However, incorporating Ti in biomaterials has been shown to enhance their 

biological activity. For example: Vrouwenvelder et al. [45] reported on the 

osteoblast behaviour on 45S5 Bioglass
®
 doped with iron, titanium, fluorine and 

boron. It was shown that Ti-containing bioactive glass exhibited higher 

proliferation and osteoblast expression whereas doping with B, Fe and F resulted in 

lower osteoblast activity compared to undoped control 45S5 Bioglass
®
. Similarly, 

in a study on Ti-containing phosphate based biactive glasses by Abou Neel et al. 

[46], it has been shown that addition of TiO2 in small amounts (up to 5 mol.%) 

enhances biocompatibility of these glasses in vitro as well as in vivo.  

 

“With the above mentioned perspective, 1, 3 and 5 wt. % of additives (CuO, MnO, Y2O3, 

CaF2 and TiO2, respectively) were added to the parent glass composition. The 

compositions of all the investigated glasses have been presented in Table 2.1 (wt. %) and 

Table 2.2 (mol. %)”. 
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2.  Experimental Procedures 

2.1 Glasses Synthesis  

Tables 2.1 and 2.2 present the detailed compositions of glasses investigated in the 

present study in wt. % and mol. %., respectively. High purity powders of SiO2 (purity 

>99.5%), CaCO3 (>99.5%>), MgCO3 (BDH Chemicals Ltd., UK, purity >99.0%), NH6PO4 

(Sigma Aldrich, Germany, >99.0%) and CaF2, MnO, CuO, and Y2O3 (Sigma Aldrich. 

Germany, 325 mesh. >99.9%), were used. Homogeneous mixtures of batches (~100 g) 

were obtained by ball milling, and then calcined at 900 ºC for 1 h. The calcined batch was 

melted in platinum (Pt) crucibles at 1580 ºC for 1 h in air. Glasses in bulk form were 

produced by pouring the melts into preheated bronze molds followed by annealing at 550 

ºC for 1 h. The samples of the glass-powder compacts were produced from glass frits, 

which were obtained by quenching of glass melts in cold water. The frits were dried and 

then milled in a high-speed agate mill resulting in fine glass powders with mean particle 

sizes of ~20 µm (determined by light scattering technique; Coulter LS 230, Beckman 

Coulter, Fullerton CA; Fraunhofer optical model). Pellets with diameter of 10 mm and 

thickness of 2 mm were prepared by hand press.  

 

 Table 2.1 Batch compositions of all synthesized glasses in wt. % 

Glass CaO MgO P2O5 SiO2 Y2O3 CaF2 CuO MnO TiO2 

CaP-10 27.72 16.75 5.59 49.94    - - 

Y-1 27.44 16.58 5.53 49.44 1.00 - - - - 

Y-3 26.89 16.25 5.42 48.44 3.00 - - - - 

Y-5 26.33 15.91 5.31 47.45 5.00 - - - - 

F-1 27.44 16.58 5.53 49.44 - 1.00 - - - 

F-3 26.89 16.25 5.42 48.44 - 3.00 - - - 

F-5 26.33 15.91 5.31 47.45 - 5.00 - - - 

Cu-1 27.44 16.58 5.53 49.44 - - 1.00 - - 

Cu-3 26.89 16.25 5.42 48.44 - - 3.00 - - 

Cu-5 26.33 15.91 5.31 47.45 - - 5.00 - - 

Mn-1 27.44 16.58 5.53 49.44 - - - 1.00 - 

Mn-3 26.89 16.25 5.42 48.44 - - - 3.00 - 

Mn-5 26.33 15.91 5.31 47.45 - - - 5.00 - 

Ti-1 27.44 16.58 5.53 49.44 - - - - 1.00 

Ti-3 26.89 16.25 5.42 48.44 - - - - 3.00 

Ti-5 26.33 15.91 5.31 47.45 - - - - 5.00 
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  Table 2.2 Batch compositions of all synthesized glasses in mol % 

Glass CaO MgO P2O5 SiO2 Y2O3 CaF2 CuO MnO TiO2 

CaP-10 27.76 23.34 2.21 46.68 - - - - - 

Y-1 27.69 23.28 2.20 46.57 0.25 - - - - 

Y-3 27.55 23.16 2.19 46.33 0.76 - - - - 

Y-5 27.40 23.04 2.18 46.08 1.29 - - - - 

F-1 27.56 23.17 2.19 46.35 - 0.72 - - - 

F-3 27.54 22.71 2.15 45.43 - 2.16 - - - 

F-5 26.75 22.49 2.13 44.98 - 3.65 - - - 

Cu-1 27.57 23.18 2.19 46.35 - - 0.71 - - 

Cu-3 27.17 22.84 2.16 45.69 - - 2.14 - - 

Cu-5 26.77 22.51 2.13 45.01 - - 3.58 - - 

Mn-1 27.54 23.16 2.19 46.31 - - - 0.79 - 

Mn-3 27.10 22.78 2.16 45.57 - - - 2.39 - 

Mn-5 26.65 22.41 2.12 44.82 - - - 4.00 - 

Ti-1 27.52 23.14 2.19 46.27 - - - - 0.88 

Ti-3 27.03 22.72 2.15 45.45 - - - - 2.65 

Ti-5 26.53 22.31 2.11 44.62 - - - - 4.42 

 

The amorphous/ crystalline nature of frits was confirmed by X-ray diffraction (XRD) 

analysis (Rigaku Geigerflex D/Max, Tokyo, Japan; C Series; CuKa radiation; 2θ angle 

range 10º-50º; step 0.02º s
-1

). 

 

2.2 Structural characterization 

2.2.1 Infrared spectroscopy 

Infrared spectra of the glasses powder (before and after immersion in SBF) were 

obtained using an Infrared Fourier spectrometer (FT-IR, model Mattson Galaxy S-7000. 

USA). For this purpose glass powders were mixed with KBr in the proportion of 1/150 (by 

weight) and pressed into a pellet using a hand press. 64 scans for background and 64 scans 

per sample were made with signal gain 1. The resolution was 4 cm
-1

. 

 

2.2.2 Magic angle spinning (MAS)-Nuclear magnetic resonance (NMR) spectroscopy 

The 29Si MAS NMR spectra were recorded on a Bruker ASX 400 spectrometer 

operating at 79.52 MHz (9.4 T) using a 7 mm probe at a spinning rate of 5 kHz. The pulse 

length was 2 μs and 60 s delay time was used. Kaolinite was used as the chemical shift 

reference. The 3IP MAS NMR spectra of glasses were recorded on a Bruker ASX 400 
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spectrometer operating at 161.97 MHz with 45º pulses, spinning rates of 12 kHz, a 60 s 

recycle delay and the chemical shift was quoted in ppm from phosphoric acid (85%). 

2.3 In vitro bioactivity analysis 

The in vitro bioactivity of the glasses, reflected in their capability of inducing HA 

formation onto their surfaces, was investigated by immersion of glass powders in 

simulated body fluid (SBF) (0.1 g glass powder in 50 ml SBF solution) at 37 ºC. SBF had 

an ionic concentration (Na
+
 142.0, K

+
 5.0, Ca

2+
 2.5, Mg

2+
 1.5, CI

-
 125.0, HPO4

2- 
1.0, 

HCO3
- 
 27.0, SO4

2-
 0.5 mmol L

-1
) nearly equivalent to human plasma, as discussed by Tas 

[47] and Kokubo et al. [48]. The powder-SBF mixtures were immediately sealed into 

sterilized plastic flasks and were placed in an oven at 37 ±0.5 ºC. The SBF solution was 

refreshed after every 48 h. The sampling took place after 1, 3, 6, 24 h, 3 and 7 days. The 

experiments were performed in triplicate in order to ensure the accuracy of results. After 

each experiment, the powders were separated from the liquids, washed by deionised water 

to stop the reaction, and then kept in the oven overnight to get dry powder. The apatite-

forming ability of glass powders was followed by XRD and FTIR analysis. 

 

2.4 Thermal characterization of the glasses 

Dilatometry measurements were done with prismatic samples of the bulk glass with 

a cross-section of 4 x 5 mm
2
 (Bahr Thermo Analyse DIL 801 L, Hiillhorst, Germany; 

heating rate 5 K min
-1

).  

Differential thermal analysis (DTA) of glass powders was carried out in air (DTA-TG, 

Labsys Setaram, Caluire, France) from room temperature to 1000 ºC at a heating rate (β)  

of 20 K min
-1

) with -alumina as reference material. The glass transition temperature (Tg), 

onset of crystallization (Tc), and peak temperature of crystallization (Tp) were obtained 

from DTA thermographs. 

Circular pellets with 10 mm diameter, and 2 mm thickness were prepared by uniaxial 

pressing (80 MPa) of dry glass powders in a metallic mold. No binders or plasticizers were 

mixed with glass powders. The glass powder compacts were sintered for 1 h at 800, 850, 

and 900 ºC, respectively under non-isothermal conditions at a heating rate (β) of 5 K min
-1

. 

The crystalline phase evolution in GCs was followed by powder diffraction XRD analysis 

(Rigaku Gei-gerflex D/Max, Tokyo, Japan; C Series; Cu kα, radiation; 2θ angle range 10º-

50º; step 0.02º s
-1

). Microstructure observations were done on polished (mirror finishing), 

chemically etched (by immersion in 2 vol. % HF solution for 2 min) surfaces of GCs by 
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field emission scanning electron microscopy (SEM; Hitachi SU-70, Tokyo, Japan) under 

secondary electron mode. 

Archimedes' method (i.e., immersion in ethylene glycol) was employed to measure the 

apparent density of the bulk annealed glasses and sintered GCs. Molar volume (Vm) and 

excess volume (Ve) were calculated using the density data for the bulk glasses via 

following relations: 

,
M

Vm  

Where M is the molar mass of the glass and ρ is the apparent density of the bulk glasses. 

Similarly, excess volume of the glasses can be expressed as: 

)(iVxVV m

i

ime  

Here, xi is the molar concentration of every oxide, and Vm(i) is the molar volume of every 

oxide (Table 2.3). 

 

                           Table 2.3: Density and molar volume of glass components 

Oxide Density 

(gcm
-3

) 

Molar weight 

(g mol
-1

) 

Molar volume 

(cm
3
 mol

-1
)     

MgO 3.6 40.3 11.19 

CaO 3.34 56.07 16.79 

SiO2 2.65 60.07 22.67 

MnO 5.37 70.94 13.21 

CuO 6.31 79.55 12.61 

TiO2 4.23 79.87 18.88 

P2O5 2.39 141.95 59.39 

Y2O3 5.01 225.81 45.07 

CaF2 3.18 99.16 31.18 
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3.  Results and discussion 

3.1 Glass forming ability  

The melting of glass batches with all compositions mentioned in Table 2.1 at 

1580 ºC for 1 h was adequate to obtain highly homogenous and transparent glasses for all 

the investigated compositions. The XRD analysis of the glasses confirmed their amorphous 

nature except for sample Ti-5 which showed some traces of crystallinity as has been shown 

in Fig. 3.1 The idea behind choosing 5 wt. % to be analysed by XRD of all doped glasses is 

to confirm the glass forming ability with the higher added amount of the doping oxides and 

ensure crystalline free glasses for higher doping wt. % which differ from the parent glass 

composition.  

 

Fig. 3.1 X- ray diffractogram confirms amorphous phase for doped glasses. 

 

 

3.2 Density of glasses 

The incorporation of additives to the parent glass CaP-10 increased the glass 

density ( ) irrespective of the nature of additive as is evident from Table 3.1 In the 

investigated glasses, Cu, Mn and Y-containing glasses exhibited higher densities in 

comparison to their F and Ti-containing counterparts. The density is an additive property 

and increases with incorporation of additive with higher density. The values for molar 

volume (Vm) and excess volume (Ve) of all the glasses are presented in Table 3.1 

CaP-10

Y-5

Y-5
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Ti-5
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Table 3.1 Density, molar volume, and excess volume for the investigated glasses 

Sample Density Mol vol. Excess vol. 

CaP-10 2.86±0.01 19.64±0.04 -0.08±0.04 

F-1            2.86±0.01            19.62±0.09 -0.14±0.09 

F-3 2.88±0.01 19.66±0.02 -0.17±0.02 

F-5 2.90±0.01 19.66±0.01 -0.24±0.01 

Y-1 2.88±0.003 19.68±0.02 -0.11±0.02 

Y-5 2.94±0.01 19.85±0.04 -0.2±0.04 

Cu-1 2.87±0.01 19.59±0.03 -0.08±0.03 

Cu-3 2.92±0.01 19.43±0.03 -0.14±0.03 

Cu-5 2.93±0.01 19.42±0.04 -0.05±0.04 

Mn-1 2.88±0.001 19.56±0.01 -0.12±0.01 

Mn-3 2.91±0.003 19.43±0.02 -0.14±0.02 

Mn-5 2.95±0.001 19.26±0.01 -0.2±0.0.01 

Ti-1 2.88±0.01 19.59±0.05 -0.13±0.05 

Ti-3 2.89±0.01 19.60±0.04 -0.11±0.04 

Ti-5 2.91±0.004 19.61±0.03 -0.09±0.03 

 

The incorporation of almost all the additives in glasses led to a gradual decrease in 

their excess volume while their molar volumes either remained constant or decreased, 

respectively. The excess volume is determined mainly by the distribution in bond lengths, 

angles, and coordination numbers in the short range structure [49]. The decrease in excess 

volume with increasing the amount of additives suggests that the average bond length is 

becoming shorter. Also the incorporation of additives might lead to phase separation. As 

an example of this phenomenon, the additions of titanium oxide to base glass have been 

reported to lead to phase separation [50], while other authors [51] reported that TiO2 can 

also improve glass-forming ability, chemical durability and stabilization of glass structure. 

These observations are somewhat contradictory and might result from the specificities of 

the compositions used. As a matter of fact, titania has been often used as nucleating agent 

in glass compositions [52]. 
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3.3 Structure of glasses 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 FTIR spectra of all the  glasses before immersion in SBF. 

 

It has been well established that molecular structure of glasses plays a crucial role 

in deciding their bioactivity. For example: the bioactivity of 45S5 Bioglass
®
 is known to 

arise from a structure dominated by chains of Q
2
 metasilicates, which are occasionally 

cross-linked through Q
3
 units, whereas Q

1
 species terminate the chains [14], where Q

n
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species distribution furnishes a measure of the connectivity of the glass network and the 

index n refers to the number of bridging oxygens (BOs) surrounding a network former 

ions. Similarly, the enhanced dissolution of silica in highly bioactive compositions has also 

been found to be closely related to the significant fraction of Q
1
 (Si) chain terminators 

while moderate bioactivity can be achieved when Q
3
 (Si) structures predominate [14]. 

Therefore, understanding these features allows designing new glasses with improved 

chemical durability and tailored biodegradability for specific applications. 

 

The room-temperature FTIR spectra of all the investigated glasses are presented in 

Fig. 3.2. In general, all the FTIR spectra of all the glasses exhibit three broad transmittance 

bands in the region 300-1300 cm
-1

. The most intense bands lie in the 800-1300 cm
-1

 region, 

the next one between 300 and 600 cm
-1

, while the least intensive lies between 650 and 800 

cm
-1

. This lack of sharp features is indicative of the general disorder in the silicate and 

phosphate network mainly due to a wide distribution of Q
n
 units occurring in these glasses. 

The most intense bands in the 800-1300 cm
-1

 region correspond to the stretching vibrations 

of the SiO4 tetrahedron with a different number of bridging oxygen atoms [53]. It should 

be noted that the band near ~1050 -1070 cm
−1

 may also be attributed to PO3 end groups 

due to the presence of P2O5 glass network former in the investigated glasses. Further, the 

~500 cm
-1

 band can be attributed to Si-O-Si bending modes  [54], while the weak ~760 cm
-

1
 shoulder may be due to Si–O–Si symmetric stretching with simultaneous Si cation 

motions [55]. 

 

    Since the chemical composition of glass CaP-10 is very close to diopside, we can 

expect almost similar structural organization in this glass too. Further, the 
31

P MAS-NMR 

spectra of all the glasses show a predominance of an orthophosphate-type environment. 

This minimizes the possibility of re-polymerization in the silicate glass network in the form 

of Si-O-Si or Si-O-P linkages due to the presence of phosphate component as suggested 

experimentally by Lockyer et al. [56] and computationally by Tilocca [14]. Also,
 
these 

results are in good co-relation with those reported by Lusvardi et al. [18] and Linati et al. 

[17] for the 45S5 glass where it has been deduced a fraction of orthophosphate units of 

~82% while the rest might be comprised of meta- or pyrophosphates. 
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Fig. 3.3 shows the 
29

Si and 
31

P MAS-NMR spectra of the parent glass CaP-10. The 

29
Si spectrum for the parent glass (Fig. 3.3a) depict the dominance of Q

2
 (Si) structural 

units in the glasses [57].  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 (a) 29Si and (b) 31P MAS-NMR spectra of CaP-10 glass  

 

In particular, the broad 
29

Si spectra for the parent glass implying towards a wider 

distribution Q
n
 (Si) species in the glass structure. The 

31
P MAS-NMR spectra’s of  parent 

glass shows a predominance of an orthophosphate-type environment (Fig. 3.3b). In fact, 

the observed chemical shifts, 1–3 ppm, are close to that of the calcium orthophosphate (3.1 

ppm) and that of the amorphous magnesium orthophosphate (ca. 0.5 ppm) [53].  

No significant differences in the 
29

Si and 
31

P NMR spectra of all glasses were 

observed after doping the parent glass with different additives (Fig. 3.4, Fig. 3.5, Fig. 3.6, 

Fig. 3.7 and Fig. 3.8) except that the peak of 
29

Si spectra in almost all the glasses shifted to 

-83.7 ppm from -84.7 ppm, thus depicting a slight depolymerisation in the glass network.  

 

The following observations were recorded with respect to the influence of additives 

on the structural behaviour of investigated glasses: 

 

i) In the case of Yttrium doped glasses, although we could not observe any significant 

differences in the molecular structure of glasses possibly due to very low content of 

Y2O3 (0.25 – 1.29 mol.%), the change in chemical shift (~1 ppm) of 
29

Si NMR 

spectra fig. 3.4(a) with yttrium incorporation reveals the depolymerising effect of 

Y
3+

 on the glass structure. Christie et al. [30] has been demonstrated that Y
3+

 ion 

prefers to coordinate in pseudo-octahedral coordination at the expense of other 

modifier cations due to its higher field strength 0.6 versus 0.53 for Mg
2+

 (4-fold 
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P Chemical shift (ppm)(b)

     CaP-10

   

         1.4 ppm
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coordination) or 0.46 versus 0.33 for Ca
2+

 (6-fold coordination). A related effect 

has previously been found to control the coordination and site selectivity of calcium 

and sodium in Y-free silicate glasses, with important consequences for the 

mechanism of cations migration [30]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 (a) 
29

Si and (b) 
31

P MAS-NMR spectra of Y (1-3-5) glass series  

 

 

 

 

  

ii) In the case of fluoride doped glasses, it is noteworthy that the possibility of the 

formation of Si-O-P bonds is low if not negligible (as depicted by almost negligible 

shift in the 
29

Si spectra). In fact, according to the NMR results, phosphate groups are 

not part of the actual glass network backbone. Similar results have also been 

obtained by Brauer et al. [57] on a series of SiO2-P2O5-CaO-Na2O-CaF2 glasses 

where it was found that addition of CaF2 did not disrupt the network connectivity by 

forming Si-F bonds, instead, formed mixed calcium sodium fluoride species. 

However, it should be noted that bioactivity is not solely a function of glass 

structure, but also depends on their chemical nature [58]. 
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Fig. 3.5 (a) 
29

Si and (b) 
31

P MAS-NMR spectra of F (1, 3, 5) glass series 

 

iii) The structure of glasses plays a crucial role in deciding their ion release behaviour; 

especially the release of copper ion from glass in aqueous medium is controlled by its 

coordination environment and its clustering behaviour.  

In the present study, although we could not observe any significant differences in the 

molecular structure of glasses possibly due to very low content of CuO (0.71 – 3.58 

mol.%), where the change in chemical shift (~1 ppm) of 
29

Si NMR spectra with 

copper incorporation reveals the depolymerising effect of Cu
2+

 on the glass structure, 

the 
31

P NMR spectra indicate that a portion of CuO, which acts mostly as a network 

modifier [59], enters the glass network to form covalent P-O-Cu linkages in the 

polyphosphate glasses. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6 (a) 
29

Si and (b) 
31

P MAS-NMR spectra of Cu (1, 3, 5) glass series 
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iv) Also it has been reported that the introduction of manganese in the phospho-silicate 

glass network is known to induce significant changes in the local oxygen 

environment since the donor ability of manganese is weaker in comparison to oxide, 

making the possibility of Si-Mn formation, unlikely. The molar percentages of MnO 

that have been added to the parent glass are very small (0.79-4) mol %, while the 

structure of the parent glass dominated by Q
2
, is shifted from Q

2
 to Q

1
 or shared in-

between with high Q
2
 % approaching 75% by increasing MnO content in the 

composition, as determined by Raman spectroscopy [60].  

 

  

Fig. 3.7 (a) 
29

Si and (b) 
31

P MAS-NMR spectra of Mn (1, 3, 5) glass series 

 

 

v) In the case study of titanium doping glasses, although we could not observe any 

significant differences in the molecular structure of glasses possibly due to very low 

content of TiO2 (0.88 – 4.42 mol.%), the change in chemical shift (~1 ppm) of 
29

Si 

NMR spectra with titanium incorporation reveals the depolymerising effect of Ti
3+

 

on the glass structure. In alkali/Alkali earth silicate glasses, it has been reported that 

Ti was found in 4-6 folds coordination in glass structure as mentioned by (Wood and 

Hess) [61]; (Furukawa and White, 1979); and Mysen et al, [62]. Characterization of 

the Ti-glass phase has also revealed that the addition of TiO2 results in an increased 

concentration of Si- NBO species [63]. 
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Fig. 3.8 (a) 
29

Si and (b) 
31

P MAS-NMR spectra of Ti (1, 3, 5) glass series 

  

 

 

In the present study, all the glasses exhibit the dominance of Q
2
 (Si) species in the 

silicate glass network thus implying towards high rate of bioactivity (usually marked by 

apatite forming ability on glass surface). It has been reported that in an amorphous 

diopside glass, the distribution of Q
n

 (Si) is: 28% Q
1
, 43% Q

2
, 25% Q

3
 and 4% Q

4 
[40]. 

This distribution of Q
n

 (Si) species in diopside glass is quite close to the Q
n

 (Si) distribution 

of the 45S5 glass (15% Q
1
, 67% Q

2
, 18% Q

3
) calculated by Linati et al. [17] since a 

mixture of (Q
1
 + Q

2
) units predominate in both cases, thus giving an indication of good 

bioactivity. 

 

3.4 Thermal behaviour of glasses 

3.4.1 Dilatometry 

The CTE values of glasses as obtained from dilatometry in the temperature interval 

of 200 – 500 ºC varied between about (7.8-10.5) x 10
-6

 K
-1

).  (Fig. 3.9) The CTE values of 

almost all the glasses (except Mn containing glasses) depicted a decrease with initial 

addition of additives (1 wt. %) before exhibiting an increase with further additions. 

However, an opposite trend was observed for Mn containing glasses which exhibited an 

increase in CTE values with the initial 1 wt. % addition, while further additions of MnO in 

glasses led to a gradual decrease in CTE values. 
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3.4.2 Differential thermal analysis (DTA) 

Bioactive glasses are not single-phase systems having one glass transition 

temperature. Instead, they have undergone amorphous phase separation, or glass-in-glass 

phase separation, to give a two-phase system consisting of a silicate glass matrix phase in 

which an orthophosphate droplet glass phase is dispersed  [64]. 

The glass transition temperature (Tg) is an important parameter for characterizing 

bioactive glasses, as it is an indirect measure of the connectivity of the glass network and 

therefore is closely related to glass solubility and degradation, crystallization and 

mechanical properties  [64]. 

 

Fig. 3.10 presents a typical DTA thermograph for the parent glass CaP-10 at a 

heating rate (β) of 20 K min
−1

. An endothermic dip in the temperature interval of 725 – 785 

ºC corresponding to glass transition (Tg) can be seen before the onset of crystallization (Tc) 

followed by a well-defined single exothermic crystallization peak. The presence of the 

single crystallization exotherm anticipates that the glass-ceramic is formed either as a 

result of single phase crystallization or of an almost simultaneous precipitation of different 

crystalline phases. Similar behaviour was observed in all the investigated glasses as is 

evident from Fig. 3.11. The incorporation of additives led to a decrease, an increase, or no 

effect in Tg Values.  
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Fig. 3.9 Dilatometry results for the investigated glasses 
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Fig. 3.10 DTA thermograph for CaP-10 at heating rate ( ) of 20 K min
-1   

 

The following observations were recorded with respect to the influence of additives 

on the thermal behaviour of investigated glasses: 

 

i) All Y2O3 containing glasses exhibit Tg values that are lower than the parent glass 

composition, CaP-10. However, the increasing weight percentages of Y2O3 in the 

glasses result in slight increases on the value of glass transition temperature (Tg) (as 

obtained from the mid-point of endothermic dip before onset of crystallization in 

DTA thermograph) as it varies in the range 769-775 ºC for this glass series. A 

gradual increase in the Tp values could be observed with increasing Y2O3 content in 

the glasses up to Y-3, therefore gradually enhancing the stability of the glasses 

against devitrification, while a further Y2O3 addition to 5 wt. % reversed this trend. 

The increase in Tg with addition of Yttrium to glasses can be explained by the high 

fraction of Si-O-P linkages as has been deduced from the structural studies on these 

glasses. The trend of Tg can be explained by taking into account that, according to 

Ray [65], the glass transformation temperature depends on the density of covalent 

cross-linking and the number and strength of the cross-links between the cation and 

oxygen atoms. The increase in Tg can therefore be ascribed to the greater strength 

of the cross-links between the Y
3+

 cation and oxygen atoms [66]. 
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(c) 

Fig. 3.11 DTA thermographs of the investigated at β = 20 K min
-1

, (a) Y- containing glasses; (b) 

Mn-containing glasses; and (c) for Ti-containing glasses. 

 

ii) The addition of CaF2, CuO, MnO and the increase of their weight percentage in the 

glasses caused decreases on the values of glass transition temperature (Tg) (as 

obtained from the mid-point of endothermic dip before onset of crystallization in 

DTA thermograph) as it varies in the range 738-766 ºC for this three series of  

glasses. However, the Tg values of all these doped glasses were evidently lower 

than their parent glass composition, CaP-10. In a similar way, the same additions 

also resulted in decreases of the onset of crystallization temperature (Tc) that varied 

in the range of (842-889 ºC). A gradual decrease in the Tp values could be also 

observed with increasing doping weight percentages in the glasses. For the CaF2 

containing glasses, the decrease in Tg with increasing wt. % of CaF2 to parent glass 

can be explained by the low fraction of Si-O-P linkages as has been deduced from 

the structural studies on these glasses. Further, in fluoride free glass, divalent 

modifier ions bind together silicate anions by electrostatic forces and the modifier 

ions effectively act as ionic bridges between two NBOs. However, with addition of 

CaF2 in glasses, the fluorine is complexing with calcium or magnesium, thus, 

hypothetical CaF
+
 and MgF

+
 species are added to the silicate ions which reduce the 

electrostatic forces between NBOs considerably and results in a decrease in Tg [57], 

the degree of polymerisation is expected to decrease and, accordingly, Tg values 

should decrease and increasing CTE of glasses. By the same manner the increase in 
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weight percentage for both CuO, and MnO doped glasses tend to decrease the (Tg)  

gradually, and degree of polymerization is expected to be decreased consequently, 

sharing the same trend for the these three types of doped glasses. 

iii) The variation in titanium concentration in glasses caused no change on value of 

glass transition temperature (Tg) (as obtained from the mid-point of endothermic 

dip before onset of crystallization in DTA thermograph) for the studied glasses. A 

decrease in intensity of the exothermic peak and a shift of Tp values to higher 

temperatures could be observed with adding 1 wt. % of TiO2 to the parent glass (Ti-

1). This means that the thermal stability parameter T (= Tc – Tg) was enhanced for 

this first addition thus, providing wider processing window for a glass composition 

to attain maximum densification upon sintering. But this situation was somewhat 

reversed by adding further amounts of TiO2. The differences are still small for the 

Ti-3, but became exacerbated for the composition Ti-5. As a matter of fact, Tc 

significantly decreased while the resulting crystallization exotherm is no more a 

relatively sharp peak but a broad band. This means a degradation of the sintering 

ability and that the glasses containing the higher amounts of TiO2 are more prone to 

crystallization. In other words, TiO2 is playing a nucleating agent role, often 

referred to in literature reports [52]. These variations in DTA thermographs and 

their implications in the sintering/crystallization behaviour are consistent with a 

decreased diffusivity of the larger ionic radius Ti
+4

 in octahedral coordination (0.61 

Å)  [67]. Physical properties of the parent glass show some evidence for a change 

in the structural role of titanium with increasing titanium content. Glass transition 

temperature Tg doesn’t exhibit any change by increasing the titanium content in the  

parent glass. Our results for Tg are consistent with the work reported elsewhere [50, 

51]. This non change of Tg suggests that viscosity should be about the same in all 

cases. 
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Table 3.2 Tg, Tc, and Tp values for all investigated glasses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glass Tg Tc Tp Δ= Tc-Tg 

CaP-10 776 869 934 93 

Y-1 769 898 958 129 

Y-3 773 910 966 137 

Y-5 775 915 964 140 

F-1 765 874 941 109 

F-3 745 870 941 125 

F-5 738 862 921 124 

Cu-1 765 881 950 116 

Cu-3 753 854 924 101 

Cu-5 746 842 904 96 

Mn-1 766 889 942 123 

Mn-3 764 875 926 111 

Mn-5 762 868 925 106 

Ti-1 760 893 942 133 

Ti-3 760 889 940 129 

Ti-5 760 875 950 115 

 

 

3.5 In vitro bioactivity in SBF  

            In relation to bioactivity, network modifying alkali and alkali earth cations in the 

glass can disrupt the continuity of the glass network due to the breaking of some of the Si-

O-Si groups leading to the formation of Si-NBO species [63]. The presence of these Si-

NBO groups favours the ion exchange process where dissolution of the soluble silica 

content results in the formation of a SiO2 rich surface layer and consequently Si-OH 

groups, and also the release of cations from the glass surface [63]. 

            

 The immersion of glass powders in SBF solution for 1 h led to the formation of 

hydroxyapatite (HA; Ca5(PO4)3(OH); ICDD: 09-0432) on their surface in Y2O3, MnO, 

CuO and TiO2 containing glasses, respectively, while silica (S; SiO2; ICDD: 073-3462) has 

been formed on the surface of (Mn-5), while Calcite (C; CaCO3;ICDD: 00-005-0586)  and 

Calcium Phosphate (CaP, Ca2P2O7,ICDD:00-009-0346) have been formed on the surface 

of (Y-5) as depicted by XRD data in Fig. 3.12. Also, the FT-IR spectra of all the 

investigated glasses showed considerable differences in comparison to Spectra of their 

respective parent glasses (Fig. 3.2), after soaking in SBF solution for 1 h (Fig. 3.13).  
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Fig. 3.12 X- ray diffractogram of all investigated glasses after immersion in SBF for 1 h  
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Fig. 3.13 FTIR for all glass powders after 1h of immersion in SBF. 
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As is evident from Fig. 3.13, a strong low frequency band centred at ~ 450 cm
-1

, ascribed 

to a deformation mode of silica layer that develops on the dissolving glass particles could 

be seen in all the glasses after immersion in SBF solution for 1 h [12]. The main IR band 

now occurs at 1080 cm
-1

 and a nearby shoulder, centred at ~1220 cm
-1

 and attributed to Si-

O-Si vibration [68], can be observed in all the glasses, due to the interfacial formation of 

high-area silica gel layer, as postulated in Hench’s inorganic reaction set [69]. Further, two 

small peaks could be observed in Mn and Ti-containing glasses at ~580 cm
-1 

and 615 cm
-1

. 

This is the most characteristic region for apatite and other phosphates as it corresponds to 

P-O bending vibrations in a PO4
3-

 tetrahedron. Apatitic PO4
3-

 groups have characteristic 

split bands at ~560 and 600 cm
-1

, with a third signal at ~575 cm
-1

 observed for crystallites 

of small size [70]. Furthermore, a band at in the range 1400-1450 cm
-1

 along with another 

one at ~850-870 cm
-1

 present in all glasses might correspond to formation of complex 

carbonate species connected with the presence of Ca
2+

 ions in the surface [13], or to the 

incorporation of carbonate into the phosphosilicate layer [70]. It should be noted that broad 

CO3
2-

 band at ~ 1440 cm
-1

 observed in most of the investigated glasses after immersion in 

SBF indicate towards A-type substitution (i.e. carbonate replacing a hydroxyl group). The 

CO3
2-

 signal for B-type substitution (i.e. carbonate replacing phosphate group) would be 

shifted to lower wave numbers, starting from ~ 1410 cm
-1 

[12]. An increase in immersion 

time (1 h – 7 days) led to the gradual precipitation and dissolution of HA and calcite on the 

glass surface as depicted by XRD analysis (Table 3.3). Interestingly, fluoride containing 

glasses showed the slowest rate of HA formation among all the investigated glasses. The 

yttrium containing glass exhibited high rate of apatite formation as is evident from Fig. 

3.12 and Table 3.3. The FT-IR data reveals the formation of silica gel layer on glass 

surface after 1 h of immersion in SBF solution while all the glasses exhibited HA 

formation between 1-3 h of their immersion in SBF solution. With prolonged immersion of 

glass in SBF solution for 6 and 24 h, the HA dissolution took place while it re-precipitated 

after 3 days and continued to exist until 7 days of immersion in SBF solution (Table 3.3). 

Since, intense ionic exchanges occur at the bioactive glass surface that cause major 

changes in the degree of super-saturation for HA formation in biological fluids; therefore, 

the potential for each glass to form an apatite layer can be extrapolated from the 

corresponding evolution of super-saturation degree. According to Lao et al. [71], super-
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saturation degree may be defined as: SD = Q/Ksp, where Ksp is the solubility product of HA 

in aqueous solution while Q is the ionic activity product for the formation of HA.  

 Therefore, the solution and HA mineral phase reach equilibrium when SD = 1. For 

SD < 1, the dissolution of HA mineral phase is favoured; while the solution is 

supersaturated with respect to HA mineral and its precipitation is favoured when SD > 1. 

In the present scenario, during initial hours of immersion of glass in SBF, the SD increases 

because of dealkalinazation of glass surface while formation of silica rich layer provides 

regions of low interfacial energy, thus providing favourable sites for nucleation of HA. 

However, disappearance of HA after 6 h of immersion in SBF solution may be attributed to 

the changing degree of super-saturation owing to the refreshing of SBF solution after every 

48 h. 

   

 Table 3.3 Crystalline phases evolution on the glass surface after immersion of glasses in 

SBF solution for various time durations. (HA: Hydroxyapatite; C: Calcite; S: silicate; Cap: 

Calcium Phosphate; A: Amorphous). 

 1h 3h 6h 24h 72h 168h 

CaP-10 A C; HA A A HA HA 

Y-1 C; HA C; HA A A HA HA 

Y-3 A C; HA A A A HA 

Y-5 C; CaP; HA C; HA A A HA HA 

Cu-1 A C; HA A A A HA 

Cu-3 A HA A A HA HA 

Cu-5 HA C; HA A A HA HA 

F-1 A A A A A HA 

F-3 A A A A A A 

F-5 A HA A A A HA 

Mn-1 HA HA A A A A 

Mn-3 HA A A A A A 

Mn-5 HA; S HA A A A A 

Ti-1 HA HA A A A A 

Ti-3 HA HA A A A A 

Ti-5 HA HA A A A A 

 
 

A contradictory behaviour has been reported by Cacaina et al. [72] where it has been 

shown that increasing Y2O3 content in glasses decreases their apatite forming ability in 

SBF solution. However, the difference in results may be attributed to the significantly 

higher Y2O3 content used by Cacaina et al. [72] in their glasses (~9-15 wt.%) which should 

lead to clustering of Y
3+

 ions, thus resulting in stabilizing the structure and retarding the 

dissolution of glasses.  



 34 

The introduction of fluoride in the phospho-silicate glass network is known to 

induce significant changes in the local oxygen environment since the donor ability of 

fluoride is weaker in comparison to oxide, making the possibility of Si-F formation, 

unlikely. Therefore, under such conditions, fluoride remains predominantly in ionic state 

and prefers to form ionic bonds with metal cations (Ca and Mg in present study), thus 

avoiding the de-polymerization of silicate glass network and forcing phosphate groups to 

link with silicate groups, leading to higher glass connectivity [18] which might further 

hamper their bioactivity. 

With regard to slow apatite forming ability of fluoride containing glasses, similar 

behaviour has been observed by Kansal et al. [6] as well as by Lusvardi et al. [13]. This 

behaviour may be explained on the basis of decreasing tendency towards formation of 

silica gel like layer (considered to be essential in order to activate the apatite nucleation) on 

the glass surface with increasing fluoride content as is evident from Fig. 3.13b. Similar 

results were also reported on CaO-SiO2 based glasses by Ebisawa et al. [73] where it was 

shown that fluoride addition to these glasses lowered their apatite forming ability and silica 

gel layer formation was either small or not observed. Therefore, lack of HA formation in 

the present study does not render the fluoride containing glasses to be bio-inert. Instead, 

detailed investigations need to be carried out in vitro and in vivo in order to determine the 

precise influence of fluoride on bone regeneration. 

          Ti-based materials are also known to form a CaP surface layer when immersed in 

simulated body fluids [74]. The presence of this layer is reported to be a prerequisite to 

bone bonding [75]. Ti-based glass exhibited high rate of apatite formation as is evident 

from Fig. 3.12 and Table 3.3. The FT-IR data reveals the formation of silica gel layer on 

glass surface after 1 h of immersion in SBF solution while all the glasses exhibited HA 

formation between 1-3 h of their immersion in SBF solution. With prolonged immersion of 

glass in SBF solution for 6 and 24 h, also for 3 and 7 days the HA dissolution took place as 

has been shown in (Table 3.3). Since, intense ionic exchanges occur at the bioactive glass 

surface that cause major changes in the degree of supersaturation for HA formation in 

biological fluids; therefore, the potential for each glass to form an apatite layer can be 

extrapolated from the corresponding evolution of supersaturation degree as demonstrated 

by Lao et al. Also it has been clear enough from x-ray that increasing TiO2 content in 

glasses increases their apatite forming ability in SBF solution.  
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3.6 Sintering and crystallization behaviour of glasses 

In agreement with the ∆T (= Tc – Tg)  values as obtained from DTA data (Table 3.2), well 

sintered, dense but amorphous glass powder compacts were obtained after sintering at 800 

ºC for 1 h as is evident from the XRD data presented in (Fig. 3.14 (a, b, d, e) while (c) has 

crystalline phase of (Di; CaMgSi2O6; ICDD: 78-1390). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14 X- ray diffractogram of glass powder compacts after sintering at 800ºC for 1 h 
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Further increase in temperature to 850 ºC (Fig. 3.15) led to the crystallization of diopside 

(Di; CaMgSi2O6; ICDD: 78-1390) as the primary crystalline phase in all the glass-

ceramics. 

 

                 

                   

 

Fig. 3.15 X- ray diffractogram of glass powder compacts after sintering at 850ºC for 1h 
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With further increase in temperature i.e. 900 ºC the intensity is increased of the Di 

crystalline phase, and evolution of Yttrium oxide (YO; Y2O3; ICDD: 044-0399) and 

Fluorapatite (FA; Ca5(PO4)3F; ICDD: 01-073-1727) crystalline phases in yttrium and 

Fluoride glasses respectively, (Fig. 3.16) indicating the possible increase in crystallinity. 

                 
 

        

 

Figure 3.16 X- ray diffractogram of glass powder compacts after sintering at 900 °C for 1 h 
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However, in order to validate this claim, we need to make quantitative crystalline 

phase analysis on these glass-ceramics using Rietveld refinement technique because the 

variation in intensity may also be a result of preferential orientation of crystals in the glass-

ceramic powders. Also, the quantitative crystalline phase analysis of these glass-ceramics 

will allow determining their amorphous/crystalline ratio which will be beneficial in 

analysing the bioactivity of the glass-ceramics. 

 

3.7 Scanning electron Microscopy (SEM) analysis 

With respect to the microstructure of glass-ceramics as observed by SEM, the data 

is in good agreement with DTA and XRD analysis of the glasses and resultant glass-

ceramics, respectively. Fig. 3.17(a) shows examples of some SEM images of glass-

ceramics Y-3 (a, b), Cu-3 (c); and Mn-5 (d) after sintering at 900 ºC for 1 h. All of them 

exhibit densely sintered glass-ceramic structures. This proves the good sintering ability of 

the starting glass powders reported above.  

 

   

 

 

 

 

 

 

 

                  

 

Fig. 3.17 Microstructure (revealed via SEM imaging after chemical etching of polished surfaces 

with 2 vol.% HF solution) of the glass-ceramic  heat treated at 900 °C (a, b) for Y-3;  (c) for Cu-3; 

(d) for Mn-5. 
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Elemental mapping was also performed for most of the compositions studied to 

access the homogeneity of the elements distribution and in an attempt to find supporting 

evidences for the XRD data gathered. Fig. 3.18 shows a SEM microstructure of the F-5 

glass ceramic after sintering at 900ºC, as well as the mapping for the most relevant 

elements in the composition.  

 

  

(a) (b) 

  

(c) (d) 

 

  

(e) 



 40 

Fig. 3.18 SEM microstructure of sample F-5 heat treated at 900 °C and mapping of the most 

relevant elements in the composition. 

 

From the elemental mapping, it can be suggested that the main crystal seen in Fig. 

3.18 (a) is depleted in Ca, Si and Mg and, therefore, can be attributed to the main 

crystalline phase (Diopside) detected by XRD. Fig. 3.18 (b) shows that Ca, P and F co-

exist in the red-pink spot, together with P. This elemental combination suggests that a 

segregation phase of a Ca, F, and P elemental combination, as a kind of precursor for 

fluorapatite has been formed. Its presence can be ascertained by the quite small beak 

intensity in the XRD spectrum of this sample as shown in Fig. 3.16 (b). 

 

 

Fig. 3.18 (c) & (e) show that the distribution of Si and Mg elements appear 

associated, certainly in the main crystalline phase (Diopside) detected by XRD (Fig. 3.16 

(b)), as well as in the glassy phase. On the other hand, P appears well distributed in the 

entire sample, suggesting that besides its involvement in the formation of the fluorapatite 

precursor, it also exists in the glassy phase as proved by FTIR.   

 

 

Figure 3.19 shows a SEM microstructure of the Y-5 sample heat treated at 900ºC and the 

respective elemental mapping. A cluster of Si is well noticed in Fig. 3.19 (b, d), probably 

corresponding to some remnant from colloidal silica used during final step of polishing. 

Mg, P and Ca elements appear well combined, probably in the diopside phase [Fig. 3.19 

(b)]. 

 

This elemental map also suggests some clustering of Y in yttrium Oxide crystalline 

phase, as detected by XRD fig. 3.16 a. On the other hand, the Y, Mg and P elements appear 

reasonably well distributed in Fig. 3.19 (c, e and f).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 
Fig. 3.19 SEM microstructure of sample Y-5 heat treated at 900 °C and mapping of the most 

relevant elements in the composition. 

 

 

In summary, the SEM analysis support the experimental results obtained by other 

characterisation techniques. In other words, the set of results obtained along the present 

work is consistent, although further work needs to be done to further deepen and confirm 

same aspects that are not yet enough proven.  
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4.  Conclusions 

The structural characteristics along with the biomineralisation behaviour of a new 

series of potentially bioactive glasses in Di-CaPP system have been investigated in order to 

develop a suitable candidate material for biomedical applications. Further, thermal 

properties and sintering have been discussed as well as the influence of doping various wt. 

% of Y2O3, CaF2, CuO, MnO, and TiO2 on various thermo-physical properties of the 

parent glass. Bioactivity was evaluated by immersion the glass powders SBF for different 

time periods. No bioactivity test was performed for the bulk glasses and glass ceramics. 

 

From the observations made along the present work, the following conclusions can be 

drawn: 

i) Amorphous and transparent bulk glass could be produced at parent glass from a 

composition with CaPP ≤ 10 wt. %, while above 10 wt. % of CaPP it was not 

possible to obtain homogeneous transparent glass, since the melts showed a 

tendency to surface crystallization. Accordingly, almost crystalline and opaque 

bulk glasses were obtained at 20 wt. %, and 30 wt. % of CaPP, respectively.  

ii) Highly homogenous and transparent glasses could be prepared for all the 

investigated compositions, (except for Ti-5 glass) which showed some traces of 

crystallinity, suggesting that TiO2 is playing the role of a nucleating agent. 

iii) The incorporation of additives to the parent glass CaP-10 increased the glass 

density ( ) irrespective of the nature of additive and led to a gradual decrease in 

their excess volume while their molar volumes either remained constant or 

decreased, respectively. 

iv) The parent glass and all doped glasses exhibit the dominance of Q
2
 (Si) structural 

units in the glasses, thus implying towards high rate of bioactivity, although a slight 

depolymerisation has been depicted in all doped glass. 

v) The CTE values of almost all the glasses depicted a decrease with initial addition of 

additives (1 wt. %), before exhibiting an increase with further additions (except for 

Mn containing glasses). 
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vi) The Tg values of all doped glasses were evidently lower than their parent glass 

composition, CaP-10. 

vii)  The increase in wt. % of Y2O3 in the glasses lead to a slight increases on the value 

of Tg, while increasing wt. % of (CaF2, CuO, MnO) in the glasses lead to decrease 

on the values of Tg, while the increase in wt. % of TiO2 had no significant effect on 

Tg. 

viii) In Yttria-doped glasses, a gradual increase in the values of maximum crystallization 

peak temperature, Tp, could be observed up to about Y-3, a trend that was reversed 

with further increasing the amount of doping oxide (Y-5) while an opposite trend 

was observed in the Ti- doped glasses. These results point out to a first gradual 

enhancement of the stability of the Y-doped glasses against devitrification, 

followed a less stability towards crystallisation. The other doped glasses (F-Cu-Mn) 

exhibited a similar trend, with a gradual decrease in Tp, meaning an increased 

tendency towards dvitrification.  

ix) As deduced from DTA analysis, a large difference between glass transition 

temperature (Tg) and the onset temperature of crystallization (Tc), ( T = Tc -Tg) 

provides a large processing window that facilitates sintering and ensures thermal 

stability. According to this criterion, the sintering ability was enhanced with 

increasing added amounts of yttrium- and fluoride-doped glasses, while the 

opposite trend has been observed for Cu, Mn, and Ti-doped glasses. However, even 

in these last cases, the processing window is still enough wide to ensure good sinter 

ability, as confirmed by SEM imaging. 

x) All Y2O3, MnO, CuO and TiO2 containing glasses exhibited a fast 

biomineralization rate with the formation of a HA layer after 1 h of immersion of 

the glass powders in a SBF solution, making them good candidates for biomedical 

applications. Besides HA, silica (SiO2) and calcium pyrophosphate have been 

detected on the surface of Mn-5, while calcite together with HA were formed on 

surface of Y-1and Y-5.  
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Di crystallized as the main phase in all the glass-ceramics, while a small amount of 

fluorapatite and calcium silicate were also detected in Fluor-containing glass-ceramics, 

especially in F-5. In the case of Y-containing glass-ceramics, besides the main Di phase, 

magnesium yttrium silicate and yttrium oxide were also detected as minor phases. 

However, Rietveld refinement studies are would be required for a quantitative phase 

analysis and to get better insight about the distribution of doping elements in the 

investigated systems. 
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Regrettably, the shortage of time did not allow a more detailed and in deep study and 

characterization of the properties of the glasses and glass ceramics prepared in the frame of 

this Master thesis work programme. Therefore, the following issues are worthy to be 

continued in a next future:  

i) Hot stage microscopy (HSM) analysis must be performed to better understanding the 

sintering behaviour of glass powders and discrimination between the densification 

and crystallization phenomena. This will enable gathering further evidences to 

support our hypothesis of a large sintering temperature window along which the 

designed glasses can undergo full densification. 

ii) Rietveld refinement studies are crucial in order to determine the quantitative phase 

analysis and get a better insight about the distribution of the doping elements in the 

investigated systems.  

iii) Mechanical strength measurements, including flexural strength, micro-hardness and 

elastic properties should be measured on the synthesized glasses and glass ceramics. 

iv) The physic-chemical degradation of the glasses should be performed in Tris-HCl and 

citric acid buffer in accordance with ISO 10993-14 and compared with that of bench 

mark materials existing in the market such as the 45S5 Bioglass®. 

v) More exhaustive biomineralization experiments should be carried out by immersing 

the glass powders and/or bulk glasses or glass ceramics in SBF while registering the 

evolution of pH and measuring the concentrations of leached ions along the time and 

performing a more in deep characterization of the deposited HA layer. 

vi) Bioactivity experiments in cell or tissue cultures should be conducted using 

powder/bulk glasses/glass ceramics to study the biological response to designed 

materials, namely in terms of cell adhesion, cells viability and alkaline phosphatase 

secretion to evaluate the suitability of the materials for in vivo tests and clinical 

assays.  
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