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resumo O tema principal desta tese é o problema de cancelamento de interferência
para sistemas multi-utilizador, com antenas distribuídas. Como tal, ao ini-
ciar, uma visão geral das principais propriedades de um sistema de antenas
distribuídas é apresentada. Esta descrição inclui o estudo analítico do im-
pacto da ligação, dos utilizadores do sistema, a mais antenas distribuídas.
Durante essa análise é demonstrado que a propriedade mais importante do
sistema para obtenção do ganho máximo, através da ligação de mais antenas
de transmissão, é a simetria espacial e que os utilizadores nas fronteiras das
células são os mais bene�ciados. Tais resultados são comprovados através
de simulação. O problema de cancelamento de interferência multi-utilizador
é considerado tanto para o caso unidimensional (i.e. sem codi�cação) como
para o multidimensional (i.e. com codi�cação). Para o caso unidimensional
um algoritmo de pré-codi�cação não-linear é proposto e avaliado, tendo
como objectivo a minimização da taxa de erro de bit. Tanto o caso de
portadora única como o de multipla-portadora são abordados, bem como o
cenário de antenas colocadas e distribuidas. É demonstrado que o esquema
proposto pode ser visto como uma extensão do bem conhecido esquema
de zeros forçados, cuja desempenho é provado ser um limite inferior para
o esquema generalizado. O algoritmo é avaliado, para diferentes cenários,
através de simulação, a qual indica desempenho perto do óptimo, com baixa
complexidade. Para o caso multi-dimensional um esquema para efectuar
"dirty paper coding" binário, tendo como base códigos de dupla camada é
proposto. No desenvolvimento deste esquema, a compressão com perdas de
informação, é considerada como um subproblema. Resultados de simulação
indicam transmissão �dedigna proxima do limite de Shannon.
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abstract This thesis focus on the interference cancellation problem for multiuser dis-
tributed antenna systems. As such it starts by giving an overview of the
main properties of a distributed antenna system. This overview includes, an
analytical investigation of the impact of the connection of additional dis-
tributed antennas, to the system users. That analysis shows that the most
important system property to reach the maximum gain, with the connection
of additional transmit antennas, is spatial symmetry and that the users at
the cell borders are the most bene�ted. The multiuser interference problem
has been considered for both the one dimensional (i.e. without coding) and
multidimensional (i.e. with coding) cases. In the unidimensional case, we
propose and evaluate a nonlinear precoding algorithm for the minimization
of the bit-error-rate, of a multiuser MIMO system. Both the single-carrier
and multi-carrier cases are tackled as well as the co-located and distributed
scenarios. It is demonstrated that the proposed scheme can be viewed as an
extension of the well-known zero-forcing, whose performance is proven to be
a lower bound for the generalized scheme. The algorithm was validated ex-
tensively through numerical simulations, which indicate a performance close
to the optimal, with reduced complexity. For the multi-dimensional case, a
binary dirty paper coding scheme, base on bilayer codes, is proposed. In the
development of this scheme, we consider the lossy compression of a binary
source as a sub-problem. Simulation results indicate reliable transmission
close to the Shannon limit.
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Chapter 1

Introduction

In this chapter we give a brief overview of the historic evolution of the wireless cellular
systems, leading to the adoption of cooperation techniques in the latest standards. We then
present the main motivation for the work developed within this thesis. The main contribution
resulting from this thesis is outlined, followed by a description of the structure of this document.

1.1 Evolution of Cellular Systems

Public mobile telephone history begins in the 1940s, after World War II. On July 28,
1945, the principles of today wireless cellular systems were �rst described, in print, by J.
K. Jett [19]. Nevertheless, the United States' Federal Communications Commission (FCC)
never allocated the spectrum needed for this service. In 1946, AT&T and South Western Bell
introduced the Mobile Telephone Service (MTS) [2], at Saint Louis, Missouri [19]. In MTS
the tra�c was manually routed by an operator, at the central o�ce. Eighteen years later,
in 1964, Bell System launched an enhanced version of MTS the Improved Mobile Telephone
Service (IMTS) [3, 19]. The IMTS was a full duplex system, unlike MTS, with direct-dial and
caller identi�cation.

The �rst nationwide public radiotelephone system was inaugurated in 1949 by the Dutch
National radiotelephone network and the �rst fully automatic phone system, the Mobile Tele-
phone System A (MTA), was designed by Swedish Telecommunications Administration's Sture
Lauhrén and Ragnar Berglund, in 1951, and did not become entirely operational until 1956
[19].

In 1947, at Bell Labs, D. H. Rings, with the help from W. R. Young, clearly proposed the
cellular concept for mobile wireless systems in an internal company memorandum [4]. The
cellular concept is based on the divide and conquer principle, namely the main idea behind
it is to replace a high-power base station, covering a large geographical area and using all
available frequency channels, by a set of low powered base stations, covering a small area,
called cell, and using only a subset o� all frequency channels. With the help of frequency
reuse, BSs in non-adjacent cells could reuse the same set of channels with little interference.
However, only thirteen years later, in 1960, the �nal portrait of the entire wireless cellular
system was drawn when two papers, discussing the hando� process, were published in the
Institute of Radio Engineers Transactions on Vehicle Communications [19]. Nevertheless, the
�rst commercial cellular radio system, the Metroliner [5], just became operational in 1969.

In Europe, the Analog cellular was also widely accepted. Namely, in 1981, Sweden, Finland,
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Denmark and Norway began operating the �rst multinational cellular system, the NMT 450,
which o�ered roaming [19]. In the same decade, Great Britain introduced the Total Access
Communications System (TACS), the West German C-Netz, the French Radiocom 2000 and
the Italian RTMI/RTMS. In the United States, the �rst commercial cellular services began in
1983, using Advanced Mobile Phone Service (AMPS) [6], [7] .

The main characteristics of the 1G systems are: analog frequency modulation for voice
transmission, digital signaling, handover and the use of frequency division multiple access
(FDMA) for channel allocation. The increasing diversity of incompatible cellular systems
working in Europe led the Europeans to draw a plan to create a single European wide digital
mobile service with advanced features and easy roaming [19]. The Global System for Mobile
Communications (GSM) [8] was born. GSM has no backward compatibility with previous
existing systems and is fully digital. The move from analog to digital clearly de�nes another
major technological step, a turning point to the 2G. The advances made within the area
of micro-electronics, in the seventies, with the introduction of the microprocessor, by Intel,
and also the development of low-rate digital speech coding techniques, were among the most
important contributions to the full development of 2G [6] [8]. With the advent of the 2G sys-
tems, the infrastructure and handsets' cost has become lower, the spectral e�ciency increased,
new services have been o�ered (such as data, messaging, fax and roaming) and the privacy
increased [9]. Unlike Europe, in the US, the newly adopted digital standard, IS-54, had back-
ward compatibility with existing AMPS systems [19]. However, like most 2G systems, it used
time division multiple access (TDMA) to separate the channels of di�erent users [19]. Among
the most important 2G systems, we have: GSM which started in Europe and is now all over
the world, spread around 130 countries, IS-54 in the United States and the Personal Digital
Cellular (PDC) in Japan [10].

In the nineties, we started to assist a paradigm shift. Namely, the mobile phone, a device
primarily built to make voice calls started to be more and more used to access the Internet,
check the email, receiving faxes, etc. Nonetheless, its e�ectiveness for doing that stu� was
limited, since it and the associated network were not built for data tra�c [19]. Consequently,
a fundamental change was needed from circuit switching to packet switching, since unlike
voice, data is not e�ciently handled by circuit switching [19]. To tackle this problem two
technologies were developed: General Packet Radio Service (GPRS) and its improvement,
Enhanced Data Rates for GSM Evolution (EDGE), well known as 2.5G systems [19]. The 3G
systems were designed to add mobility not only to voice but also to the new data applications
that were emerging. This new generation of systems has been designated by the International
Telecommunications Union (ITU) as International Mobile Telecommunications 2000 (IMT-
2000). In 1991, ETSI standardized Universal Mobile Telecommunications System (UMTS),
the European 3G system [19]. UMTS key features include the support to basic modes (FDD
and TDD), variable transmission rates, intercell asynchronous operation, adaptive power con-
trol, increased coverage and capacity, etc. Other examples of 3G systems are the American
CDMA2000 and the Chinese Time-Division Synchronous CDMA (TD-SCDMA), just to name
a few. All these systems were speci�ed by the 3rd Generation Partnership Project (3GPP)
[11], all use the Code Division Multiple Access (CDMA) technology and o�ered from 144 kbps
(high mobility) to 2 Mbps (low mobility). Nevertheless, with the High-Speed Downlink Packet
Access (HSDPA) technology it is possible to achieve up to 8-10Mbps over a 5 MHz bandwidth.

The full deployment of 3G systems has been slow and expensive, since the upgrade from
2G to 3G requires a change of access technology, from time to code division, and a costly
infrastructure [19]. In between, 4G has begun to see the light of the day, driven by the
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steady increase of user requirements unable to be met by the limitations of the current mobile
communication systems. Worldwide Interoperability for Microwave Access (WiMAX) and
Long Term Evolution (LTE) are considered as the two pre-4G technologies, sometimes called
3.9G technologies. Although these two technologies have made a great leap into the 4G world,
they have failed to achieve the full vision of the ITU IMT-advanced project [12]. The key
features of IMT-Advanced are [12], [13]:

• improved spectral e�ciency and peak rates (100 Mbit/s for high and 1 Gbit/s for low
mobility were established as targets for research);

• low latencies;

• ubiquitous Access;

• transparent mobility and worldwide roaming capability;

• low cost and low-complexity terminals;

• high quality mobile services;

• user equipment suitable for worldwide use;

• user-friendly applications, services and equipment;

To comply fully with the IMT-Advanced project speci�cations LTE-Advanced, the next mile-
stone along the evolution path of LTE, has been developed. LTE and LTE-Advanced use
orthogonal frequency division multiplexing (OFDM) as its radio access technology (RAT).
The main improvements of LTE-advanced over LTE Release 8 are [14]:

• Wider bandwidth, enabled by carrier aggregation;

• Advanced MIMO techniques;

• Support for heterougenous network;

• Relaying;

• Coordinated multipoint transmission and reception (CoMP);

• LTE Self Optimizing Networks SON enhancements;

• Home Node B (HNB) and Home enhanced Node B (HeNB) mobility enhancements;

Indeed, LTE-Advanced has been accepted, by ITU, as a 4G technology, in 2010, by complying
with or exceeding the ITU established criteria in all aspects. One of the main technologies
introduced in LTE Advanced, which promises to bring increased data rates and system cover-
age, is CoMP [14], [15]. In CoMP, a user-equipment (UE), at the cell-edge, may receive signals
from multiple cell sites and can also transmit its signal, to be jointly processed, by several cell
sites. The way the di�erent intervening cell sites cooperate, and the cell coordination process
in�uences the �nal performance of the system. The cooperation/coordination can go from
simple interference avoidance techniques to full cooperation. If the coordination is within a
cell, we have the intra-site CoMP. On the other hand, if CoMP involves multiple cells, we

3



call it inter-site CoMP [16], [17]. Intra-site CoMP does not involve the exchange of infor-
mation through the backhaul, since the communication is within a site. However, inter-site
CoMP, does need a backhaul infrastructure to pass information between the di�erent cell sites,
for cooperation. An interesting CoMP architecture is the one where a set of geographically
distributed Remote Radio Units (RRU) are connected by optical �ber to an evolved NodeB
(eNB), where all the coordination/processing is done. This architecture can be considered to
be in between the intra-site and the inter-site architecture, since the coordination process is
done in the corresponding site eNB, but the transmission behaves like the inter-site CoMP.
More recently, a similar architecture has been pursued in the FUTON European project [18].

1.2 Motivation

Current cellular networks and architecture support over 6 billion mobile devices worldwide,
and the total number is expected to increase substantially in the forthcoming years, with
the advent of machine to machine (M2M) systems. The demand for wireless data tra�c is
expected to increase by 33-fold (relatively to 2010), achieving an expected mark of more than
127 Exabytes (1018 bytes) in 2020 [1]. Evolution of the network architecture is required to
achieve these goals, along with the use of cooperation/coordination techniques.

To cope with the current trend of higher rates, the operators are shrinking cell sizes (e.g.
using femtocells, M2M clusters, relaying, etc) [1]. If not carefully managed, this process could
lead to unsustainable levels of interference, since the percentage of cell-edge users are also
increasing. To alleviate this problem inter-cell interference cancellation techniques can be
used, but this requires cooperation between base stations. By sharing information, the base
stations are able to jointly apply MIMO techniques.

It is well known that for a MIMO system the capacity scales linearly with the minimum
number of transmit and receive antennas, as long as the di�erent channels are uncorrelated.
Unfortunately due to the physical limitations in the size of the transceivers, the number of
antenna elements cannot be large and the spacing between them is limited, which implies that
the degree of channel independence achieved is insu�cient in most scenarios to reach the high
capacities envisioned. To alleviate this problem the antenna elements should be distributed
geographically, leading to the distributed antenna system concept. In order to enable the
application of MIMO techniques the antennas must be connected, through a transparent
medium, to a central unit, where all the processing is done. This allows the antennas to be
treated as physically distributed antennas of one composite base station.

1.3 Thesis Contribution

The work described in this thesis has been done in parallel with the European FUTON
project (Fibre-Optic Networks for Distributed Extendible Heterogeneous Radio Architectures
and Service Provisioning) and also with the Portuguese PHOTON project (Distributed and
Extendible Heterogeneous Radio Architectures using Fibre Optic Networks). This work is
mainly focused on the multiuser interference cancellation topic. Succinctly, the main aspects
addressed during the course of this journey were:

• Analytical investigation of the gains obtained by the joint processing of more antennas
at a central base station, for a scenario with single antenna users and a base station with
distributed antennas.
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• Proposal of a nonlinear multiuser MIMO precoding algorithm for the minimization of
the bit-error-rate (BER) of the downlink of a conventional co-located multiuser MIMO
based system. The algorithm was derived assuming the high signal to noise ratio. By
taking into account the properties of the BER function in that regime it is possible
to simplify the minimization problem from a quadratic nonlinear optimization one to
a simple quadratic program. The �nal quadratic formulation is shown to have close
connections to the well-known zero-forcing. The previous formulations are also extended
to a multiuser distributed antenna system (DAS) and in addition to the multicarrier case.

• An algorithm for binary quantization over the low density generator matrix (LDGM)
codes is proposed. The typical algorithm to solve such a problem is the belief propa-
gation (BP) with hard decimation. However, its complexity grows quadratically with
the codeword length of the code. To solve this problem is proposed to replace the hard
constraints, imposed by hard decimation, by soft constraints, to guide the BP algorithm,
like already done in the interior point method, for convex optimization problems.

• A bilayer LDGM code is proposed for practical binary dirty paper coding (DPC). With
the careful concatenation of a high-rate Low Density Parity Check code (LDPC) to the
lower layer of the bilayer LDGM code, the bilayer LDGM code will be able to work not
only at two di�erent rates, but also to be a good channel code globally and to be a good
lossy source code locally, in the upper LDGM code. These two important features of
the code make it well suited for DPC. Using the density evolution (DE), erasure channel
approximation, and linear programming a method is introduced to optimize the bilayer
LDGM code parameters, for DPC.

Over the years, the research done over the previous topics had given rise to the following
scienti�c publications:

Book Chapters

[1] A. Gameiro, D. Castanheira, �System Concept for Central Processing of Signals�
- Chapter in Next Generation Wireless Communications using Radio over Fiber,
Nathan Gomes, Atilio Gameiro, and Paulo Monteiro, Wiley, United Kingdom,
2012.

[2] D. Castanheira, A. Gameiro, �Single/Multi-User MIMO Di�erential Capacity� -
Chapter in Radio Communications, Alessandro Bazzi, In-Tech, Austria, 2010.

Scienti�c Journals/Magazines

[3] D. Castanheira, R. Holakouei, A. Silva, A. Gameiro, �Linear and Nonlinear Pre-
coding Schemes for Centralized Multicell MIMO-OFDM Systems�, submitted to
Journal Springer Wireless personal communications, -, 2012

[4] D. Castanheira, A. Gameiro, A. Silva, �Minimum bit error rate nonlinear precoding
for multiuser MIMO and high SNR�, Physical Communication, Volume 4, Issue 4,
December 2011, Pages 296-304, ISSN 1874-4907, 10.1016/j.phycom.2011.07.003.

[5] D. Castanheira, A. Gameiro, �Distributed antenna system capacity scaling [Coor-
dinated and Distributed MIMO],� Wireless Communications, IEEE , vol.17, no.3,
pp.68-75, June 2010
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Scienti�c Conferences

[6] D. Castanheira, A. Gameiro, A. Silva, �Minimum Bit-Error-Rate Nonlinear Pre-
coding For Multi-User Distributed Antenna Systems,� in proc. IEEE GLOBE-
COM First Workshop on Distributed Antenna Systems for Broadband Mobile Com-
munications, Houston, Texas, USA, December 2011

[7] D. Castanheira, A. Gameiro, �Lossy source coding using belief propagation and
soft-decimation over LDGM codes,� in proc. IEEE International Symposium on
Personal Indoor and Mobile Radio Communications (PIMRC), Istambul, Turkey,
Sept. 2010

[8] D. Castanheira, A. Gameiro, �Binary dirty paper coding,� in Proc. IEEE Future
Network and Mobile Summit, Florence, Italy, June 2010

[9] D. Castanheira, A. Gameiro, �High SNR Broadcast Channel Di�erential Capacity�,
in proc. Future Network and MobileSummit, Santander, Spain, June 2009

[10] D. Castanheira, A. Gameiro, �Distributed MISO system capacity over Rayleigh
�at fading channels,� in proc. IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications, Cannes, France, Sept. 2008

1.4 Thesis Organization

This thesis is organized into six chapters, and the main theme of focus is interference
cancellation (IC). For ease of reading we have divided the central theme into three main topics:
capacity analysis and interference cancellation without coding and with coding (DPC). The
�rst topic is discussed in chapter 3 the second in chapter 4 and the last in the subsequent
chapter.

In the �rst chapter, chapter 2, a brief revision of the basic concepts needed for a clear
understanding of the contents of this thesis is presented. First, we describe the main de�nitions
and concepts of information theory. Then we present some capacity results, for the most
important channel models, some of which will be used in the following chapters. Finally, an
overview of linear block codes is given, with special emphasis on LDPC and LDGM codes. In
particular, their factor graph representation is presented, the sum-product decoding algorithm
revisited, and a brief overview of density evolution made.

In chapter 3, a model for DAS and CAS is described. Using this model a connection
between DAS and CAS is presented which displays why the additional degrees of freedom
provided by DAS are essential to get its bene�ts over CAS. The bene�ts of the DAS over a
co-located antenna system (CAS) are delineated, in terms of e�ciency, diversity and capacity.
To accomplish that, the exact capacity expression for the single-user case is derived and a new
concept proposed, the di�erential capacity. Taking into account the introduced de�nition, it
is shown that are the users at the cell borders the ones that obtain most of the gains, by the
connection of additional transmit antennas.

The standard linear precoding techniques, zero-forcing and minimum mean square error,
are revisited in chapter 4. A minimum bit-error-rate optimization problem for the downlink
of a co-located multiuser MIMO based system is formulated. By taking into account the
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properties of the BER function in the high SNR regime this minimization is simpli�ed from
a quadratic constrained nonlinear optimization problem to a simple quadratic program. This
results in signi�cant complexity reduction. The �nal quadratic problem is shown to have close
connections to the well-known zero-forcing (ZF) precoding scheme. Enabling the proposal of
a Minimum Mean Square Error (MMSE) like scheme with improved performance at low SNR.
The algorithm is further extended to the multicarrier and to the distributed antenna case.
Results show signi�cant gains relatively to ZF and MMSE, demonstrating that the algorithm
is well suited for practical implementation as it combines close to optimum performance, with
reduced complexity.

An overview of the lossy source coding problem is drawn in Chapter 5, followed by a
brief description of the BP and BP with hard decimation algorithms. Supported by the BP,
with decimation, algorithm, an equivalent representation of it is drawn with the help of an
indicator function. This allows to transform the hard constraint into a soft one by replacing
the indicator function by a linear function, to guide the BP algorithm. Results indicate linear
complexity in the block length and close to the state-of-the-art performance.

Furthermore, in Chapter 5, the DPC problem and framework are brie�y reviewed. The
DPC problem is decoupled into a channel and a lossy coding problem, to obtain a low com-
plexity scheme. The main idea behind this separation is that one can group the bits to be
transmitted into two parts. One for real data transmission and another to use as an ap-
proximation to the interference. The use of bilayer codes, duals of the ones proposed for the
relay channel, are proposed to implement the DPC scheme. Additionally, a simple linear pro-
gramming approach is suggested to optimize the corresponding bilayer DPC code. Simulation
results indicate reliable transmission close to the Shannon limit, with reduced complexity.
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[1] BelAir Networks, �Small Cell Networks for Mobile Network O�oad.� White paper, Nov.
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Chapter 2

Brief Revision of Concepts

In this chapter we review the most fundamental concepts used in this document. First, we
give a brief overview of the main concepts used in information theory and derive the capacity
expression of some representative channels. Then we go through the basic properties of linear
block codes with special emphasis on LDPC and LDGM codes. In this overview we introduce
the code factor graph representation, the well known sum-product decoding algorithm and the
main technique used in code optimization, density evolution.

2.1 Introduction

In 1948, Claude Shannon introduced the �eld of information theory to the research com-
munity and to the world with his remarkable paper entitled "A Mathematical Theory of
Communication" [1]. In this paper Shannon formulates and solves one of the most important
and challenging problems in communications, of his time. He shows that it is possible to
transmit information through a noisy channel, reliably and with a positive rate, with the help
of coding. The maximum information rate that can be achieved through a channel with an
arbitrarily small probability of error, is the channel capacity. Over the years, the capacity of
various channels, such as the Additive White Gaussian Noise (AWGN) channel [1], the MIMO
channel [2], the Multiple Access channel [3, 4] and the Broadcast channel [5, 6], has been
derived using the tools provided by Shannon. However, such tools have not been provided
for the construction of codes able to achieve the capacity, which led to an intense research in
the area. Recently, the proposal of turbo coding [7�10] and the reappearance of LDPC codes
[11�16] have made practical the achievement of rates close to capacity. These codes can be
represented by sparse graphical models, and the corresponding encoding/decoding algorithms
operate locally in the associated graph. The algorithm operates locally, but the complex code
structure guarantees reliable transmission, since as the algorithm iterates the local informa-
tion propagates along the graph. Another important feature of these codes, like in the original
work of Shannon, is their inherent randomness, with which the notion of a graph ensemble
enabled the analysis of such codes by methods like density evolution. These methods, allow,
for example, to calculate the theoretical capacity, and to optimize the structure of LDPC
codes.

This chapter is organized as follows. We begin in the following section with a brief descrip-
tion of the main de�nitions and concepts of information theory. Then we present capacity
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results for some channel models. Finally, an overview of linear block codes is given, with
special emphasis on LDPC and LDGM codes. In particular, their factor graph representation
is presented, the sum-product decoding algorithm revisited, and a brief overview of density
evolution made.

2.2 Information Theory Overview

2.2.1 Introduction

"The fundamental problem of communications is that of reproducing at one point either
exactly or approximately a message selected at another point" [1]. Shannon work, in the
�eld of information theory [1], leaned over the answer of a fundamental problem: the reliable
transmission of information over an unreliable medium, at a positive rate.

Let us consider, as shown in Figure 2.1, a transmission system decomposed into its main
components, by applying the source-channel separation principle. The main blocks of a
transmission system are the information source, the source encoder/decoder, the channel
encoder/decoder, the channel and the destination. As the name indicates the information
source produces messages to be sent through the channel. The source encoder removes all
the redundancy present in the message, sent by the source. On the other hand, the channel
encoder adds additional redundancy to the message to protect it from the noise added by the
channel. The destination is just the �nal recipient (user or machine) of the message.

Information 
Source

Source 
Encoder

Channel 
Encoder

Destination

Channel 
Decoder

Source 
Decoder

Channel

Figure 2.1: Block diagram of a communication link by applying the source-channel separation
theorem.

For simplicity and as a way to facilitate the introduction of concepts, let us consider a
simple model for the channel. Namely, let us consider that the channel is a binary symmetric
channel (BSC) with probability of error p. The BSC is a simple channel model used to model
e�ciently a large number of communication systems, where a bit (a 0 or a 1) is transmitted
correctly with probability 1 − p and in error with probability p. Let us also consider that
the information source is a binary Bernoulli random variable with probability 1/2. Such an
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assumption implies that no source encoder/decoder is needed, as will be seen next, since this
source has no redundancy. Assume that the source is transmitting N bits of data to the
destination, per second, and the channel is introducing pN errors, on average, in such bits.
In such a case, the number of correct bits received at destination is (1 − p)N , per second.
However, this is not the true rate of transmission of information over the channel. The real
rate is lower, since a user at the destination cannot extract any actual "information" from this
message, since he does not know where the errors occurred. For instance, consider a particular
long sample of the error sequence, with length N . It will contain, with probability approaching
one, pN ones and (1 − p)N zeros. Therefore, a particular instance, of this sequence, has a
probability of occurrence of approximately

Pi = ppN (1− p)(1−p)N = 2N(p log2(p)+(1−p) log2(1−p)) = 2−NH(p) (2.1)

where H(p) = −p log2(p) − (1 − p) log2(1 − p) is the noise entropy, as will be de�ned next.
In the previous analysis, we have not taken into account the small-scale �uctuations of the
probability around the average. Namely, by the law of large numbers, the error sequences can
be divided into two sets, the typical set, which has a probability of occurrence around the
average (2−N(H(p)+ε) ≤ Pi ≤ 2−N(H(p)−ε), ε → 0) and the atypical set. By the law of large
numbers, a large enough random sequence belongs, with high probability, to the typical set.
Since this set has a uniform distribution, the number of error sequences will be with high
probability 2NH(p) and not 2N , as one might expect. Consequently, the transmitted sequence
is transformed into one of a set of 2NH(p) possible sequences, at an average hamming distance
of Np, as shown graphically in Figure 2.2. Hence, to achieve a low as desired probability of
error, the possible causes of each transmitted sequence must be disjoint from the likely causes
of the others, like in Figure 2.2. Since, if an overlap between this sets occurs the decoder is
unable to decide between the sequences labeling these sets. As a result, one can see that the
limiting rate of transmission of information, for the BSC, is given by

R =
1

N
log2

(
2N

2NH(p)

)
= 1−H(p) (2.2)

If the channel has no noise (p = 0) R = 1 as expected. However, with noise, the rate is reduced
by the constant value H(p). Therefore H(p) represents the reduction in the information rate
that the noisy channel imposes. One might also see H(p) as the uncertainty introduced in the
transmitted message, by the noise, from the viewpoint of the destination [1].

2.2.2 Entropy and Information

As seen in the previous section the noise in the channel adds uncertainty to the transmitted
message decreasing the communication information rate. In this section, we will de�ne in more
detail the concept of information. To begin we will start with a single discrete source and next
progress to multiple sources of information, characterizing the mutual information between
them and their interaction. All concepts will be given for discrete random variables.

Consider a discrete source drawn from a random variable, X, with an alphabet of length
K, where pk is the probability of production of character k. A particular long instance, of
length N , of this source will have with high probability p1N occurrences of the �rst character,
p2N occurrences of the second character and so on. Therefore, the probability of occurrence
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Figure 2.2: Transmitted/received messages correspondence.

of a speci�c instance, of length N , of this source is

Pi =
K∏
k=1

ppkNk = 2N(
∑K
k=1 pk log2(pk)) = 2−NH(X) (2.3)

where H(x) is de�ned as the entropy of the random variable x. Namely, the entropy gives us
a measure of the uncertainty of the information content of a given variable.

H(X) = −
K∑
k=1

pk log2(pk) (2.4)

As an example consider a totally unfair coin, that can be modeled by a binary Bernoulli
random variable, with probability 1. The entropy of this source is zero, since the uncertainty
of the process is zero. We know the result before the coin is thrown into the air. On the other
hand, for a fair coin, the entropy is one, since one bit is enough to describe the process and
remove the user uncertainty. Looking at these examples and to equation (2.3) one can look
at the entropy as the number of bits1, needed to represent an event from the source.

The entropy can also be de�ned using another useful concept, the self-information, I(xk)

H(X) = −
K∑
k=1

pk log2(pk) = EX [I(xk)] (2.5)

1If another unit of measure is chosen, like nats, the entropy must be scaled accordingly by the appropriate
constant.
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where I(xk) is de�ned as the self-information associated with the outcome xk, with probability
pk, which is given by −log2(pk) and EX [.] is the expectation operator over the space of X.
The self-information gives a measure of the information content for a particular outcome of a
random variable. Hence the entropy is the expected value of the associated self-information
events. As a result of the self-information de�nition, the less probable events are the ones
that provide the higher information content when they occur, as expected. Furthermore, if
an event is the intersection of two independent events, the information content of the �rst is
the sum of the other two, a consequence of the usage of the log(.) operator.

Equipped with the concepts and de�nitions presented in the case of a single random
variable then we move to the case of the interaction of more than one random variable, more
speci�cally to the case of two random variables.

From the de�nition presented in equation (2.5) the concept of entropy can be easily ex-
tended to the multivariate case

H(X,Y ) = −
K,M∑

k=1,m=1

p(xk, ym) log2(p(xk, ym)) (2.6)

If two variables are taken separately the number of typical sequences, for a long instance of
length N , for the source X is 2NH(X) and for the source Y , 2NH(Y ). On the other hand, if they
are considered jointly the total number of typical sequences will be 2NH(X,Y ). Nevertheless,
if X is drawn independently of Y , the number of such sequences is just 2NI(X,Y ). There
are 2NH(X)2NH(Y ) independent typical pairs and 2NH(X,Y ) jointly typical pairs, consequently,
the probability of hitting one of these pairs is 2NH(X,Y )/2NH(X)+NH(Y ) = 2−NI(X,Y ), where
I(X,Y ) represents the mutual information between X and Y

I(X,Y ) = H(X) +H(Y )−H(X,Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X)

(2.7)

and H(X|Y ) = −
∑M

m=1 p(ym)
∑K

k=1 p(xk|ym) log2(p(xk|ym)) is the conditional entropy of X,
given random variable Y . The mutual information is an important concept, in the analysis of
the capacity of a communication channel, since its value de�nes the probability that a sequence
di�erent than the one transmitted, and the one received are jointly typical. Namely, it de�nes
the average probability of error of the typical set decoder [17], allowing to prove that if the
rate of information transmission is lower than I(X,Y ) the obtained probability of error can
be made as low as required. The relations, present in equation (2.7), between entropy, joint
entropy, conditional entropy and mutual information are shown graphically in Figure 2.3.

With all the previous de�nitions, the capacity of a communication link, C, can be de�ned
as the maximum possible rate of information over all potential information source distributions

C = max
p(X)

I(X,Y ) (2.8)

Using the previous formula, for the BSC channel with �ipping probability p, we get C =
I(X,Y ) = H(Y ) − H(Y |X) = H(Y ) − H(p). The input distribution that maximizes the
mutual information is the binary Bernoulli distribution with probability 1/2, since it implies
that the distribution of Y is also Bernoulli, with probability 1/2. Hence, H(Y ) = 1, and the
corresponding BSC channel capacity is C = 1−H(p) as already argued previously.
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Figure 2.3: Entropy, joint entropy, conditional entropy and mutual information relations.

2.3 Channel Capacity

In this section, we will present and review the capacity expressions of some of the most
well known channel models. First, the capacity of the erasure channel will be reviewed, due
to its simplicity and to introduce the corresponding channel model that will be used in the
following chapters. Next the AWGN channel, SISO and MIMO channel's capacity expressions
and channels are presented.

2.3.1 Erasure Channel

The binary erasure channel (BEC) is a simple channel model commonly used in coding and
information theory. Its output, Y , can assume three di�erent values, a zero, a one or an erasure
Y ∈ {0, 1, ?}, see Figure 2.4. The erasure represents that a complete loss of the transmitted
information bit has occurred. Each transmitted bit, X, is erased with probability ε. As an
example of a simple input and its corresponding output, we have: X = {0, 1, 1, 1, 0, 1, 0, 0};
Y = {0, 1, ?, ?, 0, 1, ?, 0}. It is easy to get an upper bound on the capacity of this channel.

1-ε 

ε 

ε 

1-ε 

X Y

1

0

?

1

0

Figure 2.4: Erasure channel model, with erasure probability ε.

Consider that the transmitter knows in advance which positions are going to be erased at the
receiver. If he knows that, he can just send his data in the remaining (1− ε)N positions of the
message. By doing that the receiver gets all the information without any erasure, but obviously
at a rate of 1− ε. Since, in the real world the transmitter does not know, with prior advance,
the erasure positions the capacity of the erasure channel is upper bounded by 1− ε. Indeed it
can be shown that the upper bound, 1 − ε, can be attained. Indeed, it is not di�cult to see
that. Let us consider a random linear code 2 with a generator matrix G ∈ {0, 1}N×N(1−ε), for
large N. The associated input/output relationship can be described by y = Gx, see Figure 2.5.
At the output, y, the erasures imply a reduction in the dimensionality of the previous system
of equations. Namely, erasing the element n from vector y is the same as removing the row n

2For more details on linear codes see section 2.4
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Figure 2.5: Input/Output relationship of the erasure channel using a linear code. The erasures
are represented in light gray.

from matrix G. Consequently, the Nε erasures, at the output, imply that the decoder must
solve a system of equations where the reduced matrix is with high probability full rank, if X
has dimensionality N(1 − ε). Thus reliable transmission is possible over the binary erasure
channel, for rates lower than 1− ε.

2.3.2 AWGN Channel

The AWGN channel is one of the simplest time-discrete continuous input, output chan-
nels and can be used to model from radio to satellite links. This channel can be described
mathematically by

yi = xi + ni (2.9)

where xi, yi and ni are the channel input, output and noise, at time i. The noise ni is
independent and identically Gaussian distributed (i.i.d.) with variance σ2. Let us consider
that the transmit signal has an average power constraint P (E[x] ≤ P ). Such a constraint is
necessary, since if not imposed the capacity of the channel would be in�nite. Although there is
noise in the channel (i.e. ni with variance greater than zero), with unlimited power, it would
be always possible to generate a codebook, with far enough codewords, that can be decoded,
at the destination, with as small as desired probability of error.

By incorporating the power constraint in the capacity de�nition given in (2.8) one can
obtain the capacity expression for the AWGN channel

C = max
p(x):E[X2]≤P

I(X,Y )

= max
p(x):E[X2]≤P

(H(Y )−H(Y |X))

= max
p(x):E[X2]≤P

(H(Y )−H(N))

= max
p(x):E[X2]≤P

(
H(Y )− 1

2
log2(2πeσ2)

)
=

1

2
log2(2πe(P + σ2))− 1

2
log2(2πeσ2)

=
1

2
log2

(
1 +

P

σ2

)
(2.10)

15



For a given variance, the normal distribution maximizes the entropy. Since y = x+n, and x and
n are independent, the power of y is P + σ2. Therefore the input distribution that maximizes
the channel mutual information is the normal distribution, which implies that Y is also normal
distributed, with variance P + σ2, and has an entropy equal to 1/2 log2(2πe(P + σ2)).

2.3.3 SISO Channel

Like the AWGN channel, the SISO channel is a point to point channel. It is also a time-
discrete continuous input, output channel. Its model is quite similar to the AWGN channel.
The main di�erence is the introduction of a gain (hi) in between the transmitter and receiver

yi = hixi + ni (2.11)

For a �xed channel gain, the corresponding channel capacity can be easily obtained from the
Gaussian one, as

Ci =
1

2
log2

(
1 +

h2
iP

σ2

)
(2.12)

Assuming ergodic channels, so that their randomness can be averaged out over time, the
channel capacity becomes a random variable, for which taking the expectation over time, with
respect to h, generates the ergodic capacity. For that case, the capacity can be de�ned by

C = Eh{Ci} = Eh

{
max

p(x):E[X2]≤P
I(X,Y )

}
(2.13)

For H Rayleigh distributed the ergodic capacity of the channel is given by [18]

C = e−
σ2

P Ei

(
−σ

2

P

)
(2.14)

where Ei(x) is the exponential integral function, given by
∫ x
−∞ e

t/t dt.

2.3.4 MIMO Channel

A MIMO channel with nT transmit and nR receive antennas can be modeled as a set of
nT×nR SISO links, where each group of nR received signals are summed up at the destination,
see Figure 2.6

y = Hx + n (2.15)

where x is the (nT × 1) transmit vector, y is the (nR × 1) receive vector, H is the (nR × nT )
channel matrix and n is a vector with nR elements each Gaussian distributed, with zero mean
and variance σ2. If full channel state information (CSI) is available at the transmitter and
receiver, the MIMO channel can be converted into a series of parallel channels. This can be
accomplished by decomposing the H matrix, using singular value decomposition (SVD), into
H = UDVH . To diagonalize the channel the transmitter should apply the transmit precoding
matrix UH to the data to be transmitted and at the receiver, the received signals must be
equalized with the linear transformation Uy. The resulting equivalent channel is D, a diagonal
channel, with rank(H) ≤ min(nT , nR) entries di�erent from zero. If the matrix H is full rank,
the number of parallel channels obtained by the SVD method is equal to min(nT ,nR).
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Figure 2.6: MIMO channel model.

Considering perfect CSIR, the capacity expression for a MIMO channel is given by [2, 19]

C = max
p(x):Tr(Rx)≤P

I(X,Y )

= max
p(x):Tr(Rx)≤P

(H(Y )−H(Y |X))

= max
p(x):Tr(Rx)≤P

(H(Y )−H(N))

= max
p(x):Tr(Rx)≤P

(
H(Y )− log2|πeσ2I|

)
= max

Rx:Tr(Rx)≤P
log2

(
πe|σ2I + HRxHH |

)
− log2|πeσ2I|

= max
Rx:Tr(Rx)≤P

log2

∣∣∣∣I +
HRxHH

σ2

∣∣∣∣

(2.16)

where RX = E[xxH ] is the covariance matrix of the MIMO channel input. The covariance
of the output is given by Ry = σ2I + HRxHH . For a given covariance, the entropy is maxi-
mized when the associated distribution is zero mean circularly symmetric complex Gaussian
(ZMCSCG) [2]. Therefore, x must be also ZMCSCG.

If the channel is perfectly known at transmitter, it is optimal to use the so-called water-
�lling principle. On the other hand, if the channel is unknown to the transmitter, the optimum
power allocation matrix is uniform, Rx = P/nT InT and the respective capacity can be ex-
pressed as

C = log2

∣∣∣∣I +
P

nTσ2
HHH

∣∣∣∣ (2.17)

which grows linearly with min(nT , nR) [2]. Even if the channel realization is not available
at the transmitter the capacity still grows linearly with the number of transmit and receive
antennas. However, more processing is needed at the receiver side to separate the received
symbols [19]. Maximum likelihood decoding or, for example, the simpler and more e�cient
Bell Laboratories Layered Space-Time (BLAST) technique [20, 21] can be used to achieve
this.
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2.3.5 Wireless Multipath Channel

The propagation of a signal, in a wireless channel, can be completely described by the
Maxwell equations [19], by taking into account the properties of the medium, i.e. dielec-
tric constants, location and size of objects, etc. However, such a model is too complex to
be implemented and to be taken into account, for simulations, and system design. Hence,
the modelling of the wireless channel, is commonly divided into three distinct phenomena:
the path loss, shadowing and multipath, which can be treated independently. The �rst two
phenomena can be included into the slow fading category and the last into the fast fading cat-
egory. This subdivision re�ects the di�erent scales of signal variation. Indeed, the slow fading
category includes the phenomena that vary slowly with distance. The path loss is slower than
shadowing. In Figure 2.7 we present a simple example illustrating this three phenomena.

The �rst e�ect, the path loss, models the fact that an electromagnetic wave propagating
through the space has its energy density decreased. Path loss takes into account, for example,
the propagation loss caused by the expansion of the radio wave front, in free space, which takes
the form of a sphere, with increasing radius. For this case the power falls o� quadratically
with the distance. One of the simplest path loss models [19] and the most commonly used
considers an exponential decay of the power with the distance, i.e. can be mathematically
described as Pt = PrK(d0/d)γ , where K is a unitless constant that depends on the average
channel attenuation and antenna characteristics, d0 is a reference distance, γ the path loss
exponent, Pt the transmit power and Pr the received power. Contrary to the free space case,
for non line of sight scenarios the decaying factor (γ) is higher, typically between 3 and 5.

Shadowing
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Figure 2.7: Example propagation Scenario.

Shadowing is caused by the obstruction of the electromagnetic wave path by buildings,
hills and other big objects, resulting in �uctuations of the average signal power. This type of
fading is normally modelled by a log-normal distribution [19].

The multipath, as the name refers to, corresponds to the existence of multiple re�ective
paths, between the transmitter and receiver. This is a consequence of the existence of multiple
objects along the wave propagation path, that re�ect the incident wave. At the receiver
these multiple paths, scaled copies of the transmitted signal, are received at di�erent time
instants and with unequal phases. The di�erent times of arrival lead to a time-spreading
of the transmitted signal. A small variation in the position of these objects or even of the
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transmitter or receiver results in a phase change of the received multipath signals, which
can add destructively. If the transmitter/receiver pair and all scatterers are stationary, the
channel appears to be time invariant. On the other hand, if the receiver/transmitter or the
scatterers are moving then the channel change. This leads to a time varying channel and to
the appearance of the Doppler spectrum. Indeed, for a receiver moving at a velocity v the
corresponding Doppler frequency is given by [22]

fD =
v

λc
cos(θ) (2.18)

where λc is the carrier wavelength and θ the angle between received path and the receiver mov-
ing direction. From equation (2.18) we see that the maximum Doppler shift is fDmax = v/λc.

To model these phenomena a time variant system is usually considered, where the channel
impulse response is modelled by the superposition of Lp paths with di�erent amplitudes and
delays [22, 23]

h(τ, t) =

Lp∑
p=1

αp(t)δ(τ − τp) (2.19)

In the previous equation, τp represents the delay of path p, αp(t) the path p complex amplitude
gain, t the time, τ the delay and Lp the number of paths considered.

Equation 2.19 already considers that the Lp paths are resolvable. In practice each of the
Lp paths corresponds to the merging of Lsp sub-paths, each with a delay τ lp, similar to τp.
These sub-paths are normally formed at a cluster of objects. By similar delay we mean, a
delay di�erence τ lp−τmp ,∀ l, p ∈ {1, . . . , Lsp} much lower than the system sampling time. Such
paths are non-resolvable [19], i.e. they cannot be separated, at the receiver, since the system is
unable to distinguish between them. Therefore, at the receiver, they are considered as one, i.e.
αp(t) =

∑Lsp
l=1 α

l
p(t) and τ

l
p ≈ τp ∀ l ∈ {1, . . . , Lsp}, where αlp(t) is the complex amplitude gain

of sub-path l. For a practical cellular system, especially in urban environments, the number of
non-resolvable paths (Lsp), with delay close to τp, is high [19]. Hence, if each sub-path gain is
considered to be a random variable, then, by the central limit theorem, the resulting total gain
(αp(t)) is complex Gaussian distributed. This leads to a Rayleigh distributed path amplitude,
with uniform phase [19]. It is also commonly assumed that there is no correlation between
the gain αp(t) of di�erent replicas, since they arrive from di�erent paths, i.e. they are formed
at di�erent scatterer objects. We say that such a channel has uncorrelated scattering (US).

As a linear system the channel can be represented also by the following equivalent functions

H(f, t) = Fτ (h(τ, t))

H(τ, fD) = Ft(h(τ, t))

H(f, fD) = Fτ (H(τ, fD))

(2.20)

where Ft(.) denotes the Fourier transform, relative to parameter t, fD represents the Doppler
frequency shift, f the frequency domain equivalent of the delay, H(f, t) is the system transfer
function and H(τ, fD) the deterministic scattering function [19], that captures the Doppler
characteristics of the channel, via fD.

19



Autocorrelation of the channel fading process

To characterize the channel the autocorrelation function, of the channel impulse response,
can be used [19, 24]

Rh(τ1, τ2; t,∆t) = E[h∗(τ1, t)h(τ2, t+ ∆t)] (2.21)

In practice, most channels are wide sense stationary (WSS), i.e. the statistics of a channel at
time t and t+ ∆t depend only on the time di�erence ∆t.

Rh(τ1, τ2; ∆t) = E[h∗(τ1, t)h(τ2, t+ ∆t)] (2.22)

As stated earlier, we can also consider that there is no correlation between two replicas, with
delay τ1 and τ2, hence

Rh(τ1, τ2; t1,∆t) = Rh(τ,∆t) = E[h∗(τ, t)h(τ, t+ ∆t)] (2.23)

where the function, Rh(τ,∆t), gives the average output power of the channel for a delay τ
and a di�erence ∆t in the observation time. The Fourier transform of Rh(τ,∆t), with respect
to ∆t is denominated by scattering function

Sh(τ, fD) =

∫ +∞

−∞
Rh(τ,∆t)e−j2πfD∆td∆t (2.24)

which gives the average channel output power for a Doppler fD and a delay τ . With the
previous two functions the most important channel characteristics can be obtained, namely the
power delay pro�le, the coherence bandwidth, the Doppler power spectrum and the coherence
time. The power delay pro�le is identical to Rh(τ, 0). It represents the average channel output
power for a delay τ . From the power delay pro�le two important characteristics of the channel
can be derived, the average delay (τ̄) and root mean square (rms) delay spread (στ ) [19, 25]

τ̄ =

∫ +∞
0 τRh(τ)dτ∫ +∞
0 Rh(τ)dτ

στ =

√√√√∫ +∞
0 (τ − τ̄)2Rh(τ)dτ∫ +∞

0 Rh(τ)dτ

(2.25)

which can be also obtained as the �rst and second moment of a random variable Th with
pdf pTh(τ) = Rh(τ)/

∫ +∞
0 Rh(τ)dτ , i.e. the normalized power delay pro�le. Indeed, we can

think of pTh(τ), in the calculation of the average delay and rms delay spread, as a weighting
factor that assigns more weight to high power delays. The delay spread gives a measure of
the spread a signal incurs when it passes through the considered multipath channel. It is an
important measure to assess the performance loss introduced due to inter-symbol interference
(ISI). Due to the WSS and US characteristics of process h(t, τ), the autocorrelation of the
random process H(f, t), is given by [19]

RH(f1, f2; ∆t) = E[H∗(f1, t)H(f2, t+ ∆t)] = RH(∆f,∆t) (2.26)

De�ning RH(∆f) = RH(∆f, 0) we get [19]

RH(∆f) =

∫ +∞

0
Rh(τ)e−j2π∆fτdτ (2.27)
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(a) Power delay pro�le, Rh(τ).

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Frequency(MHz)

M
ag

ni
tu

de

(b) Frequency correlation function, RH(∆f).

Figure 2.8: ITU Veh. A channel pro�le and its corresponding frequency correlation function.

Namely, RH(∆f) is the Fourier transform of the power delay pro�le. Figure 2.8 presents, as
an example, the power delay pro�le and frequency correlation function of the ITU vehicular A
channel. If RH(Bc) ≈ 0 then the channel response at frequencies f and f + ∆, where ∆ ≥ Bc,
are approximately independent. Bc is the channel coherence bandwidth. One can think of it
as a measure of the bandwidth where the multipath channel has approximately equal gain and
linear phase. Due to the connection between the power delay pro�le function and RH(∆f) one
can obtain an approximation for Bc. Namely, Bc is proportional to the inverse of the rms delay
spread, where the constant of proportionality varies for di�erent channel correlation values.
If the channel has a coherence bandwidth higher than the one of the signal to be transmitted,
through it, then all parts of the signal will be similarly a�ected. This type of channels are
non frequency selective. On the contrary, if the coherence bandwidth is lower than the signal
bandwidth, the channel is frequency selective, since multiple coherence zones exist. Each of
these zones can be considered as frequency non selective and roughly independent between
them.

The variation of the channel with time can be described by taking the Fourier transform
of RH(∆f,∆t) relative to ∆t [19]

SH(∆f ; fD) =

∫ +∞

−∞
RH(∆f,∆t)e−j2πfD∆td∆t (2.28)

The Doppler power spectrum of the channel is de�ned by SH(fD) = SH(0; fD). Using the
same type of analysis, as for the average delay and rms delay spread, one can obtain the
average Doppler shift and rms Doppler spread. RH(0; ∆t) measures the correlation between
a complex exponential sent at time t1 and a similar complex exponential sent at time t2,
where ∆t = t2 − t1. As for the coherence bandwidth, for this case, we can de�ne coherence
time as the time span where the channel characteristics are approximately the same. If the
coherence time is lower than the transmit symbol duration, then the channel is denominated
time selective.
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2.4 Linear Block Codes

As stated earlier in this chapter, coding allows to transmit information reliably over a
noisy channel. The space of codes available for study is big, but here we will focus on the
family of linear block codes. More speci�cally, in this section, the LDPC and LDGM codes
will be described in more detail.

An error correction code can be fully described by a mapping from one high dimensional
vector space to another high dimensional vector space. In the following, we consider as scalars
of the aforementioned vector spaces the elements of the binary �eld, {0, 1}. As such a code C
can be mathematically de�ned as

C = {y ∈ {0, 1}N |y = EEE(x),∀ x ∈ {0, 1}K} (2.29)

where K and N are the length of the input and output codewords, respectively, EEE(.) is the
mapping function and x, y are the input and output sequences, correspondingly. One can
see from the code de�nition that the encoding process implies a space expansion factor of
R = K/N and this is de�ned as the rate of the code. If the mapping function is linear,
EEE(x) = Gx, as will be in the following, we have a linear code

CLinear = {y ∈ {0, 1}N |y = Gx, ∀ x ∈ {0, 1}K} (2.30)

where G ∈ {0, 1}N×K is what we call the code generator matrix. A linear code has many
special features:

• the zero codeword belongs always to the code. (0 = G0)

• the sum of two codewords is still a codeword. (c1 + c2 = Gx1 + Gx2 = G(x1 + x2))

• the set of codewords is in the subspace spanned by the columns of G, i.e. it is in the set

of linear combinations of the columns of the matrix G, (Gi).
(
c = Gx =

∑K
i=1 Gixi

)
An important metric used to measure the performance of an error correcting code, in-

troduced by Hamming [26], is the Hamming distance. The Hamming distance between two
sequences of the same length is equal to the number of positions in which they di�er. For error
correction codes an important measure derived from this is the minimum Hamming distance
that is de�ned as the minimal distance between any two codewords. For a general code, the
computation of the minimum distance is a di�cult problem. However, for linear codes, the
computation task is simpli�ed, since c1 − c2 is also a codeword, and thus we only need to
compute the Hamming distance between c1 and the 0 codeword.

Linear codes can be both speci�ed by the corresponding generator matrix, G ∈ {0, 1}N×K ,
and by the associated parity check matrix H ∈ {0, 1}(N−K)×N . The parity check matrix as the
name suggests may be used to check if the M = N −K parity bits, generated by encoding,
were decoded correctly, for example. Namely, the columns of H generate the orthogonal
complement of C

Hc = 0 (2.31)

The parity check matrix can also be used for encoding, like the generator matrix, and some-
times with complexity advantages over its counterpart [27, 28]. To encode a block x of K bits
of data with H = [Hs Hp] (Hs ∈ {0, 1}M×K , Hp ∈ {0, 1}M×M ) we �rst compute v = Hss
and then compute the parity bits by solving Hpp = v, which can be done by inverting Hp.

22



Consequently, the sub-matrix Hp must be properly selected so that the resulting matrix is
full rank. The previous, scheme is equivalent to obtaining the solution of the following system
of linear equations

[Hs(M×K)
Hp(M×M)

]

[
s(K×1)

p(M×1)

]
= 0 (2.32)

where M = N −K, H = [Hs Hp] and s is the data to be encoded.

2.5 Low Density Parity Check Codes

Low density parity check codes were �rstly proposed by Gallager [14], in the sixties, but
were almost forgotten, during thirty years, since they were still too complex for the processing
power available at that time. Some exceptions to this rule where the works of Zyablov and
Pinsker [29], Margulis [30] and Tanner [31]. Nevertheless, Gallager introduced in his thesis
the underlying principles of the most successful codes today. Namely, the iterative decoding
algorithms, the graphical representation of a code, the basis for stochastic analysis of iterative
algorithms, just to name a few. In the nineties, the introduction of turbo codes [7] renewed the
interest of LDPC codes [13]. Namely, new analytical tools have been developed to analyze the
behavior of the message passing decoders over the BEC and the BSC [32] [33], which were later
extended for more general channels [15]. These techniques combined with the continuation of
the LDPC code de�nition to irregular codes have enabled to achieve rates close to capacity
for many channels [34].

An LDPC code is a linear error correcting code. Namely it belongs to the subclass of
linear codes with low density parity check matrices.

CLDPC = {y ∈ {0, 1}N : Hy = 0 | H sparse} (2.33)

A low-density matrix is one with a high percentage of zeros, in other words, it is a sparse
matrix.

The �rst LDPC codes, proposed by Gallager [14], were regular. One important concept
introduced by Gallager, in the analysis and design of codes, was the notion of an ensemble of
codes. The parity check matrix of a regular code is designed to have a small �xed number n
of ones in each row and a small �xed number k of ones in each column. As an example, we
present in Figure 2.9 a sample of a low-density parity check matrix of a regular (3,6) LDPC
code3, with length 10000. Regular codes due to their simpler structure make them better
suited for practical hardware implementation than their irregular counterparts [35], even if
they have worse BER performance. Irregular LDPC codes were introduced by Luby et al. [32]
as an extension to regular LDPC codes, as a way to achieve better performance.

An irregular LDPC code is described by two probability distributions L = {L1, . . . , Li, . . . ,
Lnmax}, R = {R1, . . . , Ri, . . . , Rkmax}, where Li and Ri correspond to the probability of a
column or row of the parity check matrix having i 1's, respectively. Using this notation, a
regular (3, 6) code can be described by L = {0, 0, 0, 0, 0, 1}, R = {0, 0, 1}. A more compact
notation can be used, by the introduction of the polynomials

L(x) =

nmax∑
i=1

Lix
i R(x) =

kmax∑
i=1

Rix
i (2.34)

3A regular (3, 6) LDPC code has 3 ones per column (k = 3) and 6 ones per row (n = 6).
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Figure 2.9: Regular LDPC (3, 6) parity check matrix sample of size 6× 12.

through which one can get the code rate

R = 1− K

N
= 1− K

N

∑
i iΛi∑
iPi

= 1−
∑

i iΛi/N∑
iPi/K

= 1−
∑

i iLi∑
iRi

(2.35)

where Λi denotes the number of columns with i 1's (
∑

i Λi = N) and Pi is the number of rows
with i 1's (

∑
i Pi = K). Consequently,

∑
i iΛi =

∑
iPi corresponds to the total number of

1's in the parity check matrix. With the previously introduced notation the (3, 6) code can
be represented by L(x) = x6, R(x) = x3. On the other hand, a LDGM has a low-density
generator matrix and can be considered a dual of LDPC [36].

CLDGM = {y ∈ {0, 1}N |y = Gx,∀ x ∈ {0, 1}K and G sparse} (2.36)

However, LDGM codes are asymptotically bad, i.e. they exhibit an error �oor that is inde-
pendent of the considered block size. The poor distance properties of a LDGM code can be
easily controlled with proper concatenation of two codes, while maintaining the low complexity
advantages [37].

2.5.1 Sum-Product/Belief Propagation Algorithm

Let us assume a channel, with transitional probability p(Y |X) and a transmitter whose
objective is to transmit one message from a set ofM messages to a destination. For that he uses
a codebook, C, to encode the corresponding message. There is a one to one correspondence
between the messages and the codewords. After encoding, the generated codeword x, is
transmitted through the channel. The associated probability of each codeword/message is
denoted by p(X). At the destination, the channel observation Y , corrupted by the channel,
is decoded to recover the transmitted codeword. Assuming that the output codeword is x
the corresponding probability of error is given by 1 − p(x|y). Therefore, to minimize the
probability of error the decoder should choose x in such a way to maximize p(x|y). This is
the so-called Maximum A Posteriori (MAP) decoding rule

xMAP = argmax
x∈C

p(x|y)

= argmax
x∈C

p(y|x)
p(x)

p(y)

= argmax
x∈C

p(y|x)p(x)

(2.37)
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where the second equality follows from the Bayes's theorem [38] and the last because p(y) is
constant (after knowing the channel output y). If the prior information p(x) is uniform, i.e.
all codewords are equally likely, the MAP rule is transformed into the Maximum Likelihood
(ML) decoding rule

xMAP = argmax
x∈C

p(y|x)p(x) = argmax
x∈C

p(y|x) = xML (2.38)

To solve the MAP problem, 2.37, let us assume that the channel is memoryless. That is to
say p(y|x) =

∏
n p(yn|xn). For a LDPC code the prior distribution over codewords can be de-

scribed [17] by 1[Hx = 0], where 1[.] is an indicator function that is equal to one when the con-
dition inside brackets is respected and zero when it is not. Thus, the MAP rule is equivalent to

xMAP = argmax p(y|x)1[Hx = 0]

= argmax
∏
n

p(yn|xn)
∏
k

1[Hkx = 0]

= argmax
∏
n

p(yn|xn)
∏
k

1

 ∑
v∈N (k)

xv = 0


(2.39)

where N (k) denotes the set of variables involved into the parity check k.
Each of the k indicator functions can be represented graphically, using a bipartite graph.

A bipartite graph is a graph composed of two disjoint vertex sets, V and C, with edges
connecting them. Let us consider a function f(x1, . . . , xN ). This function is dependent on
{x1, . . . , xN}, the set of independent variables. To represent f(x1, . . . , xN ) graphically, we
represent each variable from the set of independent variables with a circle and the operator
f(.) by a square. The dependence of f(.) on the set of independent variables is represented by
an edge connecting each of the circles (variables) and the square (operator). With that idea
in mind we can represent graphically the indicator function, associated with a parity check,
with N (k) = {1, 3, 5, 6}, as shown in Figure 2.10(a).

h7

x1 x3 x5 x6

(a) Parity check.

h7

x1 x3 x5 x6

p(y1|x1) p(y3|x3) p(y5|x5) p(y6|x6)

(b) Parity check with chan-
nel priors.

Figure 2.10: Graphical representation of a parity check, example.

Following the above graphical representation, for the overall code, a LDPC code of lengthN
and rate R can be represented by a bipartite graph withN variable nodes, circles, and (1−R)N
parity check nodes, squares, see Figure 2.11. The overall probability distribution can also be
represented graphically by a factor graph, using the same idea. A factor graph is a bipartite
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Figure 2.11: Graphical representation of the global parity check matrix of a regular (3, 6)
random generated code with length 12.

graph representing the factorization of a function. For the MAP problem to be described by
a factor graph the channel priors, p(yn|xn), should be also included in the representation pre-
viously presented. That can be accomplished by drawing more squares in the graph, one for
each prior. Each additional square represents the function p(yn|xn) and connects to variable
node xn, since function p(.) is dependent on variable xn. As an example we present in �gure
2.10(b) the graphical representation of a parity check with N (k) = {1, 3, 5, 6}, as previously,
but now with the associated channel priors incorporated into the graphical representation.

If instead of minimizing the block error rate, we want to minimize the bit error rate, the
rule to be used for decoding is the bit-wise MAP

xMAP
i = argmax

xi∈{0,1}
x∈C

p(xi|y)

xMAP
i = argmax

xi∈{0,1}
x∈C

∑
∼xi

p(x|y)

xMAP
i = argmax

xi∈{0,1}
x∈C

∑
∼xi

p(y|x)p(x)

(2.40)

In the second equality, the law of total probability has been used [39]. By
∑
∼xi we denote

a summation over all variables except xi, i.e. a marginalization over xi. The main di�erence
between 2.37 and 2.40 is that in the bit-wise MAP decoding rule the maximization is replaced
by an addition.

Example

As an example let us consider that i = 1 and that p(x|y) = F (x1, x2, x3, x4, x5) =
fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5). The corresponding bipartite graph represen-
tation of function F (.) is shown in Figure 2.12. Hence, according to equation (2.40), to obtain
the MAP estimate of the bit variable x1 we need to marginalize the function p(x|y) = F (.)

xMAP
1 = argmax

x1∈{0,1}

∑
∼x1

F (x1, x2, x3, x4, x5)

xMAP
1 = argmax

x1∈{0,1}

∑
x2,...,x5

fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5)
(2.41)
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(a) 1st representation: standard form.
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(b) 2nd representation: expanded into a tree

Figure 2.12: Bipartite graph representation of function F (.)

If one uses exhaustive search one would need to sum 2× 24 = 32 terms, one for each di�erent
assignment of variables x2, . . . , x5, both for x1 = 0 and x1 = 1. Nevertheless, due to the
special characteristics of the function F (.) this number can be decreased. Namely, we can use
the distributive law, in equation (2.41), to obtain

xMAP
1 = argmax

x1∈{0,1}

∑
x2,...,x5

fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5)

xMAP
1 = argmax

x1∈{0,1}
fA(x1)

[∑
x2,x3

fC(x1, x2, x3)fB(x2)

(∑
x4

fD(x3, x4)

)(∑
x5

fE(x3, x5)

)]

xMAP
1 = argmax

x1∈{0,1}
fA(x1)

[∑
x2,x3

fC(x1, x2, x3)fB(x2)fII(x3)fI(x3)

]

xMAP
1 = argmax

x1∈{0,1}
fA(x1)

[∑
x2,x3

fC(x1, x2, x3)fB(x2)fIII(x3)

]
xMAP

1 = argmax
x1∈{0,1}

fA(x1)fIV (x1) = argmax
x1∈{0,1}

fV (x1)

(2.42)

By using the distributive law we reduced the complexity from 2×24 sums to 23 +22 +22 = 16
sums (22 sums to obtain fI(x3) =

∑
x5
fE(x3, x5), 22 sums for fII(x3) =

∑
x4
fD(x3, x4) and

23 sums for fIV (x1) =
∑

x2,x3
fC(x1, x2, x3)fB(x2)fIII(x3)). This has been made possible due

to the fact that the factor graph representation of the function F (.) can be expanded into a
tree, as shown in Figure 2.12. If instead of the bit-wise MAP we use the MAP decoding rule,
equation (2.37), we have

xMAP
1 = argmax

x1∈{0,1}
max
∼x1

F (x1, x2, x3, x4, x5)

xMAP
1 = argmax

x1∈{0,1}
max
x2,...,x5

fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5)
(2.43)

As the distributive law can be applied to both the sum and max operators the same techniques
can be used for both problems.

General Case

Now, that an example has been provided, let us consider the more general case of the
bit-wise MAP problem. Before starting to explain how to solve the aforementioned problem
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let us de�ne some notation. Namely, in the following, elementary functions, i.e. functions
that cannot be further decomposed into products of other functions, are denoted by lower
case letters, like fc(xi,xv(c)) (c is just an index). Global functions, i.e. functions that are
products of elementary functions, are represented by uppercase letters, like Gj(xj ,xV (j)) and
Fc(xi,xV (c)). Gj(xj ,xV (j)) denotes a global function that can be decomposed as the product
of global functions. On the other hand, Fc(xi,xV (c)) denotes a global function that can be de-
composed into the product of elementary and global functions. Two types of inputs have been
considered, both for elementary and global functions, one scalar (xj) and another vectorial
(xv(c) and xV (j)), where the last is indexed by a set V (j). To di�erentiate the indexing sets of
elementary and global functions lower and uppercase letters have been used, respectively. It
should be emphasized that this sets do not take into account the index j, since xj is already
included explicitly as an input. Hence, {xj ,xV (j)} ({xi,xV (c)}) is the set of independent
variables of function Gj(.) (Fc(.)).

x1 xc xdv

... ...

F1 Fc Fdv

xi

Figure 2.13: First expansion of function F (x) = p(y|x)p(x).

Therefore, to solve the MAP decoding problem let us assume, [40] that F (x) = p(y|x)p(x)
has a speci�c distribution, or more precisely that it factorizes accordingly to a speci�c pattern.
Namely, let us consider, that F (x) =

∏
c∈C(i) Fc(xi,xV (c)) = Gi(xi,xV (i)), see Figure 2.13,

where C(i) denotes the indexing set of the functions that factorize F (x), V (b) ∩ V (c) = ∅,
for b 6= c and ∪Kc=1V (c) = {1, . . . , N}\i, i.e. i, V (c1), . . ., V (ck), . . ., V (cK), is a partition of
the set {1, . . . , N} [40]. The symbol \ denote the set subtraction operator, N the length of
vector x, ck ∈ C(i) and K is the dimension of set C(i). Therefore the bit-wise MAP problem
simpli�es to

xMAP
i = argmax

xi∈{0,1}
x∈C

gi(xi) = argmax
xi∈{0,1}

x∈C

∑
∼xi

F (x)

= argmax
xi∈{0,1}

x∈C

∑
∼xi

Gi(xi,xV (i))

= argmax
xi∈{0,1}

x∈C

∑
∼xi

∏
c∈C(i)

Fc(xi,xV (c))

= argmax
xi∈{0,1}

x∈C

∏
c∈C(i)

∑
xV (c)

Fc(xi,xV (c))

(2.44)

From the third to the fourth line we have used the distributive law and the fact that i, V (c),
. . ., V (K) de�nes a partition of the set of integers, between 1 and N . A careful look to this

28



line, shows that the use of the distributive law allowed a reduction of complexity from 2Kdc

to 2dc , where dc is the size of each set V (c), which is considered to be equal for all c, for
simplicity of calculations.

Now let us assume that Fc(xi,xV (c)) = fc(xi,xv(c))
∏
j∈v(c)\iGj(xj ,xV (j)), see Figure 2.14,

where again V (i) ∩ V (j) = ∅, for any i 6= j, v(c) ∩ V (j) = ∅, for j ∈ v(c)\i and V (c) =
(∪j∈v(c)V (j)) ∪ v(c), (a partition of the set V (c)). This in turn allow to simplify again the
bit-wise MAP problem

xMAP
i = argmax

xi∈{0,1}
x∈C

gi(xi) = argmax
xi∈{0,1}

x∈C

∏
c∈C(i)

∑
xV (c)

Fc(xi,xV (c))

= argmax
xi∈{0,1}

x∈C

∏
c∈C(i)

∑
xV (c)

fc(xi,xv(c))
∏

j∈v(c)\i

Gj(xj ,xV (j))


= argmax

xi∈{0,1}
x∈C

∏
c∈C(i)

∑
xv(c)

fc(xi,xv(c))
∏

j∈v(c)\i

∑
xV (j)

Gj(xj ,xV (j))


= argmax

xi∈{0,1}
x∈C

∏
c∈C(i)

∑
xv(c)

fc(xi,xv(c))
∏

j∈v(c)\i

∑
∼xj

Gj(xj ,xV (j))


= argmax

xi∈{0,1}
x∈C

∏
c∈C(i)

∑
∼xi

fc(xi,xv(c))
∏

j∈v(c)\i

gj(xj)



(2.45)

In the third line we have used the fact that (∪j∈v(c)V (j)) ∪ v(c) = V (c) and the distributive
law. For a clearer view of the factorization process and of the assumptions made the graphical
representation of the �rst and second successive considered expansions of F (x) are shown in
Figures 2.13 and 2.14. In these �gures dv = K, and dc is the dimension of sets V (j), which
were considered equal for simplicity. In Figure 2.15 we progress further with the function F (x)
factorization and represent the corresponding graph expansion by considering the calculation
of each gj(xj). For that the same methodology as for gi(xi) has been used. Obviously, this
could continue until a point where we end up with elementary gj(xj) functions. Indeed this is
the case for �nite codes respecting the considered assumptions. For such a code, the associated
factor graph is a tree as can be attested by Figure 2.15.

From equation (2.45) one �nds that

gi(xi) =
∏

c∈C(i)

∑
xv(c)

fc(xi,xv(c))
∏

j∈v(c)\i

gj(xj)

 (2.46)

However, it should be stressed out that to calculate gj(xj) the factor fc(xi,xv(c)) should not
be taken into account, even if the variable xj belongs to the independent set of function
fc(.), unlike for gi(xi), where all factors should be considered. This happens since this factor
is included explicitly in the previous function expansion (gi(xi)), see equation (2.46). As a
consequence for all gj(xj), j ∈ {1, . . . , N}, except gi(xi), the following transformation should
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Figure 2.14: Second iteration of the expansion of function F (x) = p(y|x)p(x).

be used, instead of equation (2.46)

gj(xj) =
∏

b∈C(j)\c

∑
xv(b)

fb(xj ,xv(b))
∏

k∈v(b)\j

gk(xk)

 (2.47)

Equations (2.46) and (2.47) completely de�ne the factorization process of F (x), if the same
factorization is used for all the remaining global functions. The �rst equation is used in the
�rst factorization and the second in all the following factorizations. Namely, we can identify
the gi(xi) function as the probability of variable xi being equal to {0, 1} and the function
gj(xj) as the probability of variable xj equals {0, 1}, given the information from factors other
than fc(.) [17]. Hence, to compute gi(xi), equations (2.46) and (2.47) can be used, since they
de�ne completely the factorization process of F (x). Before showing up how to evaluate the
recursive function gj(xj) let us broke it into two parts

mj→c(xj) =
∏

b∈C(j)\c

mb→j(xj)

mb→j(xj) =
∑
∼xj

fb(xj ,xv(b))
∏

k∈v(b)\j

mk→b(xk)
(2.48)
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Figure 2.15: Third iteration of the expansion of function F (x) = p(y|x)p(x).

where gj(xj) = mj→c(xj), gk(xk) = mk→b(xk) and the intermediate function mj→c(xj) has
been de�ned implicitly. The previous functions denomination start with a letter m, since they
will be associated with messages in the corresponding factor graph, to facilitate the visual-
ization of the processing done, and to provide a way to simplify its implementation. Namely,
function mj→c(xj) will be associated to the edge connecting variable node j and check node
c and function mb→j(xj) to the edge connecting check node b and variable node j. The arrow
just indicates the direction of the information transmission, in the graph. For example, j → c,
in mj→c(xj), indicates that the information is processed at variable node j and sent to check
node c. We use the indices a, b, c to denote check nodes and i, j, k to denote variable nodes. The
index c, in function mj→c(xj), indicate that the factor fc(.) has not been taken into account
in the calculation of gj(xj) and the index j denote that the processing is done for variable xj .
The same for indices b and k in mk→b(xk). If we consider that the value of Xj is �xed to xj
and that the probability of the event Xk = xk, k ∈ v(b)\j, is mk→b(xk), then the function
mb→j(xj) represents the probability of factor fb(.) being respected. It should be stressed that
the factor fb(.), in the MAP decoding problem, is an indicator function representing the check
b. Equations (2.48) are the so-called Sum-Product/Belief-Propagation update equations. To
obtain the true marginal of a given variable mj(xj) we should consider all factors involved, as
in equation (2.46)

mj(xj) =
∏

b∈C(j)

mb→j(xj) (2.49)
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Therefore, to compute the marginal of variable xi one just need to apply equations (2.48)
recursively. Using the edge assignment previously discussed, this recursive process can be
mapped to the factor graph de�ned by the factorization of function F (x), which has a tree
topology (see Figure 2.15). Therefore, the evaluation of the marginal of variable xi results
in the propagation of messages, computed accordingly to equations (2.48, from the tree leafs
(full recursion depth) to the root xi. For a tree instead of propagating messages from the leafs
to the root, to obtain the marginal, one can apply equation (2.48) in parallel, to all nodes,
until convergence. The results obtained by these two methods are equal, since the messages
sent from the leafs will overwrite the ones previously sent, in the parallel working version.

The sum-product algorithm expressed by equations (2.48) implies that a pair of messages
(mj→c(0),mj→c(1)) or (mb→j(0),mb→j(1)) is transferred between nodes, at each iteration.
However, it can be simpli�ed so that only one value, per iteration per edge, is needed. For
decoding, one only needs to know if p(xj = 0|y) ≥ p(xj = 1|y). Consequently, the fraction
mj→c(0)
mj→c(1) or its logarithm is all that we need for decoding

Lj→c = log

(
mj→c(1)

mj→c(0)

)
=

∑
b∈C(j)\c

log

(
mb→j(1)

mb→j(0)

)
=

∑
b∈C(j)\c

Rb→j

=
∑

b∈C(j)\c

log

∑∼xj
(
fb(1, . . .)

∏
k∈v(b)\jmk→b(xk)

)
∑
∼xj

(
fb(0, . . .)

∏
k∈v(b)\jmk→b(xk)

)


=
∑

b∈C(j)\c

log

∑∼xj
(
fb(1, . . .)

∏
k∈v(b)\j

mk→b(xk)
mk→b(0)

)
∑
∼xj

(
fb(0, . . .)

∏
k∈v(b)\j

mk→b(xk)
mk→b(0)

)


=
∑

b∈C(j)\c

log

∑x

(
fb(1,x)

∏
k∈v(b)\j e

L
xk
k→b

)
∑

x

(
fb(0,x)

∏
k∈v(b)\j e

L
xk
k→b

)


(2.50)

The function fb(x) can only take values on the set {0, 1}, since for a LDPC code this is the
indicator function represented in function (2.39). Namely, it is equal to zero for x ∈ O and
equal to one for x ∈ E , where O and E denote the set of binary vectors of length |v(b)| + 1
with a odd and even number of entries equal to one, respectively. Consequently, the likelihood
values sent by the variable nodes to the check nodes are given by

Lj→c =
∑

b∈C(j)\c

log

∑x∈E
∏
k∈v(b)\j e

L
xk
k→b∑

x∈O
∏
k∈v(b)\j e

L
xk
k→b


=

∑
b∈C(j)\c

log

[∏
k∈v(b)\j(e

Lk→b + 1) +
∏
k∈v(b)\j(e

Lk→b − 1)∏
k∈v(b)\j(e

Lk→b + 1)−
∏
k∈v(b)\j(e

Lk→b − 1)

]

=
∑

b∈C(j)\c

log

1 +
∏
k∈v(b)\j

eLk→b−1
eLk→b+1

1−
∏
k∈v(b)\j

eLk→b−1
eLk→b+1


=

∑
b∈C(j)\c

2atanh

 ∏
k∈v(b)\j

tanh

(
Lk→b

2

)

(2.51)
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Thereafter the log-domain version of the sum-product algorithm can be mathematically
represented by the pair of messages

Lj→c =
∑

b∈C(j)\c

Rb→j

Rb→j = 2atanh

 ∏
k∈v(b)\j

tanh

(
Lk→b

2

) (2.52)

For a tree the sum-product, or belief propagation, algorithm is exact. However, for factor
graphs with loops that is not the case, the algorithm is suboptimal, but its performance has
been shown to be very good in practice [12, 13].

2.5.2 Density Evolution

In the previous sections it was seen that with the help of a random code and of the
optimal decoding algorithm it is possible to achieve the channel capacity. Here, in this section,
we present the tools to obtain the capacity of a channel when speci�c codes and decoding
algorithms are used [15]. Namely, we will analyze the case of graphical codes and of the
message passing algorithms with special focus on LDPC codes and the sum-product algorithm.

The performance of a code is independent of the transmitted codeword, due to the sym-
metry properties of the decoding algorithm and also of the own code [39]. Consequently we
are free to choose any codeword for analysis purposes. Since the all zero codeword is present
in all linear codes, as stated in the Linear Codes section 2.4, it is obviously the best choice for
analysis. The analysis of individual codes would be di�cult and speci�c, since the model for
such a process would be highly detailed. Nevertheless, there is a result stating that with high
probability the performance of an individual code is identical to the ensemble average of the
codes describing that individual code [15]. Equipped with this result, it is possible to make
a statistical analysis of the code performance. Given a distribution pair (Λ, P) we de�ne
a LDPC(Λ(x), P (x)) code ensemble in the following way [15]: Each graph has Λ(1) variable
nodes and P (1) check nodes. Λi variable nodes and Pi check nodes have degree i. A degree
i node has i sockets, to which the edges connect. The total number of sockets, in each side,
is
∑

i iΛi =
∑

i iPi = Λ′(1) = P ′(1). Λ′(1) denotes the derivative of function Λ′(x) evaluated
at point 1. Label the sockets on one side with s = {1, . . . ,Λ′(1)} and label the sockets on
the other side with a uniform random permutation, P , of {1, . . . ,Λ′(1)}, s(P ). Connect the
sockets with the same labellings with an edge.

In the following, two important simpli�cations are made: that the all zero codeword was
sent and that the average performance concentrates around the average ensemble performance.
The performance of the codes are thus analyzed in the in�nite blocklength limit for which the
corresponding factor graph has a tree like structure with probability one [39].

Previously, we have presented a way to describe an irregular LDPC code from the node
perspective, but here, to analyze the code performance, the edge perspective is better suited
(the messages are sent over the edges)

λ(x) =
∑
i

λix
i−1 =

L′(x)

L′(1)
ρ(x) =

∑
i

ρix
i−1 =

R′(x)

R′(1)
(2.53)
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where λi(ρi) is equal to the fraction of edges that connect to variable (check) nodes with
degree i.

Erasure Channel

In the following, we will start by revising how the performance of a LDPC code can be ana-
lyzed over the BEC. First, regular LDPC codes are reviewed and next the results are extended
to the irregular case. Finally, we revisit optimization techniques for irregular LDPC codes.

To start the analysis the BP update equations are simpli�ed, since for the BEC channel
they are much simpler.

At each iteration, the check nodes modeling the channel send to the neighborhood variable,
the corresponding channel messages, i.e. {0, 1, ?}, with equivalent likelihoods {+∞,−∞, 0}.
Since the channel never introduces errors, the values of the incoming messages to a variable
node belong to the set {0,+∞} (or {0,−∞}). This in conjunction with the fact that the
BP processing rule, at the variable nodes (2.52), amounts to just a summation of the set of
incoming messages implies that the output message value is within the same set of the inputs.

For the check nodes the set of input message values is {−∞,+∞, 0}. After the processing
of the input message with the function tanh(.) the input set is transformed into {−1,+1, 0}.
The product operation, in the check node update equation, (2.52), is equivalent to a mod-2
sum over the binary �eld ({0, 1}), where +1 is the bipolar representation of 0 and −1 of 1,
when no input message is equal to zero. When any of the inputs are equal to zero the product
and the corresponding check to variable node message is equal to zero. Looking to the check
node update equation, (2.52), one see that the 2atanh(.) restores again the set of values to
the original set ({−∞,+∞, 0}).

Thus, as previously explained, the BP algorithm update equations can be simpli�ed to
[39]

Variable node: the output message is an erasure if and only if all the inputs are erased,
otherwise the output message is equal to the incoming message from the other edges.

Check node: the output message is equal to an erasure if one or more of the incoming
messages are erased, otherwise its value is the mod-2 sum of the incoming messages.

Since we are considering the in�nite blocklength case the computation neighborhood graph
of a node will be tree like with high probability and consequently the messages exchanged by
the BP algorithm are independent and all marginals are correct. Therefore the sum-product
update equations, with independent inputs, are su�cient to describe the decoding process.

Let us assume an ensemble of regular (n, k) LDPC codes and a BEC with erasure proba-
bility ε. To describe the decoding process it is su�cient to analyze the erasure probability of
the messages sent, over the edges, at each iteration. The erasure probability of the variable
to check messages is given by

x = εyn−1 (2.54)

where y is the erasure probability of the check to variable messages. Since the variable to check
messages are only erased if all incoming messages from the other checks are erased, including
the one coming from the factor representing the channel, which is erased with probability ε.

The check to variable messages are only not erased if all incoming messages from the
neighborhood variable nodes are not erased. Consequently the erasure probability of the

34



check to variable node messages is

y = 1− (1− x)k−1 (2.55)

Thereafter, for a regular (n, k) LDPC code its performance over the BEC can be characterized
by the following equation

x = ε(1− (1− x)k−1)n−1 (2.56)

As an example we plot in Figures 2.16 and 2.17 the performance of the BP algorithm over an
in�nite blocklength regular (3,6) LDPC code, by iterating equation (2.56), for a BEC channel
with erasure probability ε = 0.4 and ε = 0.5, respectively. One can see from these two �gures
that from one of the channels it is possible to transmit reliably, with an erasure probability of
zero (after running the BP algorithm for around 25 iteration), but for the other channel it is
not. The algorithm gets stuck at an erasure probability of around 0.45.
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Figure 2.16: Regular (3, 6) LDPC code variable to check erasure probability over the iterations
for a BEC with ε = 0.4.

To extend the previous result to the case of irregular codes one needs to average these
results over the code uniform edge degree distributions. Assume an ensemble of LDPC(λ, ρ)
codes. For such an ensemble, since the percentage of edges connected to variable nodes with
degree i is given by λi, the variable to check node erasure probability is

x =
∑
i

λiεy
i−1 = ελ(y) (2.57)

For the check to variable nodes the same way of thinking applies

y =
∑
i

ρi(1− (1− x)k−1) = 1− ρ(1− x) (2.58)

Therefore, an irregular LDPC(λ, ρ) code performance is characterized by the following density
evolution equation

x = ελ(1− ρ(1− x)) (2.59)
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Figure 2.17: Regular (3, 6) LDPC code variable to check erasure probability over the iterations
for a BEC with ε = 0.5.

This function is monotonically increasing in both of its arguments x, and ε [39]. If applied
iteratively, using the �xed point iteration, it gives a monotone sequence converging to the
nearest solution of the function [39]. If the erasure probability converges to zero for a BEC(ε)
then it also converges to zero for a BEC(ε′) for all 0 ≤ ε′ ≤ ε [39]. This two monotonicity
conditions with the fact that one of the �xed points of the previous iteration is x = 0 implies
the existence of a well de�ned upper limit for which reliable transmission over the BEC(ε) is
possible [39]. This upper limit is called threshold. For the regular (3, 6) LDPC code the value
of this threshold can be obtained numerically and is equal to ε = 0.4294. Consequently, with
a regular (3, 6) LDPC code and the BP decoder one can only transmit data reliably over a
BEC with erasure probability lower than 0.4294.

Getting the Taylor series expansion of the right hand side of equation (2.59), around zero,
one gets [39]

x = ελ′(0)ρ′(1)x+O(x2) (2.60)

For su�ciently small x the convergence properties of (2.59) are determined by ελ′(0)ρ′(1).
More precisely if this factor is lower than one the sequence converges, otherwise no. This is
the so called stability condition [39]. The more important consequence of such condition is
the implied upper bound on the threshold of a code (ε)

ελ′(0)ρ′(1) ≤ 1⇔ ε ≤ 1

λ′(0)ρ′(1)
(2.61)

Now equipped with a code description and with a code performance evaluation tool it is
possible to optimize the code structure so that better codes are obtained. The usual approach
to optimize LDPC codes is to maximize the rate of the code for a given channel erasure
probability, while ensuring that reliable transmission is obtained [39]. If the obtained rate
for the code is higher than the one we expect, we can increase slightly the channel erasure
probability and run the optimization problem again, to lower it. For a LDPC(λ, ρ) the rate
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can be expressed by, see equation 2.35

R = 1−
∑

i ρi/i∑
i λi/i

(2.62)

Fixing the check node distribution (ρ(x)) the objective of the optimization (maxR) become
linear (max

∑
i λi/i). The reliability constraint is enforced by imposing that the erasure

probability decreases at each iteration: ελ(1 − ρ(1 − x)) < x,∀x ∈ [0, 1]. For a �nite set
of linear constraints the set x ∈ [0, 1] must be discretized. Therefore to avoid numerical
problems around x = 0, caused by the discretization, the stability condition is used. With
all the previous statements the LDPC(λ, ρ) code optimization task can be mathematically
expressed by

λ = max
λ

∑
i

λi/i

s.t. ελ(1− ρ(1− xi)) ≤ xi, xi ∈ [0, 1]; i ∈ {0, . . . , Ns}
ελ′(0)ρ′(1) ≤ 1∑
i

λi = 1, λi ≥ 0;

(2.63)

where Ns is the number of samples taken in the interval [0, 1] to discretize the constraints. As
can be seen from equation (2.63) the LDPC code optimization task is a linear program. If we
want also to optimize the check node distribution we can do it in the same way as done for
the variable nodes, but using the 1− y− ρ(1− ελ(y)) ≤ 0,∀y ∈ [0, 1] constraint and the merit
function −

∑
i ρi/i. Iterating both problems the two degree distributions can be optimized.

Binary Memoryless Symmetric Channel

The analysis of the performance of LDPC codes over a binary memoryless channel (BMS)
[39] follow the same structuring lines as the previous section. Thus, to start the analysis the
BP update equations are transformed so that the analysis becomes simpler. Just to remember
the BP update equations are

Lv→k = R0→v +
∑

n∈N (v)\k

Rn→v

Rk→v = 2atanh

 ∏
n∈N (k)\v

tanh

(
Ln→k

2

) (2.64)

where R0→v denotes the message sent by the factor representing the channel to variable node
v, which corresponds to the associated channel log-likelihood ratio.

Let us de�ne d(y) : R→ [−1, 1], f(x, y) : R2 → R and g(y) : R→ {−1,+1} × [0,+∞[

d(y) = tanh(y/2)

f(x, y) = 2atanh(x Exp(−y))

g(y) = (sign(y),−log(|d(y)|))
(2.65)
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Thereafter, after some manipulations, the check node update equation can be rewritten as

Rk→v = 2atanh

 ∏
n∈N (k)\v

sign(d(Ln→k))

Exp
− ∑

n∈N (k)\v

log(|d(Ln→k)|)


= f

 ∏
n∈N (k)\v

sign(d(Ln→k)),
∑

n∈N (k)\v

log(|d(Ln→k)|)


= f(�n∈N (k)\vg(d(Ln→k))

(2.66)

where the sum operator (�) is de�ned as

�ig(yi) =

(∏
i

sign(yi),−
∑
i

log(|d(yi)|)

)
(2.67)

Hence the BP update equations, (2.64), can be reformulated as

Lv→k = R0→v +
∑

n∈N (v)\k

Rn→v

Rk→v = f(�n∈N (k)\vg(d(Ln→k))

(2.68)

From 2.68 we see that apart from the f(.) transformation the BP update equations amount
to just a summation of the input messages. Since we are considering the in�nite blocklength
case the computation neighborhood of a given node is a tree with probability equal to one.

Let us assume a BMS, described by the probability distribution p(Y |x) The associated
log-likelihood ratio is de�ned as

l(y) =
p(y|1)

p(y|0)
(2.69)

For a given random variable Y the associated log-likelihood ratio is L = l(Y), a random
variable, with probability distribution l. This corresponds to the messages exchanged by
the factor nodes representing the channel to the variable nodes. At the �rst iteration this is
the only information available to the algorithm, localized at the tree leafs. As the iterations
proceed the information converges from the leafs to the root. Since all messages are drawn
independently and from the same distributions4, at a given iteration, the analysis of the overall
tree simpli�es to the analysis of a part of the tree, as already done before. Therefore it is
su�cient to analyze the processing done at a variable and check node. Let us consider a
variable node with degree n and with input message distribution y. At the variable nodes
the messages are processed, by the associated BP updating rule (2.48), which amounts to
just a summation of the n − 1 incoming messages plus the one coming from the factor node
representing the channel. This implies that the resulting distribution of the variable to check
messages, x, is the convolution of the n − 1 incoming check to variable distributions, y,
convolved with the channel log-likelihood ratio distribution [39]

x = l~ y~(n−1) (2.70)

4The messages are considered statistically independent since an in�nite code is assumed and at each iteration
the output distributions of the BP update equations are the same since their input distributions are also the
same.
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Apart from the map f(.) the check node processing is a summation in the {−1,+1} ×
[0,+∞[ domain. Therefore the output distribution of a check node edge, y, amounts to the
convolution of the input distributions x, in the {−1,+1}× [0,+∞[ domain. Namely, assuming
a check node with degree k, the output distribution is given by [39]

y = x�(k−1) (2.71)

where y represents the check node edge output distribution after the f(.) transformation and
� represents the convolution operator de�ned for the sum operator � and g(.) function.

For a LDPC(λ, ρ) the corresponding variable to check message distribution is a weighted
sum over the edge degree distribution of the code [39]

x =
∑
i

λil~ y~(i−1) = l~ λ(y) (2.72)

the same applies to the check to the variable message distribution

y =
∑
i

ρix
�(i−1) = ρ(x) (2.73)

where ρ(x) =
∑

i ρix
�(i−1) and λ(x) =

∑
i λix

~(i−1). Thereafter, an irregular LDPC(λ, ρ)
code performance is characterized by the following density evolution equation [39]

x = l~ λ(ρ(x)) (2.74)

The corresponding log-likelihood ratio density of the corresponding variable, v, is given by the
convolution of all n incoming messages including the channel likelihood

xv = l~
∑
i

λiy
~i (2.75)

From the probability distribution xv one can get the bit error probability

Pe =

∫ 0

−∞
xv(x)dx (2.76)

Since the all-zero codeword assumption has been made an error occurs if the corresponding
log-likelihood ratio is lower than zero. On the other hand the probability that the information
content sent on a message from a variable node to a check node is in error is given by

Pe→ =

∫ 0

−∞
x(x)dx (2.77)

For a code to transmit reliably over a BMS channel either the Pe or Pe→ must go to zero
as the iteration number increases [39].
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Chapter 3

Distributed Antenna System Overview

The DAS concept promises to enhance the capacity and diversity of the next generation
wireless communication networks, due to the inherently added micro and macro diversity. In
this chapter, we �rst give an overview of the main bene�ts of a DAS in relation to a CAS. Next
we study the sum-capacity scaling of a multi-user DAS with the number of jointly processed
transmit antennas, in the downlink. In a practical system, this scaling will have implications
on the number of antennas that are worth being jointly processed, since the costs of processing
an additional antenna can be higher than the extra bene�ts obtained. Results show that the
most important system property to attain the highest capacity gains is symmetry and that the
users who attain the maximum gain are those at the cell border. They also con�rm that the
main DAS feature that makes possible his gains over the CAS architecture is the additional
degrees of freedom/diversity provided by such an architecture, which increase the probability of
�nding a system state with high symmetry and of each user being near to one of the transmit
antennas.

3.1 Introduction

In response to the increasing demand of higher spectral e�ciencies the MIMO antenna
concept has gained a lot of attention during the last years. From theory [1], it is expected
that the system capacity will increase far beyond that of the single antenna systems, in rich
scattering propagation environments. On the other hand, for limited scattering propagation
environments, the capacity and the diversity order achieved will be limited, due to the existence
of strong correlation between channel paths. This is indeed what happens for a CAS, where
typically, the antennas are only few wavelengths apart. This can be explained by the fact that
if the antennas are close together and one of the links has poor quality, then the others will
have a poor quality with high probability. Such a fact implies that the overall received signal
strength will be low. On the opposite, for a system with independent links, if one of the links
has a poor quality, then at least one of the other links will have a good quality with a fairly
high probability, which increases with the number of considered links. Therefore, to achieve
high spectral e�ciencies and to attain big diversity gains, the channels should be independent.
Nevertheless, due to physical limitations at the transceivers the number of antennas deployed
and the degree of channel independence achieved, in a CAS, cannot be high. One possible
solution to cope with this problem is to have the mobiles simultaneously communicating
with a group of geographically distributed antennas, which are jointly processed at a central
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point [2]. The key element to achieve this is to have the signals transparently connected to a
central unit (CU), by �ber, for example, where they are jointly processed. This leads us to
the DAS concept, and thus not only capacity and diversity gains will be obtained but also
the access distance and transmit power will be reduced, due to the inherent added macro-
diversity. In [3] the authors quantify the capacity gains provided by a single-user DAS in the
presence of inter-cell interference, showing that DAS reduces other-cell interference, in a multi-
cell environment, and hence signi�cantly improves performance and capacity, especially for
users near cell boundaries. When more users are to be served simultaneously, the additional
degrees of freedom provided by the DAS architecture can be used to spatially separate users,
expanding in that way the system capacity. Nonetheless, at the mobile terminals, the number
of antennas is generally low, only one or two. Therefore, from the law of diminishing returns it
is expected that when the number of jointly processed antenna's increase, the complexity will
increase, but the improvement in throughput may not increase in the same way. As a result, a
tradeo� between the added complexity/costs and obtained bene�ts, from the joint processing
of more transmit antennas, has to be made. One possible way to ease this problem is the use
of low complexity/sub-optimal precoding schemes, like ZF and Block-Diagonalization (BD),
at the CU. Following this line of thought, in [4, 5] the authors study the incurred losses, in
terms of rate/power o�sets, between ZF/BD and the optimal scheme, which is well known
to be DPC [6]. The authors conclude that the incurred losses are more pronounced when
the number of transmit antennas is close to the number of aggregate receive antennas. On
the other hand, in [7] the authors analyze the complexity/costs' tradeo� by considering as a
measure for the network performance the normalized system capacity or more precisely the
maximum achievable rate per channel use normalized by the number of cooperating remote
antenna units (RAU). Another key performance measure considered, in the previous article, is
the signal-to-interference ratio (SIR). Considering full frequency reuse among RAUs di�erent
cooperation schemes were theoretically analyzed. The authors observe that cooperation is
not always bene�cial, i.e. when the users are close to the RAUs. Based on those results
the authors propose to adaptively optimize the network operation mode, i.e. the number of
cooperative RAUs, to combine the advantages of cooperative and non-cooperative schemes
to maximize the system throughput. Results show that adaptive cooperation becomes more
signi�cant when shadowing e�ect's increase, with more than 20% cell-average gain for up to
3 RAUs cooperation. In this chapter, we give an overview of the gains provided by RAUs
cooperation in terms of the ergodic channel sum-capacity, in the downlink. In that context,
we de�ne Di�erential CAPacity (DCAP) as the increase in ergodic sum-capacity when one
additional RAU is connected to the system users, to quantify the gains provided by the
processing of one extra RAU, at the CU. Work on the achievement of a closed-form expression
for particular cases of the ergodic distributed MISO channel capacity was already carried on
[8] and [3]. In [8] the authors study the ergodic capacity of a orthogonalized (by orthogonal
space time block codes (OSTBC)) distributed MISO channel. In [3] the authors study the
more general case of a distributed MISO channel, but they consider that all channels gains
are di�erent. While numerically the results can be obtained through the formulas of [8] and
[3], no theoretical expression was given in the referred papers, for DCAP. Here we derive an
expression for this di�erential capacity and provide upper bounds that are simple to compute
and give us information on the maximum capacity increase one can expect by connecting the
terminal to additional RAUs. Such a result is of interest when managing the radio resources,
since assuming that one wants to connect to the RAUs providing the best SNRs it gives us
indication when for a given network state, we should add or drop an RAU and can also provide
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Figure 3.1: Distributed antenna system cell.

guidelines for the deployment of the distributed RAUs. We begin in the following section with
a description of the system model. Next we give a small overview of the main bene�ts of DAS
over CAS. Then we describe the behavior of the DCAP for the single-user case, to introduce
the topic. Finally, we access the bene�ts of the connection of more transmit RAUs to the CU,
for the multi-user case.

3.2 System Model

In the following we model the downlink of a multiuser DAS/CAS system. Both the DAS
and CAS have unique properties to be modeled. As a result of the existing di�erent access
distances, in a DAS, there is a signi�cant path loss variation among received signal paths. On
the other hand, for a CAS, all received paths experience the same path loss [9], [10], since
all transmit antennas are co-located. Nevertheless, the small separation between the trans-
mit antennas has also its drawbacks. The small antenna separation implies the appearance
of correlation between channel paths. In contrast, for a DAS the di�erent scattering prop-
erties around each of the RAUs enrich the corresponding channel statistics, o�ering channel
independence.

To model all the previous stated channel characteristics, a broadcast channel (BC) [6] with
N transmit antennas and K users, each with only one receive antenna is considered for the
downlink of a DAS/CAS. For such a system, if there is no correlation between the channel
paths of di�erent users, the user k received signal can be modeled by

yk = hkx + nk, k = 1, . . . ,K; hk = hwk R1/2ρρρ
1/2
k (3.1)

where x is the transmitted signal vector, ρρρk is a diagonal matrix where each element i de-
notes the path loss factor between transmit antenna i and user k, hwk models the microscopic
independent Rayleigh fading component, R represents the correlation between transmit an-
tennas [11] and nk is additive white Gaussian noise. R and ρρρk are deterministic.
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In the following sections, ideal DAS and CAS systems are considered, i.e. for DAS we
consider no correlation between transmit antennas (R = I), and for CAS all path losses are
regarded as equal (ρρρk = I). It is also assumed that the receiver has perfect knowledge of its
own channel and that the transmitter has perfect instantaneous knowledge of all channels. In
practice this can be achieved using training data and feedback channels between the CU and
the system users. All analysis presented in this chapter consider, for simplicity, a single cell,
with all RAUs connected to a unique CU, where all signals are jointly processed. Therefore,
the system is considered to be noise limited. Additionally, the cable connection is regarded
as transparent to the signals transported. In all results presented, the SNR at a distance
of 1000 meters, relative to each transmit antenna, is assumed to be equal to 0dB. It is also
considered that the RAU connection order is from the closest RAU to the farther one and that
the propagation path loss only depends on the distance between user i and RAU j, dij , and
on the path loss exponent α (d−αij ), which is considered to be equal to 3. In next sections, for
the single-user case, by circular ring we mean a group of antennas with the same mean SNR
to the user.

3.3 Power E�ciency

Power e�ciency gives a measure of the required power for supporting a given coverage
area. One of the main bene�ts of DAS over CAS is in terms of power e�ciency. This is
mainly due to the fact that for a DAS the access distance is reduced, mitigating in that way
the path loss e�ects of the channel onto the transmitted signals.

To demonstrate the power bene�ts of DAS over CAS let us consider a deployment scenario
as in [3]. This is illustrated in Figure 3.1, where we consider one central antenna and a tier
of 6 distributed antennas, each with a coverage radius equal to R. This corresponds to a
coverage area of 7πR2− 24(π/6R2−

√
3/4R2) = (3π+ 6

√
3)R2, for each distributed antenna.

The radius of a circle with the same area is R
√

3 + 6
√

3/π. For a fair comparison, with a

DAS, consider this circle as the coverage area of a CAS cell [9]. Let us also consider that for
a RAU to support a coverage area with radius R the required power is P . Thus to support
the overall coverage area a total power of 7P is needed. On the other hand, for the CAS, the
needed power is equal to (3+6

√
3/π)α/2P , if the propagation path loss is assumed to be given

by d−α, where α is the path loss exponent. In other words, the power e�ciency of the DAS
is (3 + 6

√
3/π)α/2/7. For a path loss exponent equal to 3 the DAS power e�ciency gain is

3.6 dB and is even higher for bigger path loss exponents. In conclusion, this simple example,
illustrates the power e�ciency bene�ts of a DAS with respect to a CAS, meaning that a DAS
needs a much lower power budget to support the same coverage area.

3.4 Diversity/Power Loss

To analyze the impact of the channel correlation in a CAS and of the path loss asymmetries
in a DAS, let us consider as a measure the average BER and let us also consider the downlink
of a single user transmit diversity system with N transmit antennas and one receive antenna.
Let us also consider, for simplicity, BPSK modulation and the high SNR regime. To maximize
the received SNR, the signal sent on transmit antenna i is pre-multiplied by a gain ai. Under
those circumstances, the optimal gain value is obtained using the maximum ratio transmission
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(MRT) algorithm. If MRT is used, at the transmitter, the instantaneous received SNR is equal

to P
σ2 hwΣhw

H
, where P is the transmit power, Σ = R1/2ρρρ1/2(R1/2ρρρ1/2)H and hw represents

the channel matrix, with complex Gaussian distributed entries, zero mean and variance one.
Therefore, the system BER can be mathematically expressed by

Pe = Ehw

[
Q

(√
P

σ2
hwΣhwH

)]
(3.2)

The deterministic matrix Σ can be decomposed using the singular value decomposition,
Σ = UΛUH , and the corresponding left and right singular vectors integrated into the
channel matrix without a�ecting their distribution, since they are unitary and hw is isotropic.
Thus, hwΣhw

H
and hwΛhw

H
follow the same distribution, the weighted chi-square distribu-

tion. Therefore, by evaluating the expectancy operator, of equation (3.2), one gets

Pe = Ehw

[
Q

(√
P

σ2
hwΛhwH

)]

= Ehw

Q

√√√√ P

σ2

N∑
i=1

Λii|(hwi )|2

 = Ex

Q

√√√√ P

σ2

N∑
i=1

xi

 , xi = Λii|(hwi )|2

=

∫ +∞

0
. . .

∫ +∞

0
Q


√√√√ P

σ2

N∑
i=1

xi

 N∏
i=1

fXi(xi)dx1 . . . dxN

(3.3)

Using the alternate Q(.) function representation [12, 13] Q(z) = 1/π
∫ π/2

0 exp[−z2/(2sin2θ)]dθ

and the fact that fXi(xi) = Λ−1
ii e
−Λ−1

ii xi , xi = Λii|(hwi )|2 this simpli�es to

Pe =

∫ +∞

0
. . .

∫ +∞

0

1

π

∫ π
2

0
Exp

(
− P
σ2

∑N
i=1 xi

2sin2θ

)
dθ

N∏
i=1

Λ−1
ii e
−Λ−1

ii xidx1 . . . dxN

=
1

π

∫ π
2

0

N∏
i=1

∫ +∞

0
Λ−1
ii Exp

[
−xi

(
P

σ2

1

2sin2θ
+ Λ−1

ii

)]
dxidθ

=
1

π

∫ π
2

0

N∏
i=1

Λ−1
ii

(
P

σ2

1

2sin2θ
+ Λ−1

ii

)−1

dθ =
1

π

∫ π
2

0

N∏
i=1

Λ−1
ii

(
Λii2sin

2θ
P
σ2 Λii + 2sin2θ

)
dθ

≈ 1

π

∫ π
2

0

N∏
i=1

Λ−1
ii

(
2sin2θ

P
σ2

)
dθ =

2N

π

(
P

σ2

)−N N∏
i=1

Λ−1
ii

∫ π
2

0
sin2Nθdθ

=
(2N)!

(N !)222N+1

(
P

σ2

)−N N∏
i=1

Λ−1
ii =

(2N)!

(N !)222N+1

(
P

σ2
|Σ|

1
N

)−N

(3.4)

where in the the fourth line we have considered the high SNR regime, i.e. that P/σ2Σii �
2sin2θ. As a consequence, if Σ is full rank, it is not di�cult to verify, from equation (3.4),
that the correlation at the transmitter side, for a CAS, or the path loss asymmetries inherent
to a DAS, imply a BER power penalty of |Σ|1/N , in the high SNR regime. If instead, the rank
of Σ is equal to n < N , the system looses N − n degree of freedom, since N − n channels
become linearly dependent.
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Figure 3.2: CAS Power loss versus correlation factor (r).

Hence, for a DAS, if one of the channel path losses increases by a factor of 2, the power
loss will increase by 3 dB, since the determinant of a diagonal matrix is equal to the product
of their diagonal entries. On the other hand, the correlation e�ects are not so easy to visualize
since the correlation matrix is not diagonal, like the path loss matrix. To have a better insight
of the correlation e�ects into the BER performance, let us consider a CAS with a simpli�ed
correlation structure, namely let us consider a correlation r between the channel paths of
di�erent transmit RAUs. For such correlation structure, the resulting power loss is given by

|Σ|
1
N = |R|

1
N = (1− r)

(
1 +

r

1− r
N

) 1
N

(3.5)

In Figure 3.2 we plot the power loss versus the correlation factor r, by considering a set of
values for N (the number of transmit antennas). As can be seen from that �gure, the power
loss experienced by such a system, in the high SNR regime, increases as the correlation factor
(r) and the number of transmit antennas (N) increase, but for low values of r the increase
is not as sharp as the one for high values of r. A typical power loss value, for moderate
correlation (r = 0.6), is 2 dB (see Figure 3.2). Another aspect that is worth noting is that
the power loss starts to saturate when the number of transmit antennas is approximately 4.
This happens mainly due to the averaging of the power losses, corresponding to each of the
correlation matrix eigenvalues, as N increases1. Namely, from equation (3.5) we note that
for N tending to in�nity the loss converges to 1 − r. However, as we add more antennas to
the system (CAS), since the deployment space is constrained, the correlation factor will also
increase, increasing the corresponding power penalty. As a consequence, we can say that as
the system gets more correlated, the spectrum of the corresponding correlation matrix become
worse (ill conditioned matrix), implying an increased loss.

1As the power loss in dB is equal to the average of the corresponding eigenvalues of Λ (in dB).
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3.5 Capacity Analysis

In the previous sections, a brief overview of the bene�ts of a DAS over a CAS was given,
namely in terms of power e�ciency and diversity. Now we will focus on another measure,
the channel sum-capacity. More speci�cally we focus on the system DCAP. In the following
sections, we �rst quantify the system capacity gains, by the connection of additional RAUs,
for the single-user case, by resorting to the DCAP de�nition. For that case, we initially give a
brief overview of the required background to analyze this scenario. Next, we look at a speci�c
distributed antenna deployment to �nd the points that bene�t the most from the connection
of additional transmit antennas, at the CU, and also explore the DCAP sensitivity to the
SNR variation. Finally, the multi-user case is considered. For this case, we rely mostly on
simulations, to extend the conclusions drawn from the single-user case.

3.5.1 Single-User Scenario

Distributed MISO system capacity

In the following, we derive the capacity expression for the single-user scenario, of a DAS.
According to [12] and [14] the ergodic capacity, when only one user is considered (K = 1),
can be expressed mathematically by

C = Eh

[
log

(
1 +

hH .Rx.h

σ2

)]
(3.6)

where Rx is the transmit signal covariance matrix and σ2 the noise power. The column vector
h can be equivalently expressed by h ∼ ΣΣΣ1/2hw, where Σ represent the correlation or path
loss matrix, for a CAS and DAS, respectively. Let the singular value decomposition of Σ be
given by Σ = UΛΛΛUH , where U is a unitary matrix and ΛΛΛ a non-negative diagonal matrix,
with each diagonal element corresponding to the eigenvalues of the matrix R or ρρρ.

Hence the previous capacity expression can be rewritten as

C = Eh

[
log

(
1 +

hwHΣΣΣ1/2HRxΣΣΣ
1/2hw

σ2

)]

= Eh

[
log

(
1 +

hwHΛΛΛ1/2UHRxUΛΛΛ1/2hw

σ2

)] (3.7)

To maximize the capacity, subject to the power constrain tr(Rx) = P , x must be circularly
symmetric complex Gaussian [1] and its correlation matrix, Rx , must have the same eigenvec-
tors as the covariance matrix Σ (Rx = UDUH) [15, 16], where D is a non-negative diagonal
matrix. Hence, the capacity will be only dependent on the singular values of the matrix Σ.
As a result, if the eigenvalues of matrices R and ρρρ are the same, for a given DAS and CAS,
the corresponding capacity for the two systems is also identical. However, the DAS has more
degrees of freedom/diversity available. Indeed, since for a DAS the eigenvalues change from
geographical position to geographical position the system macro diversity is higher. Therefore,
the probability of �nding a system state with high symmetry and corresponding high-capacity
gains increase. The impact of symmetry on the capacity gains will be analysed in following
sections. In these sections, we verify that high symmetry imply higher capacity gains. On
the other hand, for a CAS, the correlation structure is �xed implying that the corresponding
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eigenvalues are �xed, and thus no inherent macro diversity is available. Thus, on average (i.e.
over a given geographical area), the DAS will have higher capacity gains than a CAS. The
same is true for the BER performance analysis. By using the factorization Rx = UDUH , for
the transmit signal covariance matrix, the channel capacity can be simpli�ed to

C = Eh

[
log

(
1 +

hwHΛΛΛ1/2DΛΛΛ1/2hw

σ2

)]

= Eh

[
log

(
1 +

hwHQhw

σ2

)] (3.8)

where Q = ΛΛΛD is a diagonal matrix since both ΛΛΛ and D are diagonal. Let then Q =
diag(Q1, Q2, . . . , QN ). Thus the ergodic capacity formula reduces to:

C = Eh

[
log

(
1 +

N∑
i=1

|hwi |2Qi
σ2

)]
(3.9)

where γi = |hwi |2Qi/σ2 is equal to the SNR associated to link i. According to [12] the |hwi |2
random variable is exponential distributed and consequently γi. De�ning γ as the sum of all
links SNRs, γ =

∑N
i=1 γi, one gets

C = EΓN [log(1 + γ)] (3.10)

where ΓN is the random variable (RV) corresponding to the sum of N exponential distributed
RVs with mean λ−1

i = Qi/σ
2 each, which obeys the PDF

fΓN (γ) =
M∑
i=1

Ki∑
n=1

ain
(n− 1)!

γn−1e−λiγ (3.11)

In equation (3.11) M is the number of di�erent mean SNRs, λ−1
i is the mean SNR of link i, Ki

is the number of antennas with SNR λ−1
i and ain are constants related to the partial fraction

expansion [17] of the product of M Erlang distribution characteristic functions [18]. For more
details on the derivation of the ΓN RV PDF please see appendix section A.1.

According to equation (3.10) the ergodic capacity is then given by

C =

∫ ∞
0

log(1 + γ)fΓN (γ)dz (3.12)

Using [8] or [19] for the evaluation of the integral we get

C =

M∑
i=1

Ki∑
n=1

n−1∑
k=0

ain
λni

Ci(λi, k) (3.13)

where

Ci(λi, k) =
(−λi)k

k!

C0(λi) + u(k − 1)
k∑
p=1

(p− 1)!

(−λi)p


C0(λi) = eλiE1(λi)

C0(λi) is equal to the capacity of the link associated with a single transmit antenna, with
SNR λ−1

i and is also equal to Ci(λi, 0). E1(x) is the exponential integral function, given by
E1(x) =

∫∞
x et/t dt and u(n) is the unit step function.
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Di�erential Capacity

In this section, we derive a recursive expression for the ergodic capacity. With this expres-
sion, we obtain a closed-form formula for the absolute di�erential capacity, which we de�ne
as the increase in capacity when starting with N − 1 RAUs the terminal is connected to one
more RAU. Based on that expression upper and lower bounds are derived, for the channel
capacity.

Looking more carefully to the moment generating functions (MGF) and PDF of random
variables ΓN and ΓN−1 one can see that their di�erence has interesting properties. Namely,
by using the MGF inverse function, M−1

x [F (jw)] = 1
2π

∫∞
−∞ ϕ(jw)e−jwx dw, over ϕΓN (jw)

(the MGF of fΓN (γ)) one obtains

fΓN (γ)− fΓN−1
(γ) =M−1

Γ [ϕΓN (jw)− ϕΓN−1
(jw)]

=M−1
Γ

[[
λN

λN − jw
− 1

]
ϕΓN−1

(jw)

]
=

1

λN
M−1

Γ [jw ϕΓN (jw)]

= − 1

λN

dfΓN (γ)

dγ

(3.14)

where ϕΓN (s) =
∏M
i=1

(
λi
λi−s

)Ki
. By using the random variable transformation rules one can

obtain the following PDF transformation rule, from the ΓN−1 to the ΓN RV

fΓN (γ) = λN e−λNγ
∫ γ

0
fΓN−1

(x) eλNx dx (3.15)

Indeed, the previous equation obeys the di�erential equation (3.14) and is a valid PDF func-
tion, since

∫ +∞
0 fΓN (γ) = 1. With the previous equation, one can obtain an exact recursive

algorithm for the calculation of the ain coe�cients. Therefore, by using the previous devel-
oped tools, namely equation (3.14), we can obtain the absolute capacity di�erence by the user
connection to one more RAU

∆CNN−1 = CN − CN−1 = INλ
−1
N (3.16)

where

IN = −
∫ ∞

0

dfΓN (γ)

dγ
log(1 + γ) dγ

=

∫ ∞
0

fΓN (γ)

1 + γ
dγ =

M∑
i=1

Ki∑
n=1

ain

λn−1
i

Ci(λi, n− 1)

(3.17)

Another way to express the di�erential capacity is (see appendix section A.2)

∆CNN−1 =
λN−1

λN
∆CN−1

N−2

+
1

λ2
N

[
fΓN (0)−

∫ ∞
0

fΓN (γ)

(1 + γ)2
dγ

] (3.18)
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where fΓN (0) is equal to 0 for N > 1 and equal to λ1 for N = 1. This new expression can be
used to obtain the following upper bound (see appendix section A.2)

∆CNN−1 ≤
λN−1

λN
∆CN−1

N−2 , N > 1 (3.19)

Di�erential Capacity Bounds

The g(γ) = 1/(1 + γ) function is always less than one for all γ in [0,∞[. Thus, we can
easily get a simple upper bound for the DCAP

∆CNN−1 =
IN
λN
≤ 1

λN

∫ ∞
0

fΓN (γ) dγ = λ−1
N (3.20)

and by consequence

CN ≤
N∑
k=1

λ−1
k =

M∑
i=1

Ki λ
−1
i (3.21)

Tighter bounds can be derived verifying that the g(γ) function is also always greater
or equal than e−γ (Bernoulli's inequality) for all γ in [0,∞[, with a maximum di�erence of
(Md ≈ 0.204)2 so

e−γ ≤ g(γ) ≤ e−γ +Md (3.22)

and consequently
ϕΓN (−1)

λN
≤ ∆CNN−1 ≤

ϕΓN (−1)

λN
+
Md

λN
(3.23)

where ϕΓN (s) is the ΓN RV MGF.
From the upper bound (3.20) and from the lower bound from equation (3.23) one can see

that in the case of low SNR's the DCAP can be approximated by λ−1
N , since as λi tends to

in�nity (low SNR) ϕΓN (−1) tends to 1. Thus the capacity expression for low SNR's is given by

CN ≈
N∑
i=1

Ki λ
−1
i (3.24)

Assuming that the new mean SNR is the smallest one, it can be shown that the maximum
DCAP is achieved when all RAUs have the same mean SNR, in other words, when they are
co-located, see appendix section A.3

∆CNN−1(λ1, . . . , λN ) ≤ ∆CNN−1(λN , . . . , λN )

λN ≥ λn, ∀ n ∈ [1, 2, . . . , N − 1]
(3.25)

In the high SNR limit the previous expression is maximal and equal to, see appendix A.4

lim
λN→0

∆CNN−1(λN , . . . , λN ) =
1

N − 1
(3.26)

Thus in the limit case of high SNR we can see that the DCAP value is independent of
the SNR, and only depends on the number of connected RAUs to the mobile terminal. This
maximum can be approached with a di�erence of less than 0.1 bps/Hz if all mean SNR's are

2Obtained numerically, and knowing that this maximum is global.
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equal and higher than 17 dB. As a result, any channel asymmetry3 in the system, either the
path loss (for a DAS), or the correlation (for a CAS) imply smaller capacity gains, since they
entail di�erent mean link SNRs. This can be explained by the fact that large asymmetries in
the system, at a given geographical position, imply that cooperation is not worth adding the
e�ort of additional processing at the CU, due to the diminished expect returns.

The previous expression can be considered as a limit bound, but a tighter bound for the
general case maximum achievable DCAP can be obtained (please look at appendix sections
A.3 and A.4)

∆CNN−1 ≤
1

λN +N − 1
≤ 1

N − 1
(3.27)

Therefore the DCAP, by the connection to K new antennas, is upper bounded by:

∆CK+1
1 ≤

K+1∑
n=2

1

n− 1
=

K∑
n=1

1

n
(3.28)

with equality if all SNR's are equal and high.
For a high number of antennas this formula can be approximated by:

∆CK+1
1 ≤

K∑
n=1

1

n
≈ %+ log(K) (3.29)

and upper bounded by:

∆CK+1
1 ≤

K∑
n=1

1

n
≤ %+ log(1 +K) (3.30)

where % is the Euler constant (0.577215665). So as the number of connected RAUs increase, the
DCAP is smaller and smaller, because 1/K decreases as K increases. If the number of RAUs
grows to in�nity so does the capacity, but of course in practice one can only have a limited num-
ber of RAUs and the complexity will also scale up with the number of RAUs. Hence, a trade-o�
must be made between the number of RAUs jointly processed, and the complexity introduced.

Numerical Results

To have a better idea about the behavior of the DCAP values, let us start by looking to
the DCAP values on representative geographical locations. More speci�cally, let us evaluate
the system capacity, using (3.16), �rst for a user moving from point A to B, (red line Figure
3.1) and secondly for a user moving from point A to point C (green line Figure 3.1), for
a DAS. The RAU coverage radius considered was 100m. As can be seen from Figure 3.3,
the system capacity always increases but the amount of gain, as N increases, gets smaller,
as expected. The gain becomes larger as we get farther away from RAU1, since the user
is getting closer to the boundaries of the coverage area of RAU1 and of another RAU, and
consequently the corresponding mean link SNRs are approaching each other, decreasing the
existing asymmetries. A user moving over the red line will only cross the boundary of RAU2,
at point B, and thus just the �rst DCAP value is big, in comparison to the other DCAP
values. On the other hand, a user moving over the green line will cross two boundaries, at
the same point (C), and as a result the corresponding �rst two DCAP values are large. The

3By system symmetry we mean that all average SNRs are equal.
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(a) Capacity variation over red line (Figure 3.1). (b) Capacity variation over green line (Figure 3.1).

Figure 3.3: Ergodic channel capacity, for di�erent number of transmit antennas, at varying
distances from RAU1 (Figure 3.1) and for a RAU coverage radius, R = 100. RAU connection
order: connect �rst the closest antennas to the user, at each geographical position.

corresponding DCAP values for point (C), one of the points with the highest symmetry, and
for two di�erent RAU coverage radius are shown in Figure 3.4. In this �gure we also plot the
bound 1/(N − 1), since this is the maximum DCAP that any user can get, in any position, as
seen previously. As can be seen from that �gure, when the new connected RAU has a mean
SNR equal to a previous RAU, like RAU4 and RAU7, the DCAP is approximately equal to the
beforehand connected RAU and when it changes, the DCAP value also changes, as already
veri�ed from bound (3.19). This can be explained by the DCAP ratio (∆CNN−1/∆C

N−1
N−2 )

bound, shown in (3.19). In a circular ring this upper bound takes the value 1, and thus the
DCAP is approximately constant. However, this approximation is not always tight. To have
a better insight into the sensitivity of the DCAP with the SNR variation and to verify where
the bound shown in (3.19) is tight we plot in 3.5 the DCAP ratio for consecutive connected
RAUs and also the previously stated bound, again for point C. As can be seen from that
�gure the DCAP ratio is well approximated by the ratio λN−1/λN , when the new mean SNR
is di�erent from the previous one and as N increases the approximation becomes tighter. For
a small number of RAUs this approximation is bad and the DCAP values change even for a
circular ring. Thus, one can conclude that a user in a RAU coverage boundary attains the
highest DCAP values due to the existence of links with the same, or similar, mean SNRs,
getting the most from the diversity of receiving simultaneously from more than one RAU.

To understand better the impact of the symmetry in the DCAP values we propose to ana-
lyze next a more symmetric geographical RAU placement, namely the one presented in Figure
3.6. In the next paragraphs, we evaluate as well the tightness of the bounds (equations (3.21),
(3.23), (3.26), (3.27)) and analyze the DCAP variation as a function of the average SNRs.
Additionally, we further perform an analysis of a representative area of the corresponding grid
remote antenna placement, for a target capacity increase. This will allow us to see how many
neighbour RAUs are able to ful�l the given capacity requirements and to attest the symmetry
properties.

In Figure 3.7 we show, for the central area point (the origin (0, 0)) and for a point that
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Figure 3.4: Exact DCAP values and bound 1/(N−1) (Nats/s/Hz), for the point C of scenario
depicted in 3.1, and for two di�erent RAU coverage radius, R = 100m and R = 750m. RAU
connection order: RAU 1, 2, 3, 4, 7, 5, 6.

Figure 3.5: DCAP variation with respect to N , for the point C of scenario depicted in Figure
3.1, and for two di�erent RAU coverage radius, R = 100m and R = 750m. RAU connection
order: RAU 1, 2, 3, 4, 7, 5, 6.
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Figure 3.6: Geographical remote antenna placement.

(a) Central Point. (b) (0.5∆dx, 0.5∆dy) Point.

Figure 3.7: Di�erential capacity by the connection to one more RAU, exact, upper and lower
bounds.

is in the same place as one of the RAUs of the con�guration in Figure 3.6, a plot of exact,
upper and lower bounds of ∆CNN−1. In the second point we do not take into account the clos-
est RAU. In this analysis, we evaluate the aforementioned expressions on two distinct cases,
one for which the inter RAU distance is equal to ∆d = 1 Kilometer and another for which
∆d = 0.1 Kilometer, considering that ∆dx = ∆dy = ∆d.

We can see from this �gure that when we begin to connect to the next circular ring
antennas the DCAP value decrease a lot and while we stay in a given circular ring, the DCAP
keeps constant, as seen before. Nevertheless, for this RAU con�guration, this fact is more
evident due to the increased symmetry. This approximation of a constant capacity increase
in a circular ring is better for rings far apart of the user. This can be explained by the fact
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(a) Central Point. (b) (0.5∆dx, 0.5∆dy) Point.

Figure 3.8: Di�erential capacity variation with respect to N.

that in the upper bound, equation (3.23), ϕΓN (−1) tends to zero as we connect to more and
more RAUs. As a consequence the bound becomes independent of all SNR's, minus the new
one. It can also be explained by the bound of equation (3.19) since, the ratio

λN−1

λN
is equal

to 1 for a circular ring.

This �gure also shows that for high SNR's the best bound is the one from equation (3.27),
but for low SNR's the upper bound provided by (3.23) is more precise. The upper bound
provided by equation (3.23), for the case of ∆d = 0.1 Kilometer, is not shown in this �gure
because its higher than the bound provided by equation (3.27) for all N. It is also important
to stress that the most interesting bounds are the ones that are accurate for a small number
of RAUs, equation (3.27), because the user will probably only connect to a small number of
RAUs due to the diminishing returns one gets as the number of connected RAUs increases.
Indeed this bound in addition of being the tightest, for a low number of connected RAUs, is
also the one that requires less information to be evaluated (only the SNR of the new RAU).

These two �gures, more speci�cally the red and blue lines, show a convergence of the
DCAP to a same value as the terminal connect to more and more RAUs, in the case of SNR
vectors that are multiple among themselves. It is easy to prove that as the SNR's increase this
convergence occurs at a smaller N and in the case of high SNR's the DCAP cannot be higher
than a given value/line, having as the ultimate line 1/(N − 1) in the case of all equal SNR's.
Showing in that way that if we bring all RAUs closer to the terminal, by a given factor, we
only obtain an increase in the DCAP in the closest RAUs.

Another aspect that it is worthwhile to analyze, as seen previously, is the variation / sen-
sitivity of the DCAP value with respect to N. In this context, we have evaluated the DCAP
ratio, ∆CNN−1/∆C

N−1
N−2 , and plotted it in �gures 3.8(a) and 3.8(b), for the same two previously

used points and for a group of inter RAU distances between 0.1 and 1 Kilometer, with incre-
ments of 0.1 Kilometer, which corresponds to SNR's in the range of approximately −10dB to
35dB. As a reference a plot of the bound given by the �rst term of equation (3.18) and a plot
of the same ratio but for the case of all equal and high SNRs is also represented in these �g-
ures, in blue and green respectively. One can see from this two �gures that the ratio variation
with respect to the mean SNR decreases as the number of connected RAUs increase. There-
fore, for the farther RAUs the capacity ratio becomes insensitive to the SNR and is mainly
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in�uenced by the RAU geographical positioning. Nevertheless, the same is not true for the
closest RAUs. Hence, for the closest RAUs, both their geographical disposal and distance to
the user in�uence the gains obtained by the connection of the user to new RAUs. From these
�gures, one can also see that the di�erence between the exact ratio value and the respective
bound gets tighter for a higher number of transmit antennas and that at the turning points
from one circular ring to another this bound is very tight.

In the next paragraphs we will perform a DCAP analysis for a representative area covered
by the RAUs. For this analysis, we consider ∆dx = ∆dy = 1 Kilometer. Namely, we consider
a target DCAP and analyze, for a given set of user positions, the number of RAUs which imply
a DCAP higher than the de�ned target. The RAU connection order is from the closest to the
farthest. In this context, the results presented in Figure 3.9 are obtained, for a target DCAP of
0.2 bps/Hz (1 bit = log(2) Nats). The region shown in this �gure is the green one in Figure 3.6.
Just to give an example, consider the user position, i.e. the point (0.2, 0.4). For this position,
the corresponding N is equal to 2, which indicates that when the user connects to the �rst and
second (N = 2) RAUs he obtains a capacity increase greater than 0.2 bps/Hz but departing
from that number of RAUs, from 2 to 3, 3 to 4, . . . , the capacity increase obtained is less than
0.2 bps/Hz. As can be seen from Figure 3.9, for this case, only the �rst ring, i.e. the four closest
RAUs, is used. Moreover, this �gure also shows a circular pattern in the number of RAUs
needed to achieve the target. This is related to the fact that the received SNR from one RAU
is always equal at a distance d from that RAU. For instance, the (0, 0) point, in the middle of
the area, has the greatest number of RAUs, retrieving in that way more system capacity. Such
a fact stems from the high symmetry properties of this user position. Indeed for the area close
to a given RAU only one RAU is needed. On the other hand, for the area on the borders of
the area covered by the four RAUs the four RAUs should be used to serve the user, since each
connection implies an increase in capacity higher than the target. Moreover, we can get an
estimate of the number of RAUs a user should connect to, from the bounds provided in section
3.5.1. Let us consider the user position (0, 0). From the upper bound 1/(N−1) we get that for
a target increase in capacity of 0.2 bps/Hz the user must not connect to more than 8 RAUs.
On the other hand, if some additional information is used, namely the mean SNR of the new
connected RAU, we can get a better bound on the number of RAUs that attains the target
increase in capacity. By using the fact that the SNR at a distance of 1 Kilometer from the user
is 0 dB, and that the closest four RAUs are at a distance of

√
2/2 Kilometer we get from the

1/(λN+N−1) bound that the capacity increase for the fourth RAU is lower than 1/((
√

2/2)3+
4 − 1)/log(2) ≈ 0.43 bps/Hz (the exponent 3 corresponds to the path loss exponent). For
this reason, it is possible to achieve a DCAP higher than 0.2 bps/Hz using the forth RAU.
Nevertheless, for the �fth RAU their distance to the user is

√
10/2. Therefore, his DCAP is

upper bounded by 1/((
√

10/2)3+5−1)/log(2) ≈ 0.18 bps/Hz. As a consequence, by using just
this simple upper bound we can get to the conclusion that only the four closest RAUs could
lead to an increase in capacity higher than the target (0.2 bps/Hz). Therefore, one can see that
for a given target DCAP it is mostly how the RAUs are distributed in a given geographical
area that in�uences the gains obtained by the connection of the user to more RAUs and not the
distance between the RAUs. Hence the importance of the symmetry in the RAUs distribution.

3.5.2 Multi-User Scenario

In the previous paragraphs, we have studied the DCAP sensitivity to the link's SNR
variation, for the single-user case. Indeed, we have veri�ed that the DCAP is maximized
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Figure 3.9: Number of RAUs till where the di�erential capacity is greater than 0.2 bps/Hz.

in the high SNR regime and when all RAUs have a similar link SNR. Even, if that study
can provide some useful and interesting insights on the behavior of the DCAP, it is in some
way limited, since, in a real system more than one user are normally available. Hence it is
important to consider the multi-user case, in more detail. However, for the multi-user case
the system capacity is not as easy to analyze, as the one for the single-user case, due to
some additional constraints in the transmit covariance matrix and from the fact that there
is no known closed-form solution, for this matrix, that maximizes the channel sum-capacity.
Indeed to obtain the optimal power allocation matrix an iterative algorithm should be used
[20]. Nevertheless, for the high SNR regime and for the case of more transmit than aggregate
receive antennas equal power allocation is asymptotically optimal [5]. Since it is also in the
high SNR regime that the DCAP is maximized, for the single-user case, from now on we
only consider this regime. Hence, as an extension to the single-user scenario, we consider a
multi-user scenario, both with more transmit than aggregate receive antennas and vice-versa.
For simplicity, for this scenario, we �rst study the DCAP for the co-located antenna case, i.e.
with equal path losses, considering independent channels paths. Finally, we will look to the
distributed antennas case.

Broadcast Channel Sum-Capacity

A broadcast channel is a communication channel in which there is one sender and two or
more receivers [21]. Recently, in [6], the authors have shown that the DPC rate region is the
capacity region of the Gaussian MIMO BC. The DPC sum rate with a total power constraint,
(
∑

k qk ≤ P ), can be expressed, from the MIMO BC-MAC duality, [22�24], by

C
(N,K)
DPC = max∑

k qk≤P
log

∣∣∣∣∣IN +

K∑
k=1

hHk qkhk

∣∣∣∣∣ = max
tr(Q)≤P

log
∣∣IN + HHQH

∣∣ (3.31)
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where qk is the transmit covariance in the dual MAC, HH = [HH
1 , . . . ,H

H
K ] denote the con-

catenation of all user's channels and Q = diag(q1, . . . , qK) is a block-diagonal matrix. In
the high SNR regime and for K ≤ N , equal power allocation, qk = P

KN , has been proven to
be asymptotically optimal [5]. As a consequence, the following a�ne approximation to the
sum-capacity can be made [5], [25].

C
(N,K)
DPC ≈ Klog P −Klog K + log|HHH | (3.32)

From which we can see that in the high SNR regime the sum-capacity of the MIMO BC scales
like K. Unfortunately, the same cannot be said for the case of more aggregate receive than
transmit antennas, K > N . For this case, equal power allocation is not asymptotic optimal,
since for the standard degraded BC (N = 1) the throughput is maximized by transmitting to
the best user only [26].

Di�erential Capacity

One aspect that is worth being investigated, for the multi-user case, is the scaling of
the DCAP with the number of users. Let us consider �rst, for simplicity, a CAS without
correlation between channels (R = ρρρk = I) and next extend the results to a DAS. Let us start
with the N ≥ K case and after consider the K ≥ N case. According to equation (3.32), for
N ≥ K, the DCAP can be expressed by

∆CN,KN−1,K = E[C
(N,K)
DPC −C

(N−1,K)
DPC ]

= E[log|HNH
H
N |]− E[log|HN−1H

H
N−1|]

(3.33)

where Hi, (i = N,N + 1) is the channel matrix for a CAS with i transmit antennas. As a
consequence, for N ≥ K, the ergodic DCAP is only dependent on the matrix H distribution.
On the other hand, for K > N , the DCAP can be expressed by

∆CN,KN−1,K = E[C
(N,K)
DPC −C

(N−1,K)
DPC ]

= E[C
(N,N)
DPC + ∆CN,KN,N − (C

(N−1,N−1)
DPC + ∆CN−1,K

N−1,N−1)]

= ∆CN,NN−1,N−1 + ∆CN,KN,N −∆CN−1,K
N−1,N−1

= log(P ) + ∆

(3.34)

where ∆ is equal to ∆CN,KN,N −∆CN−1,K
N−1,N−1 plus the power o�set gain provided when we pass

from N − 1 to N transmit antennas and users4 , which is very close to −log(e) = −1. In
the passage from the second to the third line, of equation (3.34), a slight abuse of notation
has been used, since we denote the average and a given instantiation of a random variable
by the same variable. However, we think that it is easy to understand and the de�nition of
additional variables will be cumbersome. From the previous equation, we see that, for K ≥ N ,
the DCAP would be power dependent, di�ering from the N ≥ K case. Hence, it is important
to analyze the gain ∆, i.e. the power o�set factor. This analysis is made in the following
sections.

4∆CN,NN−1,N−1 ≈ log(P ) + log(N − 1 + β) + (N − 1)log(N − 1) −NlogN ≈ log(P ) − log(e)
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DCAP for N ≥ K

In this sub-section we derive a closed-form expression for the DCAP for DPC and ZF,
considering that all transmit antennas are co-located. For the general case, of a DAS, a
numerical analysis is provided, please refer to section 3.5.3. For DPC, as shown in appendix
(Appendix A.5), the DCAP can be expressed by

∆CN,KN−1,K =

N∑
n=N−K+1

1

n− 1
=

N∑
n=N−K+1

∆Cn,1n−1,1

≈ log
(

1 +
K

N − 1−K + β

) (3.35)

where β = e1−γ − 1. Taking into account equation (3.35) and using the BC equivalent point
to point MIMO interpretation in the high SNR regime [5], we can say that the DCAP for ZF
is equal to K times the DCAP of DPC for a (N − (K − 1))× 1 channel. Therefore the DCAP
for ZF can be expressed by

∆C
N,K
N−1,K ≈ Klog

(
1 +

1

N − 1−K + β

)
(3.36)

From which we can see that asymptotically in the number of transmit antennas N , the DCAP
behaves like K/(N −K+β) for both DPC and ZF. Thus the gains are almost the same when
a high number of transmit antennas is considered. However, for a �nite number of transmit
antennas the DCAP gains provided by DPC are lower and the di�erence increases with K, as
can be seen by equations (3.35) and (3.36). From (3.35) it is easy to see that the DCAP scales
logarithmically with the number of users, for the optimal scheme (DPC), if N − K is kept
constant. Thus, the gain by the connection of additional RAUs will, in some sense, saturate,
since their increase rate will be smaller and smaller as more users are considered. In that way,
the DCAP value that we obtain for a small number of users will be only slightly lower than
the one for a higher number of users.

DCAP for K ≥ N

When K ≥ N equal power allocation ceases to be asymptotically optimal, and some form
of iterative water-�lling algorithm must be used to allocate power between users [20]. As a
result of that complication it does not appear to be possible to obtain a closed-form expression
for DCAP. However, for the case of only one transmit antenna it is optimal to transmit at
full power to the best user [26] and as shown in the appendix (subsection A.6), the maximum
increase in capacity, when one new user is added to the system, is obtained when all users
are co-located, i.e. when they have equal SNRs. Therefore, for the high SNR regime, the
increase in capacity, by the connection of an additional user, for N = 1, can be expressed by,
see appendix (subsection A.6)

∆C1,K
1,K−1 =

K−1∑
n=0

(
K − 1

n

)
(−1)n+1log(n+ 1) (3.37)

However to analyse the DCAP, for K > N , we need also to know that value for N > 1. Thus,
in order to obtain an approximation to the increase in capacity obtained by the connection of
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Figure 3.10: DCAP values for a multiuser co-located scenario with uncorrelated channel paths,
for a number of users in the range 1 to 4, in the high SNR regime.

a new user to the system, when more than one transmit antenna is considered, we have done
an extrapolation of equation (3.37), taking into account equation (3.35) line 1

∆CN,KN,K−1 ≈
K∑

n=K−N+1

∆C1,n
1,n−1 (3.38)

and as shown in section 3.5.3 (Figure 3.12(a)), this approximation is very close to the values
obtained by numerical simulations and is better for a high number of users. This approxima-
tion will be used in section 3.5.3 to obtain an approximation for ∆ in equation (3.34).

3.5.3 Numerical Results

In this section, expressions (3.35) and (3.36) are analysed to compare the DCAP gain of
DPC to ZF. Next we analyse the DCAP for a DAS considering a scenario with 4 transmit
RAUs and 2 users, each with only one receive antenna. Finally, for K ≥ N we analyse the
DCAP for the case of all equal mean SNRs, namely we analyse the capacity increase provided
by the connection of a new user and the power o�set gain (∆).

In Figure 3.10 we compare DPC and ZF in terms of DCAP, for a di�erent number of
users and transmit RAUs. From that �gures one can see that the logarithm approximation
although simple is very tight. Concerning the bene�ts of the connection of new transmit
RAUs, ZF has higher gains than DPC and the di�erence increase with K. As a result of that
analysis, we observe that as a scheme gets closer to the optimal one, the gains obtained by the
connection of more RAUs at the transmitter side decrease. As a consequence the connection
to additional RAUs/cooperation is more bene�cial for lower complexity schemes, since they do
not use the available resources up to the optimum performance. However, the optimal scheme
has a higher sum-capacity and complexity, thus a careful choice must be made taking into
account the costs/bene�ts ratio, for a given architecture. We can also see from Figure 3.10
that all schemes converge to the same DCAP value for a high number of transmit RAUs and
that the convergence point increases with K. This happens since equations (3.35) and (3.36)
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(a) User's position, where distributed DCAP is
higher than co-located DCAP.

(b) DCAP distribution for N = 2.

Figure 3.11: Di�erential capacity distribution for a uniform user distribution and users posi-
tions where the distributed DCAP is higher than the co-located DCAP.

(a) Capacity increase by the connection of a new user. (b) ∆ factor value.

Figure 3.12: Capacity increase by the connection of one more transmit RAU to the system,
for K ≥ N .

have identical asymptotic behaviour with N . Indeed, we think that this behaviour starts to
show when the sum-capacity of both schemes get close to one another. For ZF this happens
when there are enough degrees of freedom available, to cope with its not so good performance,
to alleviate the properties of the matrix to be "inverted". For a higher number of users this
obviously happens for a higher number of connected RAUs.

We have seen, in the single-user case, that the user positions with the highest DCAP values
are the ones with highest symmetry to the RAUs. Will this be also true for the distributed
case? To investigate that we have studied, in the previous paragraphs, the DCAP for a
CAS with uncorrelated channel paths. However, to extend the CAS DCAP results to a DAS
we will rely on numerical simulations. In that numerical simulations we have considered a
scenario with 4 uncorrelated transmit RAUs (blue circles in Figure 3.11(a) and 2 users and
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have evaluated the respective DCAP values, for a high number of uniformly draw positions.
In the numerical simulation, for the channel model we have considered only path loss and
Rayleigh multipath fading. The users positions were randomly generated according to a
uniform distribution in the [−1, 1]× [−1, 1] Kilometer square. Ten thousand random positions
were generated for each user and the DCAP was averaged over 10000 trials. The results
from this simulation are shown in Figure 3.11. More precisely we plot in Figure 3.11(a) the
users positions that attain the highest DCAP values, when the third RAU is connected to the
CU. Each pair of equal black markers represent the positions of each user. As can be seen
from that �gure the users positions with the highest DCAP values are like, in the single-user
case, in the symmetry lines de�ned by the transmit RAUs, more precisely in the coverage
boundaries of each RAU. The corresponding DCAP value, for such positions, is very close to
the one obtained for the uncorrelated CAS, analyzed before. In that way, the newly connected
RAU has the same distribution as the previous one, in a similar manner as for the co-located
case. Thus, system symmetry plays, again, an important role in obtaining most of the DCAP
gains, like in the single-user scenario. Indeed, as an example, we show the distribution of the
DCAP values, for the third connected RAU, in Figure 3.11. In this �gure, the CAS bound
of equation (3.35) is shown by a black star. From these results, one can see that most of the
points have a smaller DCAP than bound (3.35). We can also notice that when we pass from
2 to 3 connected RAUs, Figure 3.11(b), 7 points exceed the bound (2.16 bps/Hz). Therefore,
we can conclude that even if the DCAP for the distributed case can be higher than the DCAP
for the co-located case, it will not be much higher and the number of points in that condition
will be small and in a condition with high symmetry.

For the case of more aggregate receive than transmit antennas we have analysed the ∆
factor in equation (3.34). To do that, a numerical analysis has been made, considering that
every column of H is ÑKN (0, I) distributed. To obtain the optimal power allocation among
users the algorithm presented in [20] has been used. In Figure 3.12(a) we plot the increase
in ergodic capacity, obtained by numerical simulation and averaged over 100000 trials, when
one new user is added to the system, for a given number of transmit RAUs N . We also
plot, in this �gure, the approximation of equation (3.38), which is very close to the obtained
numerical results. Indeed, the results obtained by the connection of additional users are
quite similar to the ones obtained by the connection of additional RAUs, but the gains are
lower. Nevertheless, the availability of users, in a network, is normally higher than the one
of the RAUs. Consequently, even if these gains are lower they can be achieved more easily,
if the right users are chosen. Indeed, we have veri�ed that for the case of just one RAU
N = 1, it is the best to choose the users with the highest symmetry, i.e. with the same
mean SNR. Considering the tightness of our approximation, equation (3.38), we can say, as an
approximation, that the same happens if a higher number of RAUs is considered. Therefore,
symmetry seems to be important both to the case of the connection of additional users and of
additional RAUs. Taking into account that approximation in our analysis, in Figure 3.12(b)
we plot the ∆ factor values for di�erent number of users and see that even for 1000 users this
factor is small. Moreover, the power o�set gain seems to be saturating with the increase of
users. Consequently, for the case of more users than RAUs, after a given number of users the
increase in o�set power is to some point constant. Nevertheless, we should not forget that for
this case, there is also a multiplexing gain.

64



3.6 Conclusion

In this chapter, we have shown that DAS provides an interesting alternative to CAS
because of its power e�ciency and diversity. Then we considered a di�erential measure, the
DCAP, which can be useful in dynamic radio resource allocation and in the antenna planning
phase. Concerning the DCAP, we have analyzed the bene�ts of the connection of additional
RAUs to the system users of a BC, both for the single-user and multi-user cases. For the single-
user case, we have analyzed the DCAP limits, its sensitivity to the links SNR variation and
have also found the user positions that will bene�t the most from the connection of additional
transmit antennas. Furthermore, for this case, we have seen that the most relevant system
property to obtain the highest DCAP values is system symmetry. It was also veri�ed that
the capacity gains obtained by a DAS, in relation to a CAS, are mainly due to the additional
degrees of freedom provided by the DAS, which increase the probability of �nding a user in a
state with high symmetry, unlike in CAS. For the multi-user case, we have veri�ed that the
DCAP of a CAS, with uncorrelated channel paths, increases logarithmically with the number
of users, for the optimal scheme (DPC). For the DAS, we have seen, by numerical simulations,
that the number of user's positions with the highest DCAP values is small and that their main
property is their closeness to the system symmetry lines, de�ned by the transmit antennas.
Thus symmetry plays, like in the single-user scenario, an important role in the multi-user
scenario. Hence, one can conclude that the users that will get the most bene�t from the joint
processing of additional RAUs, in a DAS, will be the ones at the cell borders. Additionally,
one can say that a DAS has power e�ciency, diversity and capacity advantages over a CAS.
Consequently, a system architecture based on the DAS concept will be interesting to address
the problems encountered in the current cellular systems, for users at the cell borders.
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Chapter 4

Minimum Bit Error Rate Nonlinear

Precoding for Multiuser MIMO and

High SNR

This chapter focuses on the minimization of the bit-error-rate, for the downlink of a mul-
tiuser MIMO channel with N transmit antennas and K single antenna users, both for co-
located and distributed antenna systems. In the design of such a precoder the knowledge of
the transmitted data and full channel state information, at the transmitter, are assumed. It
is shown that, in the high signal to noise regime, and for co-located antenna systems, the
problem simpli�es from a constrained quadratic nonlinear optimization to a single quadratic
program, allowing to reduce the complexity, signi�cantly. This quadratic problem is equiva-
lent to maximize the minimum distance between the user received symbols and corresponding
decision boundaries. In contrast to zero-forcing where full inversion is required, the proposed
algorithm selects and inverts part of the channel correlation matrix. This leads to an improved
performance as the selection allows to get a better conditioned matrix. Additionally, this al-
lows us to treat zero-forcing as a special case of the algorithm. By using the results obtained
for the co-located case we present a two phases algorithm for distributed antenna systems and
extend the obtained results for multicarrier systems. Results show that the algorithms achieve
a performance close to the optimum, with low complexity.

4.1 Introduction

In recent years the quest for higher bit rates and the scarcity of spectrum have led to the
use of(glossMIMO systems. Theoretically, the use of MIMO allows under certain conditions
the capacity to scale linearly by a factor equal to the minimum between the number of transmit
and receive antennas. This happens for rich scattering propagation environments, without re-
sorting to an increase in spectrum usage [1�4]. Nevertheless, for limited scattering propagation
environments, this is not the case, due to the strong correlation between channel links. Dur-
ing the last years, the DAS concept has gained more attention from the research community,
since it can solve some of the problems inherent to the co-located single cell systems. Namely,
such systems have a macro diversity advantage that is inherent to the widely spaced antennas
and more �exibility to deal with intercell interference, which is the main limitative factor of
user terminals at the cell edges [5]. MIMO systems are well studied for the single-user case,
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but that is not the case for the multiuser scenario. For the multiuser scenario, MIMO allows
several users to be served with the same space and time/frequency resources. However, to be
able to do that some sort of precoding should be used at the transmitter side to separate the
user signals, canceling in that way the multiuser interference. The concept of linear multiuser
precoding for SISO systems has been introduced in [6], [7]. Such schemes have been proposed
to eliminate the multiple access interference and increase the system capacity, while allowing
for power allocation strategies. Multiuser linear precoding techniques for MIMO systems have
been proposed in [8], [9]. A framework based on the convex optimization theory was developed
in [10], [11] for designing optimum joint linear precoding and post equalization considering
full CSI [10] and only CSI statistics [11]. The most common and also the lowest complexity
schemes available to achieve this type of user separation are ZF and the MMSE precoder [12].
Both resort to a linear transformation of the data signal, to align it to the corresponding user
subspace and to move it away from the subspace of the other users. On the other extreme of
complexity we can �nd DPC [13], which is optimal for the MIMO multiuser Broadcast channel
[14], [15].

Equally important are the works on multicell or distributed precoding techniques. In recent
years relevant works on the theme have been proposed in [5, 16�21]. In [16], the inner bounds
on capacity regions for downlink transmission were derived with or without Base Station (BS)
cooperation and under per-antenna power or sum-power constraint. Two centralized multicell
linear precoding schemes based on the water�lling technique have been proposed in [18]. It was
shown that these techniques achieve a performance, in terms of weighted sum rate, very close
to the optimal. Multicell cooperation based on SVD has been proposed in [19]. The maximum
achievable average transmission rate per user per antenna was derived. In [19] a clustered BS
coordination was enabled through a multicell block diagonalization in order to mitigate the
e�ects of interference in multicell MIMO systems. In [20] the linear precoder vectors were
computed resorting to a SVD based algorithm in a centralized fashion and then for the power
allocation the minimization of the average BER criteria was considered. Distributed multiuser
linear precoding with distributed power allocation has been discussed in [21]. It was assumed
that each BS has only the knowledge of local CSI and based on that the beamforming vectors
were derived considering both instantaneous and statistical CSI in order to achieve the outer
boundary of the achievable rate region. However, to the best of our knowledge, nonlinear
precoding solutions for DAS have not been addressed in literature, yet. This has only been
done for conventional co-located MIMO based systems. Namely, the nonlinear minimum BER
multiuser transmission scheme (MBMUT) was, �rstly, proposed for a SISO Code Division
Multiple Access (CDMA) system with frequency-selective channels in [22] and was extended
to multiple antenna systems in [23]. The �xed power constraint at the transmitter imposes
a quadratic constraint in the problem formulation. As the merit function, i.e., the average
BER is nonlinear, we are led to a quadratically constrained optimization of a nonlinear func-
tion. This can be solved using state-of-the-art nonlinear optimization methods like Sequential
Quadratic Programming (SQP), but the complexity is high. To alleviate this in [24] the authors
formulated the MBMUT problem by including the power constraint into the merit function,
leading to an unconstrained optimization problem. This can be solved using unconstrained
optimization techniques [24], but the complexity although somewhat reduced is still high.

In this chapter, we show how to reduce the complexity of the minimum BER problem by
showing that the optimization task can be approximated by a single Quadratic Program (QP).
To solve the aforementioned QP a low complexity algorithm is proposed, for generic M-QAM
(Quadrature Amplitude Modulation) and we show that the solution has close connections to
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the linear ZF scheme. Numerical results show that the proposed sub-optimal scheme achieves
a performance very close to the optimal but with much lower complexity, both for conven-
tional co-located systems and for DAS. For the DAS a two-phase algorithm is proposed: �rst,
a solution is computed by assuming that all RAUs can jointly pool their power and in the
second phase the obtained signal is multiplied by a scaling factor so that the power constraint
is respected.

This chapter is organized as follows. Section 4.2 describes the system model. Next, in
section 4.3, we present a brief revision of the ZF and MMSE linear precoders. Then, in section
4.4 we describe and derive the proposed two phase algorithm to approximately minimize the
system BER of a DAS. To achieve that, �rst we solve the same minimization problem for a co-
located antenna system, in section 4.4.2. Finally, we analyze the complexity of the proposed
scheme and evaluate its performance, through numerical simulations, both for co-located and
distributed antenna systems.

4.2 System Model

We consider a DAS system consisting of a set of RAUs which are transparently linked,
by optical �ber, to a CU, where e�cient joint precoding can be done, i.e., we consider the
enhanced cellular architecture proposed in [25, 26]. We assume transmission from R RAUs,
each with Nr antennas, to K single-antenna users, see Fig. 4.1. The total number of trans-
mit antennas is N = RNr. In such a system, the concatenation of all users received signals,
y(∈ CK×1), can be mathematically described by

y = Hx + n (4.1)

where H = [h1, . . . ,hR](∈ CK×N ) denotes the concatenation of all RAUs channels, x =
[xH1 , . . . ,x

H
R ]H(∈ CN×1) is the transmitted vector and n(∈ CK×1) is a vector of independent

complex Gaussian noise, with zero mean and variance σ2. The transmit power at each RAU
is constrained to PtR . The vector of transmitted symbols, x = [x(1), . . . , x(N)]T is obtained
by a nonlinear mapping of the vector of M-ary QAM data symbols d = [d(1), . . . , d(K)]T ,
taken from the odd complex integer grid, G.

G = {I + jQ|I,Q ∈ {±1,±3, . . . ,±(
√
M − 1)}} (4.2)

The real valued representation of a complex vector is obtained by stacking the real and
imaginary parts of the corresponding complex vectors

(̄.) = [R(.)TI(.)T ]T (4.3)

Using the real value representation of complex vectors, the channel model can be represented
by

ȳ = H̄x̄ + n̄ (4.4)

where H̄ is the real counterpart of H:

H̄ =

[
R{H} −I{H}
I{H} R{H}

]
=

[
H̄I

H̄Q

]
∈ R2K×2N (4.5)
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Figure 4.1: Block Diagram of Distributed Multiuser Transmission.

Hereinafter, we will use the real representation of the system, since it is easier to deal with
for optimization purposes.

The proposed multiuser precoding scheme assumes perfect CSI at the transmitter side
(CU), which can be acquired using the reverse-link estimation in Time-Division Duplex (TDD)
or a feedback channel in Frequency-Division Duplex (FDD). Moreover, at the receiver, we
assume that before hard decision the received signal is �rst scaled by a factor, β−1, common
to all receivers. This scaling parameter can be easily estimated, by the receivers, without the
need to estimate the full CSI as already done, for example, for the linear ZF scheme. The
received signals are scaled, by β−1, so that the average power of the received QAM signals
have amplitudes close to the ones of the odd complex integer grid G.

4.3 Linear Precoding

In this section, we brie�y discuss the ZF and MMSE schemes, under per-RAU power
constraint. In this case, the MUltiuser Transmission (MUT) block, as shown in Figure 4.1,
performs a linear operation, i.e., the input and output symbols are related by a matrix opera-
tion (x = Pd). As outlined in the introduction, for the nonlinear scheme, here, for the linear
schemes, we also consider two phases: in the �rst phase a Total Power Constraint (TPC) is
imposed, instead of a per-RAU power constraint, and in the second phase the obtained signal
is multiplied by a factor, to satisfy the individual per-RAU power constraints.

4.3.1 Zero-Forcing

This scheme designs the transmitter signals in such a way that the inter-user interference,
at each receiver, is zero. Under TPC, mathematically this corresponds to design the precoding
matrix such that

HP = αI (4.6)

E[dHPHPd] = tr{PPH} ≤ PT (4.7)

where α is a positive constant, PT represents the power transmitted by all RAUs, and the
second condition enforces the power constraint at the transmitter. By solving

PZF = argmax
P

α2 s.t. (4.6) and (4.7) (4.8)
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one obtains the ZF precoder matrix, that is given by a scaled Moore-Penrose pseudo-inverse
of the channel matrix [12].

PZF = ψ.HH(HHH)−1 (4.9)

ψ−1 =
√
P−1
T tr{(HHH)−1} (4.10)

However, such a solution (x = Pd) must be scaled by η = PtR/max{xH1 x1, . . . ,x
H
RxR},

where xr are the rows of x corresponding to RAU r, so that the power constraints at each
RAU are respected. After this second scaling, the constant β = ηψ. We call this method
per-RAU Linear ZF.

4.3.2 Minimum Mean Square Error Precoding

Another commonly used criterion is the mean squared distance between received and
transmitted symbols, which under TPC can be mathematically formulated as

PMMSE = argmin
P
E
{
‖ d− d̂ ‖22

}
s.t. (4.7) (4.11)

The solution to problem (4.11), the transmit MMSE precoding matrix, is given by [12]

PMMSE = ψ.H(HHH + σ2I)−1 (4.12)

ψ−1 =
√
P−1
T tr{(HHH + σ2I)−2HHH} (4.13)

To respect the individual per-RAU power constraints, the obtained transmit signal (x = Pd)
must be scaled by η = PtR/max{xH1 x1, . . . ,x

H
RxR}. After this second scaling, the constant

β = ηψ. We call this method per-RAU Linear MMSE.

4.4 Minimum BER Precoder

Di�erently from the MMSE criterion in which the mean squared distance between received
and transmitted symbols is minimized, for the MBMUT precoder the BER is minimized di-
rectly. However, to obtain a solution, for the whole SNR regime, we should resort to numerical
optimization techniques as explained in [23]. In that paper, the authors use SQP to solve the
minimum BER problem, since the merit function is nonlinear and the transmitter power con-
straint is quadratic. Here we show how, (to alleviate the inherent complexity), to approximate
this optimization problem by a simple quadratic program and present numerical results illus-
trating the tightness of the approximation both for co-located and distributed antenna systems.

4.4.1 Problem Formulation

Let the BER, at receiver k, conditioned on a channel realization H̄ and on a transmitted

symbol d̄ be Pek(x̄, d̄, β, H̄, σ), the average BER be Pe(x̄, d̄, β, H̄, σ) =
∑K
k=1 Pek (x̄,d̄,β,H̄,σ)

K , the
goal is to �nd the mapping d̄ (∈ R2K×1)→ x̄ (∈ R2N×1) that minimizes the average BER, i.e:

ˆ̄x =argmin
x̄,β

Pe(x̄, d̄, β, H̄, σ)

s.t x̄Hr x̄r ≤ PtR , r = {1, . . . , R}
β ≥ 0

(4.14)
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It should be noted that in equation (4.14) we also optimize the scaling parameter β and that
the transmitted signal power is constrained to PtR at each RAU.

We consider the Gray coding to map the bits to symbols, since Gray coded bit mapping
is the most common type of mapping used for quadrature amplitude modulations. For con-
stellations of size M , where M is a perfect square, it can be shown that with a Gray mapping
the region Rki , where for v ∈ Rki implies that the probability of the ith bit is decided as an i
(i = {0, 1}), is given by the union of up to three di�erent types of regions. Type 1 is a vertical
(horizontal) strip left (top) limited, type 2 is a vertical (horizontal) strip right (bottom) lim-
ited and type 3 is a left and right (top and bottom) limited strip, as illustrated in Figure 4.2.
A more detailed description can be found in B.1. The corresponding probability of error for

(a) Type 1. (b) Type 2. (c) Type 3.

Figure 4.2: Gray coding decision regions.

each of the three decision regions, shown in Figure 4.2, are respectively

P (v > c) = Q

(
−v + c

σ

)
P (v < −c) = Q

(
v + c

σ

)
P (−cl < v < cr) = Q

(
−v − cl

σ

)
+Q

(
v − cr
σ

)
− 1

(4.15)

where for our case v = h̄kx̄, k ∈ {1, . . . , 2K}, ci = {βb|b ∈ {±2, . . . ,±
√
M}}. By ci we

mean both c, cl and cr. Indeed v is the user k received signal, without noise, and ci a scaled
version of one of the corresponding boundaries of the transmitted symbol, of the same user.
From equation (4.15), one can see that the average system BER will be a scaled sum of Q(.)
functions minus a constant. However, to simplify the subsequent analysis and to make it more
understandable we have opted by a matrix/vector notation to represent the average BER. For
that we have concatenated all v variables, from equation (4.15), and corresponding signs into a
vector, which can be represented by the matrix multiplication Ā(d̄)x̄, where the matrix Ā(d̄)
make explicit the sign of the v variable in the argument of the Q(.) functions is not always
the same and that it depends on the transmitted signal d̄. Matrix Ā(d̄) is de�ned explicitly,
in the following section, for 4-QAM and 16-QAM.

Indeed Ā(d̄)x̄ has close similarities to H̄x̄. The main di�erences are in the signs of the
rows. The same can be done for the variable ci, which can be represented by βb̄. With all
that considerations, the average BER can be mathematically expressed by

Pe(x̄, Ā(d̄), β, σ) = γ1Hq

(
Ā(d̄)x̄− βb̄

σ

)
− ζ(d̄) (4.16)
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where q(s) = [. . . , Q(si), . . .]
T , with Q(s) = 1/

√
2π
∫∞
s e−x

2/2dx and γ, and ζ are positive
constants. From equation (4.15) and (4.16) we can see that the term Ā(d̄)x̄−βb̄ is the distance
between the received signal, without noise, to the bit decision boundaries. A detailed de�nition
of Ā(d̄) is given in the next sections for 4-QAM and 16-QAM modulations, respectively. For
notation simplicity, in the following, we drop the argument d̄ in Ā(d̄).

As already expressed, our �nal objective is to �nd the transmit vector ˆ̄x that minimizes
the probability of error (4.16). Formally,

ˆ̄x =argmin
x̄,β

1Hq

(
Āx̄− βb̄

σ

)
s.t x̄Hr x̄r ≤ PtR , r = {1, . . . , R}

β ≥ 0

(4.17)

To solve (4.17) we propose a two-phase algorithm: in the �rst phase, we solve the associated
co-located system optimization problem, by considering that all RAUs are co-located and
share a common power constraint PT = RPtR , i.e. the individual RAUs power constraints
are replaced by a global TPC (x̄H x̄ ≤ PT ); the second phase consists in scaling the obtained
transmit signal by a factor η = PtR/min{x̄H1 x̄1, . . . , x̄

H
R x̄R}, so that the individual per-RAU

power constraints are then respected.

4.4.2 Minimum BER Precoder for a Co-located System

In this section, we explain how to solve the �rst phase of the proposed algorithm e�ciently.
Namely, we show how to minimize approximately the BER, for the downlink of a multiuser
MIMO channel with N transmit antennas and K single antenna users. It is shown that in the
high signal to noise regime the problem simpli�es from a constrained quadratic nonlinear op-
timization to a single quadratic program, allowing to reduce the complexity. Next, we present
the proposed algorithm as an extension to the ZF algorithm and explain their similarities. Fi-
nally, the performance of the described algorithm is evaluated for di�erent co-located system
scenarios and its complexity analyzed.

In the �rst phase of the proposed two-phase algorithm we have at our hands a minimum
BER optimization problem, with a global TPC. Such a problem can be mathematically de-
scribed by

ˆ̄x =argmin
x̄,β

Pe(x̄, d̄, β, H̄, σ)

s.t x̄H x̄ ≤ PT , β ≥ 0
(4.18)

The solution of (4.18) in general is quite di�cult, since the merit function is nonlinear and
non-convex. To simplify it we focus on the high SNR regime, and show that (4.18) can then
be solved by a quadratic program, which is much easier to deal with.

In the high SNR regime a sum of Q-functions can be approximated by the maximum ele-
ment of the sum, due to the quadratic exponential decaying behaviour of Q(x) for high values
of x. Therefore, the problem can be simpli�ed to a minimax optimization, seeking to maxi-
mize the minimum distance between the received signal, without noise, and the corresponding
decision boundaries

ˆ̄x = argmin
x̄,β

max{βb̄− Āx̄} s.t x̄H x̄ ≤ PT , β ≥ 0 (4.19)
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The problem of (4.19) requires less complexity than the one given by (4.18); however, it is
still not easy to deal, due to the non smoothness of the merit function. By using a result from
[27] we can reformulate it into one with a smooth merit function

ˆ̄x = arg min
z,x̄,β

z s.t x̄H x̄ ≤ PT , β ≥ 0, z1 ≥ βb̄− Āx̄ (4.20)

The problem of (4.20) is convex and all inequality constraints are a�ne, thus by Slater's
condition [28], strong duality holds and consequently, its dual can be used to solve the primal
problem. The dual of (4.20) as shown in B.2, is given by

λ̄λλ = argmin
γ,λ̄λλ

√
λ̄λλ
H

ĀĀHλ̄λλ s.t 1Hλ̄λλ = 1, b̄Hλ̄λλ = γ, λ̄λλ ≥ 0, γ ≥ 0 (4.21)

where λ̄λλ is a column vector of the Lagrange multipliers in the optimization of (4.20) [29] and

is related to the transmitted vector x by x̄ =
√
PT ĀHλ̄λλ/

√
λ̄λλ
H

ĀĀHλ̄λλ. As the sqrt(.) function
is monotonic, (4.21) is equivalent to

λ̂λλ = argmin
γ,λ̄λλ

1

2
λ̄λλ
H

ĀĀHλλλ s.t 1Hλ̄λλ = 1, b̄Hλ̄λλ = γ, λ̄λλ ≥ 0, γ ≥ 0 (4.22)

The problem of (4.22) �ts under the quadratic programming framework, and since ĀĀ
H

is positive semide�nite the merit function is convex and admits a unique global feasible solu-
tion, for which the Karush-Kuhn-Tucker (KKT) conditions, from the problem of (4.21), are
necessary and su�cient

1Hλ̄λλ = 1 (4.23)

b̄Hλ̄λλ = γ (4.24)

ĀĀ
H
λ̄λλ√

λ̄λλ
H

ĀĀ
H
λ̄λλ
− βb̄ + z1 = ψ̄ψψ (4.25)

λ̄λλ ≥ 0, ψ̄ψψ ≥ 0, λ̄λλ ◦ ψ̄ψψ = 0 (4.26)

γ ≥ 0, β ≥ 0, γβ = 0 (4.27)

where ψψψ is a vector of the Lagrange multipliers in the optimization of (4.21). From (4.25) after

multiplying both sides of the equation by λ̄λλ
H
and using equalities (4.23-4.24) and (4.26-4.27)

we get that z = −
√
λ̄λλ
H

ĀĀ
H
λ̄λλ.

In the following sections, we show how to solve the KKT conditions for a general M-QAM
constellation.

4-QAM

We start with the 4-QAM modulation, which is a constant amplitude modulation and then
the algorithm is extended to non constant amplitude modulations. For 4-QAM there is no
need for a scaling of the received signal since all the constellation boundaries are equal to zero.
Consequently, the constraints γ ≥ 0 and b̄Hλ̄λλ = γ do not exist and the corresponding KKT
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conditions can be simpli�ed to1

1Hλ̄λλ = 1 (4.28)

ĀĀ
H
λ̄λλ+ z1 = ψ̄ψψ (4.29)

λ̄λλ ≥ 0, ψ̄ψψ ≥ 0, λ̄λλ ◦ ψ̄ψψ = 0 (4.30)

where Ā = H̄ ◦ (1H2N ⊗ d̄), d̄ ∈ {−1, 1}(2K×1) is a column vector with the data symbols, and
the symbol −1 represents the bit 0. A closer look to the previous system of equations shows
that its solution is a scaled version of the solution of

ĀĀ
H
λ̄λλ = ψ̄ψψ + 1 (4.31)

λ̄λλ ≥ 0, ψ̄ψψ ≥ 0, λ̄λλ ◦ ψ̄ψψ = 0 (4.32)

i.e. λ̄λλ = zλ̄λλ, ψ̄ψψ = zψ̄ψψ and the value of z is obtained by replacing zλ̄λλ in (4.28). Inspection of

(4.31-4.32) shows that by setting ψ̄ψψ = 0 one gets the standard ZF scheme, which is equivalent

to remove the constraint λ̄λλ ≥ 0 from problem (4.21).
If the elements of λ̄λλ that are equal to zero were known a priori, then the solution of system

(4.31) would be easy to obtain. To see that, let us assume that the last m elements of λ̄λλ were
known a priori to be equal to zero, i.e.

(λ̄λλ)(2K,1) = [(λ̄λλ1)H(2K−m,1), 0Hm]H (4.33)

and that the matrix ĀĀ
H
is split as

(ĀĀ
H

)(2K,2K) =

[
(ā11)(2K−m,2K−m) (ā12)(2K−m,m)

(ā12)H(m,2K−m) (ā22)(m,m)

]
(4.34)

The assumption that the last m elements of λ̄λλ are zero is not restrictive. Zeros at arbitrary
m positions can be moved to the last part by applying an appropriate permutation matrix.
With such representation the solution of (4.31) is just the ZF of the lower dimensional system
represented by ā11, and λ̄λλ1 = ā−1

11 1. Hence the solution of the system of equations (4.31, 4.32)

implies the inversion of just part of the correlation matrix ĀĀ
H
. This sub-matrix is better

conditioned than the corresponding full matrix ĀĀ
H

[30], since its maximum (minimum)

eigenvalue is smaller (bigger) than the one of matrix ĀĀ
H
.

Let us consider the input to q(.) function2 of equation(4.17)

Āx̄ =
ĀĀ

H
λ̄λλ√

λ̄λλ
H

ĀĀ
H
λ̄λλ

=
ĀĀ

H
λ̄λλ√

λ̄λλ
H

ĀĀ
H
λ̄λλ

≥ 1√
1H ā−1

11 1
(4.35)

where the �rst and second equality come from the de�nition of vector x̄ and λ̄λλ, respectively,
and the third step, the inequality, from equations (4.31, 4.32). Therefore, the inputs to the

Q(.) function, for the proposed scheme, are all higher than 1/
√

1H ā−1
11 1 and for the ZF

scheme are all equal to 1/

√
1H(ĀĀ

H
)−11. By using blockwise inversion, we can show that

1The positive constant
√
λ̄λλ
H

ĀĀ
H
λ̄λλ has been integrated into the variables z and ψ̄ψψ.

2For QPSK b̄ = 0.
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1H(ĀĀ
H

)−11 = 1H ā−1
11 1 + (āH12ā

−1
11 1− 1)HĒ(āH12ā

−1
11 1− 1), where Ē = (ā22 − āH12ā

−1
11 ā12)−1.

Since matrix Ē is positive de�nite (āH12ā
−1
11 1− 1)HĒ(āH12ā

−1
11 1− 1) ≥ 0 thus 1H(ĀĀ

H
)−11 ≥

1H ā−1
11 1. Consequently, 1/

√
1H(ĀĀ

H
)−11 ≤ 1/

√
1H ā−1

11 1, i.e. the performance of the ZF
scheme is always worse than the one of the proposed scheme.

Going back to the resolution of the KKT conditions, (4.31-4.32) we can see, by looking
more carefully, that they �t under the framework of the nonnegative least Squares problem
[31] and also of the linear complementarity problems [32] and that they are equivalent to the
following optimization problem

ˆ̄λλλ = argmin
λ̄λλ≥0

1

2
λ̄λλ
H

ĀĀ
H
λ̄λλ− 1Hλ̄λλ (4.36)

To solve (4.36) the Projected Gauss-Seidel (PGS) algorithm [31] can be used. The PGS
algorithm, to solve (4.36), is in what follows.

Algorithm: Projected Gauss-Seidel (PGS)

1. Initialization: Set λ̄λλ
0

= 0 and ψ̄ψψ
0

= −1

2. Repeat until stop condition is satis�ed:

For k = 1 to K

λ̄
t+1
k = max

(
0, λ̄

t
k −

ψ̄
t

k

M̄k,k

)
ψ̄ψψ
t+1

= ψ̄ψψ
t
+
(
λ̄
t+1
k − λ̄tk

)
M̄k

where t is the time index, M̄ = ĀĀ
H

, and the stop condition used in all simulations was

F (λ̄λλ
t−1

)− F (λ̄λλ
t
) < δ, for F (λ̄λλ) = 1

2λ̄λλ
H

ĀĀ
H
λ̄λλ− 1Hλ̄λλ and δ a small positive constant.

The PGS algorithm coincides with the well known Gauss-Seidel algorithm, for solving
linear system of equations, if the non-negativity constraints are removed. The main di�erence
between the two methods is that the new one, has a projection step of the resulting λi value,
at each iteration, in the non-negative orthant. Consequently, this method is commonly called
Projected Gauss-Seidel algorithm.

Higher order modulations

For non constant amplitude modulations the received signal should be scaled by β−1 to
compensate the e�ect of the channel as referred in section 4.2. Simulations have shown that

the optimum value of β is always very close to
√
λ̄λλ
H

ĀĀ
H
λ̄λλ. This can be easily understood

as the
√
λ̄λλ
H

ĀĀ
H
λ̄λλ corresponds to scale the received signals to have the average power of a

QAM signal with amplitudes {±1,±3, . . . ,±(
√
M − 1)}. To see that, let us consider equation

(4.25). As the scaling factor β−1 is positive it preserves the phase of the received signals.

Furthermore, the elements of ĀĀ
H
λ̄λλ/
√
λ̄λλ
H

ĀĀ
H
λ̄λλ = Āx̄ have the same amplitude as the

ones of v (see Figure 4.1). Let us consider one component and the zero forced case (ψ̄i = 0).
Then from (4.25) we get (β−1Āx̄)i = b̄−β−1z1. As we want (β−1Āx̄)i = b̄+1, since b̄+1 ∈ Ḡ,
then β = −z, which from previous considerations leads to β =

√
λ̄λλ
H

ĀĀ
H
λ̄λλ. Based on this,

we simpli�ed the algorithm by assigning to β the value
√
λ̄λλ
H

ĀĀ
H
λ̄λλ. With this assignment,

−z = β, the general KKT conditions become similar to the 4-QAM KKT conditions. The
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assignment of a value to β implies that equations (4.24) and (4.27) are no longer needed. We
should emphasize that a scaling of z and β by the same factor will not a�ect the �nal solution
x̄, as mentioned in the previous section and consequently, the value of β and −z can be scaled

to 1. To do this scaling the constant
√
λ̄λλ
H

ĀĀ
H
λ̄λλ was already taken into account. With all

previous assignments in mind one can formulate, like for the 4-QAM KKT conditions, a new

system of equations to obtain the optimized transmit signal x̄ =
√
PT ĀHλ̄λλ/

√
λ̄λλ
H

ĀĀHλ̄λλ.

ĀĀ
H
λ̄λλ = ψ̄ψψ + b̄ + 1 (4.37)

λ̄λλ ≥ 0, ψ̄ψψ ≥ 0, λ̄λλ ◦ ψ̄ψψ = 0 (4.38)

which can be solved with the PGS algorithm. Now ψ̄ψψ
0

= −b̄− 1, in the initialization
step of the PGS algorithm. Note that for the speci�c case of 16-QAM Ā = [H̄r ◦ (1K ⊗
d̄1);−H̄r ◦ (1K⊗ d̄2); H̄r ◦ (1K⊗ d̄2); H̄i ◦ (1K⊗ d̄3);−H̄i ◦ (1K⊗ d̄4); H̄i ◦ (1K⊗ d̄4)] and b̄ =
[0HK , 2d̄H2 , 2d̄H2 ,0

H
K , 2d̄H4 , 2d̄H4 ]H , where H̄r = R{H}, H̄i = I{H} and d̄i is the bipolar repre-

sentation, {−1, 1}, of bit i. However, since we are solving a minimax problem, only the rows of

ĀĀ
H
and b̄ corresponding to the closest boundaries, of the associated symbol, are needed as

an input to the algorithm. We call this method with the η normalization per-RAU PGS ZF.

Due to the close similarities between equation (4.37) and the ZF scheme, as previously
explained, we propose to regularize it, to obtain better performance, by using the Tikhonov
method

(ĀĀ
H

+ 2σ2I)λ̄λλ = ψ̄ψψ + b̄ + 1 (4.39)

λ̄λλ ≥ 0, ψ̄ψψ ≥ 0, λ̄λλ ◦ ψ̄ψψ = 0 (4.40)

The regularized method can still be solved by the PGS algorithm, by using matrix ĀĀ
H

+2σ2I,

instead of ĀĀ
H
. The constant that is multiplied by the noise variance (2), comes from the

fact that we are using real vectors and matrices. We call this method with the η normalization
per-RAU PGS MMSE, due to its similarities to the MMSE method.

4.4.3 Equivalent Formulation

In this section, we show how to obtain the previously proposed scheme using a di�erent
formulation. This new formulation allows to get a better understanding of how it works and
to propose a new method to approximate its performance.

Let us consider 4-QAM as the modulation method since it is straightforward to extend the
proposed method to higher order QAM cases. Assume that now our objective is to minimize
the transmit power, subject to a set of convex constraints, similarly to [33], restricting the
received signal to a given region. By limiting this set of constraints to be a convex poly-
tope, which can be described by a set of linear inequalities, the previous problem can be
mathematically expressed by

ˆ̄x = min
x̄

x̄H x̄ s.t. B̄x̄ ≥ w̄ (4.41)

where B̄ is a M × 2N matrix describing the convex polytope, x̄ (the transmitted signal) is a
2N × 1 column vector and w̄ a M × 1 column vector of constants. The KKT conditions of
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this problem are

B̄B̄
H
λ̄λλ− w̄ ≥ 0 (4.42)

λ̄λλ ≥ 0, λ̄λλ ◦ (B̄B̄
H
λ̄λλ− w̄) = 0 (4.43)

where λ̄λλ is a vector of the Lagrange multipliers in the optimization of (4.41) and is related to
the transmit signal x̄ by x̄ = B̄Hλ̄λλ. The previous system of KKT conditions can be reduced to

B̄B̄
H
λ̄λλ = ψ̄ψψ + w̄ (4.44)

λ̄λλ ≥ 0, ψ̄ψψ ≥ 0, λ̄λλ ◦ ψ̄ψψ = 0 (4.45)

where we have introduced the slack variable ψ̄ψψ. If w̄ = 1 and B̄ = Ā the previous equations
become equal to the ones presented in 4.31 and 4.32. Hence, the proposed approximate mini-
mum BER precoder can be equivalently represented by a power minimization problem, where
the received signal is constrained to be within a given region, representing the transmitted
symbol, contrary to the ZF scheme where it is constrained to be exactly at the same location
of the transmitted symbol. The replacement of a point by a region allows much more free-
dom in the transmit signal optimization process, since any point in that region has the same
meaning for the receiver. Therefore, these regions de�ne an extended constellation. As an
example, in Figure 4.3, we show the 4-QAM extended constellation. As seen from that �gure
the minimum distance between each region is still 2, like in the original constellation.

Figure 4.3: Extended 4-QAM constellation.

Approximate algorithm

To have a better insight of the proposed power minimization (minimum BER) scheme we
show next how to obtain an approximate solution for it.

First, let us use the Lagrange multiplier λ̄λλ and the relation x̄ = B̄HP̄Hλ̄λλ to express
the transmitted signal. P̄ is a given permutation matrix, that is multiplied by the channel
matrix B̄ = Ā, to relabel (order) the users. Furthermore, let us consider the QR matrix
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decomposition of matrix P̄B̄ = R̄Q̄. With that assumptions, the optimization problem 4.41
can be reformulated as

ˆ̄λλλ = min
λ̄λλ
λ̄λλ
H

R̄R̄Hλ̄λλ s.t. R̄R̄
H
λ̄λλ ≥ 1 (4.46)

Moreover, if we de�ne q̄ = R̄Hλ̄λλ it can be simpli�ed to

ˆ̄q = min
q̄

q̄H q̄ s.t. R̄q̄ ≥ 1 (4.47)

If an appropriate permutation matrix (P̄) is chosen, then the positions at which λ̄λλ is equal
to zero are the same as the ones of variable q̄. This happens for a permutation matrix that
forces to zero the last entries of the λ̄λλ vector, since q̄ = R̄Hλ̄λλ and R̄H = [R̄H

11 R̄H
12; 0 R̄H

22].
To obtain an algorithm to approximate the solution of the proposed optimization problem

we will �rst obtain an approximation for the location of the zeros in the λ̄λλ vector and after,
with this information, the triangular inequality system, R̄q̄ ≥ 1 is solved, by minimizing the
transmit power.

As shown in [34] the PGS algorithm does a good job to �nd an approximate location
for the zeros of the λ̄λλ vector, with a quite small number of iterations. Hence, in the �rst
step, we propose to run the PGS algorithm for a small number of iterations. This provides
an approximate location of the zeros of the λ̄λλ vector. Next the permutation matrix can be
formed and the corresponding QR decomposition P̄B̄ = R̄Q̄, obtained. Finally, the transmit
power can be minimized by solving the triangular inequality system R̄q̄ ≥ 1 by forward
substitution. It must be stressed that at each forward substitution step the interference value
can be calculated. If the inter-user interference is big enough, the corresponding inequality
can be respected without any expense of more transmit power, i.e. the corresponding q̄ entry
can be set to 0. Otherwise the inequality must be converted into an equality and solved.

In Figure 4.4 we present the results for the approximate algorithm for a given number
of iterations of the PGS algorithm, both for a MIMO 4 × 4 and 8 × 8. In this �gure, the
approximate power minimization algorithm is called iPGS. For example, the label �iPGS 5�,
means that �ve iterations of the PGS algorithm are done so that and approximate ordering of
the users is obtained. As can be seen as the number of iterations increases the performance of
the approximate algorithm gets closer to the ones of PGS, as expected. If no user permutation
is considered, i.e. P̄ = I, the gains relatively to ZF scheme are minimal. Nevertheless, just
for 5 iterations we get around 5 dB of gains relatively to ZF. The performance of the PGS
algorithm will be analysed in more detail in section 4.4.5.

4.4.4 Extension to Multicarrier Systems

In this section, we extend the previous algorithm to the case of a multicarrier distributed
antenna system. Namely, we show that the previous scheme, when applied jointly to all
subcarriers, is equivalent to the individual application, of the same scheme, to each subcarrier,
if a �nal normalization factor is applied to the signal, so that the global power constraint is
respected.

Let us consider the same system model, as in section 4.2, but now extended to Nc sub-
carriers, i.e. the sum of powers, in each RAU, is now constrained over the Nc subcarriers.
Namely, this implies that the global received signal vector y can be expressed by

ȳ = H̄x̄ + n̄ (4.48)
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(a) N = K = 4 system.
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(b) N = K = 8 system.

Figure 4.4: Simulation results for 4-QAM and iPGS algorithm.

where H̄ = diag(H̄1, . . . , H̄l, . . . , H̄Nc), H̄l is the channel matrix at subcarrier l, ȳH =
[ȳH1 , . . . , ȳl, . . . , ȳNc ] and x̄H = [x̄H1 , . . . , x̄l, . . . , x̄Nc ].

Therefore, with this model one can solve the minimum BER problem approximately by run-

ning the PGS algorithm over the corresponding ĀĀ
H
matrix or its regularized version. How-

ever, a carefull look to the system of equations representing the KKT conditions of this problem

ĀĀ
H
λ̄λλ = ψ̄ψψ + b̄ + 1 (4.49)

λ̄λλ ≥ 0, ψ̄ψψ ≥ 0, λ̄λλ ◦ ψ̄ψψ = 0 (4.50)

shows that it can be reduced to the solution of Nc systems of equations, one for each carrier
l, since the channel matrix is diagonal

ĀlĀ
H
l λ̄λλl = ψ̄ψψ

l
+ b̄l + 1 (4.51)

λ̄λλl ≥ 0, ψ̄ψψ
l
≥ 0, λ̄λλl ◦ ψ̄ψψl = 0 (4.52)

where each such system can be associated to the output ȳl = H̄lx̄l + n̄l. The global transmit

signal vector is given by x̄ =
√
PT ĀHλ̄λλ/

√
λ̄λλ
H

ĀĀHλ̄λλ, as previously. Thus after solving the Nc

systems one should concatenate the resulting x̄l vectors and scale them accordingly, so that
the power constraint is respected. For this reason, there is a linear increase in complexity with
the number of subcarriers considered. In fact, if for each subcarrier the PGS MMSE is already
used for interference cancellation between users, the only additional processing needed is a
scaling of the signals obtained, by the independent processing.

Complexity of the PGS algorithm

In this section, we compare the complexity of the PGS ZF method with the one proposed in
[24] which we call Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and compare also the
complexity of the PGS MMSE to the ZF scheme. To compare these methods, we have resorted
to numerical simulations. Namely, we use as a complexity measure, the average running time
to solve a problem instance. For the PGS algorithms we have used as a stopping condition
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parameter δ = 10−2. For the BFGS algorithm the Wolfe conditions were set to c1 = 10−2 and
c2 = 0.9; see [24]. The solution of the MMSE precoder was used as a starting point for the
optimization of the BFGS algorithm. Two operation points have been chosen, 0 dB and 8 dB.
It should be noted that the performance of the PGS ZF and ZF schemes is independent of
the noise power, contrarily to the PGS MMSE and BFGS. To assess the performance of the
proposed schemes over the BFGS and ZF schemes an independent Rayleigh channel has been
considered with a base station with N ∈ {2, . . . , 12} transmit antennas, K = N users and the
4-QAM modulation has been chosen.

The average running time for the PGS ZF and BFGS schemes, has been measured over 104

trials and the one for the PGS MMSE and ZF schemes has been averaged over 106 runs. The
gains in the execution time, i.e. the ratio between the two average running times, are plotted
in Figure 4.5, for the two operation points. As can be seen from Figure 4.5(a), for 8 dB the

(a) Complexity comparison between PGS ZF and
BFGS schemes (timeBFGS/timePGSZF ).

(b) Complexity comparison between PGS MMSE and
ZF schemes (timePGSMMSE/timeZF ).

Figure 4.5: Complexity analysis for PGS algorithm.

PGS ZF algorithm can be from 60 (2× 2 MIMO) to 1000 (12× 12 MIMO) times faster than
the BFGS algorithm. For low values of SNR, the starting point of the BFGS is closer to the
optimum value and thus a smaller number of iterations is needed. Consequently, the average
running time decrease. However, we can also see a speedup of around 35 to 450 times, for 0 dB.

In Figure 4.5(b) we present the complexity results for the PGS MMSE and ZF schemes.
The complexity of the nonlinear scheme is about �ve times higher, an order of magnitude, than
the corresponding linear scheme, for the range considered, and the complexity measure seems
to decrease with the number of users/transmit antennas considered. The same happens for the
other two schemes, see Figure 4.5(a). This could be explained by the fact that for moderate to
higher values of K and N the number of degrees of freedom of the system increases. Therefore,
more alternatives to set the elements of λ̄λλ to zero, by the PGS algorithm, are available, reducing
in that way the dimensions of the matrix to be inverted.

4.4.5 Performance Assessment

In this section, we assess the performance of the proposed schemes by resorting to nu-
merical simulations. Namely, we start by analyzing the performance of these algorithms for
conventional co-located system scenarios to evaluate the tightness of the approximations made
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to the optimization problem at hand. Finally, the performance of these algorithms is analyzed
in the distributed context, taking into account both phases of the algorithm, either for the
single-carrier either for the multi-carrier cases.

Co-located Systems

For co-located systems we compare the PGS ZF algorithm with the optimum (MBMUT
precoder), discussed in [24], and also with the MMSE and ZF precoders. For the simula-
tions, a �at fading Rayleigh channel has been considered, without spatial correlation and with
independent channel realizations. The channel is assumed to be perfectly known at the trans-
mitter. All results presented in this section show the bit error rate over the ratio of average
transmitted energy per bit to the one-sided spectral noise power density N0. For the PGS ZF
algorithm, we have used a value of 10−2 for the stopping condition parameter δ.

(a) N = K = 4 system. (b) N = K = 8 system.

Figure 4.6: Simulation results for 4-QAM.

(a) N = K = 4 system. (b) N = K = 8 system.

Figure 4.7: Simulation results for 16-QAM.

In Figure 4.6, the performance of a system with K = N = 4 and K = N = 8, using
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4-QAM modulation, is analyzed. As can be seen from these two �gures the gain of the PGS
ZF approach increases with SNR and the number of transmit antennas/user's. At low SNR,
the performance of the PGS ZF and MMSE approaches is similar. However, in the high SNR
regime, the PGS ZF approach has a gain of around 5 and 10 dB for a target BER of 10−3,
for the 4 × 4 and 8 × 8 systems, respectively. The higher gains obtained with moderate to
high values of K and N can be explained by the fact that for those systems there are more
degrees of freedom. Therefore, more alternatives to set the elements of λ̄λλ to zero are available,
reducing in that way the dimensions of the matrix to be inverted. It is also clear, from these
two �gures, that the diversity order obtained both with the MBMUT and PGS ZF precoders
is higher than the one obtained with the MMSE and ZF precoders. This is related to the fact
that for the PGS case the precoder is using all the available decoding space at the decoder,
contrary to the ZF and MMSE precoders. Comparing the PGS ZF precoder to the optimum,
one can see a gap of 1.5 dB at BER 10−3, which decreases as the number of antennas increases.

In Figure 4.7 we present the results obtained for a system withK = N = 4 andK = N = 8,
using a 16-QAM constellation. For 16-QAM we also present the results obtained using a
quadratic programming solver. The performance of the quadratic solver is similar to the one
obtained using the PGS ZF algorithm (taking into account the assumption made for β, in
section 4.4.2). The behavior of the results obtained for 16-QAM is similar to the one observed
for 4-QAM. The improvement provided by the new algorithm relatively to ZF and MMSE
is somewhat reduced and the penalty comparatively to the optimum slightly higher (2dB at
BER 10−3).

Distributed Antenna System

In order to assess the performance of the proposed algorithms, for a DAS, we have con-
sidered a scenario with four RAUs (R = 4), each with two transmit antennas (Nr = 2), and
eight users (K = 8). The number of users per cell is considered to be two. The long-term
channel powers are assumed to be one for intracell links and are uniformly distributed on the
interval [0.2, 0.6] for the intercell links. The performance of the proposed scheme is compared
against the optimum, which we call per-RAU OPTIMUM, and also with the per-RAU Linear
ZF and MMSE schemes under a �at fading Rayleigh channel without spatial correlation and
with independent channel realizations. We present results also for the TPC regularized PGS
algorithm (TPC PGS MMSE), which can be used as a lower bound for the other schemes. To
obtain the per-RAU OPTIMUM we have used a SQP solver and the solution of the per-RAU
PGS MMSE was used as a starting point. All the results are presented in terms of the average
BER as a function of per-RAU SNR de�ned as SNR = 1/σ2.

In Figure 4.8(a) we present the results for QPSK modulation. As can be seen the gain
of the per-RAU PGS MMSE approach increases with SNR. At low SNR the performance of
the per-RAU PGS MMSE and per-RAU Linear MMSE approaches are equal, as can be seen
from Figure 4.8(a) and 4.8(b). However, in the high SNR regime, the PGS approach has a
gain of around 15 dB and 10 dB, at a target BER of 10−3 over the per-RAU Linear ZF and
MMSE approaches, respectively. The gap to the TPC PGS MMSE is about 3 dB and to the
per-RAU OPTIMUM is about 1 dB. It is also clear, from these two �gures, that the diversity
order obtained by the PGS precoders is higher than the one obtained with the Linear ZF and
MMSE precoders.

In Fig. 4.8(b) we present the results, for a 16-QAM constellation. The value used for β was
η. The behavior of the results obtained for 16-QAM is similar to the one observed for QPSK.
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(a) QPSK and R = 4, Nr = 2,K = 8. (b) 16-QAM and R = 4, Nr = 2,K = 8.

Figure 4.8: Performance evaluation of the proposed scheme for a DAS.

The improvement provided by the new algorithm in comparison to per-RAU Linear ZF (8
dB) and MMSE is somewhat reduced and the penalty relatively to the centralized algorithm
(TPC PGS MMSE) is 3 dB and to the per-RAU OPTIMUM 1 dB.

As one can see from �gures 4.6(a) and 4.6(b) the diversity order achieved for QPSK
is higher than the one obtained for 16-QAM. This occurs, since the 16-QAM constellations
decision regions are more constrained than the ones of the QSPK. By this we mean that for 16-
QAM, the interior constellation points decoding regions are smaller than the ones of the QPSK.

Finally, from the results presented, one can see that the regularized version of the PGS
method provides improvements both in the low and high SNR regime. It should be also
emphasized that for low SNR values the regularized PGS method is faster than the PGS

ZF counterpart since in this regime the inverted matrix (ĀĀ
H

+ 2σ2I) is mostly a diagonal
matrix.

OFDM Distributed Antenna System

In order to evaluate the proposed multicell multiuser precoding algorithm, we consider a
typical pedestrian scenario based on LTE speci�cations [35]. We consider four RAUs, R = 4,
which are equipped with two antennas, Nr = 2, and eight single antenna users, K = 8.
The main parameters used in the simulations are: FFT size of 1024; number of available
subcarriers (Nc) set to 16, sampling frequency set to 15.36 MHz; useful symbol duration is
66.6µs, cyclic pre�x duration is 5.21µs; overall OFDM symbol duration is 71.86µs; sub-carrier
separation is 15 kHz, and modulation is 4-QAM and 16-QAM. We used the ITU pedestrian
channel model B, with the modi�ed tap delays according to the sampling frequency de�ned on
LTE standard. Concerning the MISO model, we assume that the distance between antenna
elements of each RAU is far apart to assume uncorrelated antenna channels. The number of
users per cell is two and the long-term channel powers are assumed to be 1 for the intracell
links and are uniformly distributed on the interval [0.2, 0.6] for the intercell links. All the
results are presented in terms of the average BER as a function of per-RAU SNR de�ned as
SNR = 1/(Ncσ

2).

In Figure 4.9(a) and 4.9(a) we show the results for QPSK and 16-QAM, respectively. In
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(a) QPSK and R = 4, Nr = 2,K = 8. (b) 16-QAM and R = 4, Nr = 2,K = 8.

Figure 4.9: Performance evaluation of the proposed scheme for a OFDM DAS.

order to assess the bene�ts of the joint processing of the subcarriers we also plot in these
�gures the results obtained in the last section for one subcarrier, for reference purposes. For
QPSK and for a target BER of 10−3 we got a gain of around 20 dB from using the per-RAU
PGS MMSE algorithm over per-RAU Linear ZF. Furthermore we get around 5 dB of gain from
the joint processing of the 16 subcarriers at the same target BER. As can be observed from
these �gures this gain comes from the additional diversity order obtained by the algorithm,
when the subcarriers are jointly processed. Equally important is the fact that unlike the PGS
MMSE scheme the ZF algorithm performance gets worse as the number of carriers increases.
Additionally, this gain seems to be equal both for QPSK and 16-QAM as well as the gap to the
lower bound (TPC PGS MMSE), around 1 dB, for both. On the other hand, for 16-QAM, the
gap from per-RAU PGS MMSE to the per-RAU Linear ZF scheme, decreases and is around
14 dB, for a target BER of 10−3.

4.5 Conclusion

In this chapter, we proposed and analyzed an algorithm for the minimization of the av-
erage BER, of the downlink of a multiuser DAS. The algorithm has two phases; the �rst
phase involves the solution of a minimum BER problem, for the downlink of a conventional
co-located multiuser MIMO channel. Such a problem has been tackled by considering the
high SNR regime. By taking into account the properties of the BER function, in that regime,
it is possible to simplify, this minimization problem, from a quadratic nonlinear optimization
to a simple quadratic program. This results in a signi�cant complexity reduction. On the
other hand, such a formulation has allowed to draw connections between the standard ZF
scheme and the optimum scheme, due to the close connections of the proposed scheme to ZF.
For co-located systems, the algorithm has been evaluated numerically and shown to provide
signi�cant gains relatively to the conventional ZF or MMSE approaches and to be close to
the optimum for moderate to high SNRs. On the other hand, the two phases algorithm has
been evaluated numerically for DAS scenarios and shown to provide signi�cant gains over the
linear ZF and MMSE approaches and to be also close to the optimum. Additionally, for the
multicarrier case, there was 1 dB gap from the corresponding lower bound (TPC problem),
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and the diversity order achieved increased substantially. All this accomplished with a linear
increase in complexity. Therefore, the algorithm is well suited for practical implementations
as it combines close to optimum performance with a reduced complexity.
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Chapter 5

Binary Dirty Paper Coding

This chapter focus on the design of a practical binary dirty paper coding scheme. In the
design of such a precoder the lossy source coding subproblem is �rst considered. This leads to the
proposal of a new algorithm for binary quantization over low density generator matrix codes.
The proposed algorithm, is a modi�ed version of belief propagation, used in the channel coding
framework, and has linear complexity in the code block length. We also provide a common
framework under which the proposed algorithm and some previously proposed algorithms �t.
Using the previous developed framework a practical DPC scheme is proposed. It uses a low
density generator matrix code concatenated with a high rate low density parity check code. In
contrast to the superposition coding framework, where high-order alphabet codes are used, we
propose to implement binary DPC using only binary codes. Through application of approximate
density evolution and linear programming we optimize the degree distribution of the proposed
code. Simulation results show that both the lossy and dirty paper coding scheme achieve close
to state-of-the-art performance with reduced complexity.

5.1 Introduction

Dirty Paper Coding is a non-linear coding scheme for canceling non-causally known inter-
ference at the transmitter. This name has been proposed in a remarkable paper by Costa [1],
in 1983, where it has been shown that the capacity of a Gaussian channel, when the trans-
mitter knowns non-causally the interference, is the same of the corresponding interference free
channel. Recently, driven by these results, in [2] the authors have shown that DPC is capacity
achieving on the Gaussian broadcast channel. But the applications of DPC do not end here.
DPC has found applications in information hiding, data embedding, watermarking [3�5] and
more recently in cooperative communications [6]. The fundamental idea behind DPC is bin-
ning. Binning corresponds to the division of the set of codewords into groups (�bins�) of code-
words, each with the same label. Binning is not only an important concept for DPC. It is also
fundamental in multi-user information theory, namely, for example, in cooperative communi-
cations. In [7] and [8], Peyman and Wei Yu, have proposed a bilayer LDPC code construction
for e�cient implementation of binning at the relay channel. The main idea behind their scheme
is to design a LDPC code that is capable of working at two di�erent rates: the one at the
destination and the one at the relay. In this chapter, we follow a similar approach to attain the
capacity of the binary dirty paper channel. However, instead of designing a dual rate LDPC
code for channel coding, we now design an LDGM code, also able to work at two di�erent rates,
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but where the global code works at the channel coding level and the corresponding sub-code at
the lossy source coding level. LDGM codes have emerged as a subset of LDPC codes, but with
lower encoding complexity. However, LDGM codes are asymptotically bad as they exhibit an
error �oor that is independent of the block size considered. Nonetheless, using a proper con-
catenation of two codes, one can mitigate the poor distance properties, while preserving the
low complexity [9]. In [10] the authors have shown that LDGM codes, as duals of LDPC codes,
can saturate the rate-distortion bound of the binary erasure quantization (BEQ) problem, the
dual of the BEC problem, with the help of a modi�ed BP algorithm. Since this pioneering
work, LDGM codes have been extensively used for lossy source coding. Namely, in [11] the au-
thors propose a survey propagation (SP) based iterative quantization algorithm and in [12] the
authors propose a BP based iterative quantization algorithm, to compress a binary symmetric
source. However, both use a decimation process to help the respective algorithm to converge.
Thus, the overall computational complexity isO(N2), [13], where N is the codeword length. To
overcome the complexity bottleneck, in [13], the authors propose a linear complexity algorithm
to do lossy source coding with the help of LDPC codes over GF(q). However, the use of higher-
order �elds substantially increases the computational complexity, in comparison to the binary
�eld. In contrast, we propose to do lossy source coding with a binary LDGM code, and with
a modi�ed BP algorithm, with computational complexity O(N), since no decimation is used.
As a result of the good channel and lossy source coding performance of LDGM codes and also
due to its inherent low complexity, LDGM codes are good candidates for the DPC problem.

This chapter is organized as follows: section 5.2 presents the general framework of binary
DPC. section 5.3 provides some background about LDGM codes and about the lossy source
coding problem. In section 5.3.4 we describe and derive the proposed algorithm for lossy
compression. Next, in section 5.3.5 the performance of the proposed compression scheme is
evaluated, by numerical simulations. In section 5.4 we describe our proposed DPC scheme,
namely the code structure, respective encoding/decoding algorithms and how to optimize the
proposed code, using the erasure channel and the dual code approximations [10]. Then in
section 5.4.3 the performance of our scheme is assessed by numerical simulations and �nally
we conclude in section 5.5.

5.2 Binary Dirty Paper Coding Framework

In this section we describe the binary dirty paper framework in more detail. For the
binary dirty paper channel, under the binary input x ∈ {0, 1}N the output takes the form
y = x + s + n, where1 s ∼ Ber(1/2) is the interference signal and n ∼ Ber(p) is the channel
noise. The channel input, x, is a function of the interference s and of the information bearing
symbol d, x = f(s,d). The objective of binary DPC is to maximize the transmission rate
subject to a distance power constraint. In the case of binary signalling the constraint can be
written in terms of the hamming distance, i.e. E[‖x‖1]/N ≤ D. The capacity of this channel
is given by, [14]:

R(D, p) =

{
H(D)−H(p), if D0 ≤ D ≤ 1/2

αD, if 0 ≤ D ≤ D0

(5.1)

where H(.) is the binary entropy function, D0 = 1− 2−H(p) and α = log((1−D0)/D0).

1By x ∼ Ber(p) we mean a Bernoulli random variable with a probability p of being equal to '1'.
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For this problem the binning strategy, see Figure 5.1, is to divide the set of all 2N(1−h(p))

possible2 input binary sequences into B = 2N(h(D)−h(p)) bins, indexed by the transmit mes-
sage d. The input set contains 2N(1−h(p)) elements drawn randomly and thus can be viewed
as a channel code with rate RC = 1 − h(p), for which arbitrary small probability of error
can be achieved, for channel crossover probabilities up to p. Each randomly constructed bin
contains 2N(1−h(p))/B = 2N(1−h(D)) elements and thus can be viewed as a lossy code with rate
RL = 1 − h(D), for which, by the rate-distortion theory [15], an average distortion down to
DN can be achieved.

To encode message d the encoder must restrict itself to bin d and search for the codeword
that is closer to s. After �nding the closest codeword to s, u, the encoder inputs to the channel
x = u− s. At the other end, the decoder receives u + n and wants to recover message d. To
do that, the decoder can treat the decoding problem as a standard channel decoding problem,
to �nd the sequence u, and after, it only needs to match sequence u to his respective bin, to
obtain d.

5.3 Lossy Source Coding

As stated in the previous paragraphs a dirty paper coding scheme can be divided into
two main problems: the lossy source coding problem and the channel coding problem. In the
following paragraphs, we start by addressing the �rst of these problems (lossy source coding).

5.3.1 Problem Description

In the lossy coding problem, given a realization s ∈ {0, 1}N of a Ber(1/2) source S we
want to map it to an index x ∈ {0, 1}K such that approximate reconstruction of s is possible
within a given �delity criterion (R = K/N is the compression rate). The �delity measure used
here and the most commonly used in this area, for a binary source, is the Hamming distance
between the source sequence s and the reconstructed sequence ŝ

d(s, ŝ) =
1

N

N∑
i=1

|si − ŝi| (5.2)

The objective of lossy compression is to minimize the average distortion D = E[d(S, Ŝ)].
For such a distortion measure the asymptotic limit, designated as rate-distortion function, is
well known [15] and is given by R(D) = 1− h(D), for D ∈ [0, 1/2] and zero otherwise.

5.3.2 LDGM Code Description and Notation

An LDGM code can be represented both by its generator matrix G ∈ {0, 1}N×K and by
the associated factor graph G = (V,C,E). Where the sets V = {1, . . . ,K}, C = {1, . . . , N}
and E = {. . . , (a, i), . . .} denote the information bit nodes, the check nodes and the edges
connecting them, respectively. We use the variables a, b, c ∈ C to denote check nodes and
variables i, j, k ∈ V to denote information bits. We de�ne the sets C(i) = {a ∈ C|(a, i) ∈ E},
V (a) = {i ∈ V |(a, i) ∈ E} and use the symbol \ to denote the set subtraction operator. A
check node a ∈ C connects to an information bit i ∈ V , (a, i) ∈ E, if Ga,i = 1. In Figure

2By possible we mean a set of codewords for which arbitrary small probability of error, for channel crossover
probabilities lower than p, is attainable.
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Figure 5.1: Binning Strategy Diagram, for DPC.

5.2 we depict, as an example, the factor graph of a given LDGM code with 5 check nodes,
4 information bits and 5 source bits, randomly connected between them. In this �gure, the
white circles denote the information bits, the squares represent the check nodes and by Π we
mean a uniform drawn permutation.

The connection structure between check nodes and information bits, in a LDGM code, is
speci�ed by the correspondent check and information bit node degree distributions, from the
edge perspective, (ρ, λ), ρ(x) =

∑
i ρix

i−1 and λ(x) =
∑

i λix
i−1. ρi and λi denote the

portion of all edges connected to check nodes and information bits with degree i, respectively.

The degree of a check node is equal to the number of connected information bits, i.e. the
number of connections from the squares to the circles in Figure 5.2, which is the same as the
corresponding number of entries equal to 1 in row i of G. In the case of a LDGM code, there
is also a connection from the check nodes to the source bits, but this is not considered for
the degree. For a LDGM code, C, de�ned by the generator matrix G, and for an index x the
corresponding reconstructed source sequence is given by ŝ = Gx. Which due to the sparse
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structure of the corresponding LDGM code can be computed inO(N) time, for a given index x.

Figure 5.2: LDGM code factor graph representation.

5.3.3 Binary Erasure Quantization

In this section we analyse the simpler BEQ problem [10], to get some insights into the
more complicated binary quantization problem.

The source in the BEQ problem, S, can assume three di�erent values, S ∈ {0, 1, ?},
according to the probability distribution [10]

pS(s) =
1− ε

2
δ(s− 0) +

1− ε
2

δ(s− 1) + εδ(s−?) (5.3)

where ε denotes the erasure probability and δ(.) the Dirac delta function. The objective in the
BEQ is to map the source, S, with dimension N , to an index X ∈ {1, 2, . . . , 2NR}, such that
the obtained distortion is zero. The distortion function (d(a, b)), for the BEQ, is d(a, b) = 0 if
a =? or a = b and 1 otherwise. It is easy to get a lower bound for the rate distortion function,
for this type of source. Consider that the reconstruction algorithm knows in advance the
positions of the erasures, of source s. If we have this information, we only need to know
the values of the (1− ε)N non-erased positions to obtain a reconstructed sequence, with zero
distortion. Namely, with that knowledge we can later assign any value to the erasures, without
any additional distortion. Hence, it is easy to verify that the rate distortion function is lower
bounded by 1− ε. To attain the bound let us consider a linear code with rate R and generator
matrix G ∈ {0, 1}N×RN . Namely let us consider that the reconstructed sequence, q, given
index x, is q = Gx. By the problem de�nition, the source and reconstructed sequences, should
be only di�erent at the erasure positions. Assuming q = [qT

1 ,q
T
2 ]T, G = [GT

1 ,G
T
2 ]T and that

such erasures occur in the last positions of q and s, the previous system of equations reduces to
q1 = G1x. Thereafter, to obtain zero distortion, the reduced system of equations must have
at least one solution. This happens if the system is underdetermined, i.e. if G1 has dimension
(1 − ε)N × RN and (1 − ε)N ≤ RN . As such R must be greater or equal to 1 − ε. On the
other hand, if G1 has dimension (1− ε)N × (1− ε)N and is full rank, with high probability,
the previous system has just one solution, and the upper bound is met. Additionally, if the
rate is higher than 1 − ε the system gets undetermined and accepts a set of indexes as its
solutions. This is indeed what happens for practical codes, since the rate distortion function
is only achievable in the in�nite block length. Thereafter for a practical system the number
of reconstruction sequences, at zero distance from the source, is higher than one, making the
solution of the lossy source coding problem more di�cult than the one of the channel coding
problem, where just one codeword is close to the transmitted sequence.
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5.3.4 Derivation of the Proposed Compression Algorithm

Almost all previously proposed algorithms for doing lossy source coding rely on a decima-
tion step to help the iterative message passing algorithm, like BP, to converge. Namely, this
type of algorithms can be divided into two phases, one where BP runs for a given number of
iterations and another where the most biased information bits are decimated. Even if the re-
sultant performance of such algorithms is very good, in practice, their inherent computational
complexity is O(N2) [13], since two phases are considered. One exception to this rule is the
algorithm proposed in [13], [16], the reinforced BP (RBP). This algorithm does a kind of soft
decimation by reinforcing the beliefs of each information bit at each iteration. Our proposed
algorithm is based on the same principle, but it is applied to LDGM codes instead of LDPC
codes and we also show a connection between "hard" and "soft" decimation.

In the following paragraphs, we explain how to transform the decimation step, of the
previously proposed algorithms, in a soft decimation step, that is performed within each
iteration. We also show how to use this simple transformation to recover the RBP algorithm
as a soft version of the Bias Propagation Algorithm (BiP), [12]. This transformation results
in just a slightly modi�cation to the BP updating rules.

In the LDGM code approach to lossy source coding, the encoding phase amounts to map-
ping a source sequence s ∈ {0, 1}N to an index x ∈ {0, 1}K , such that the Hamming dis-
tortion d(Gx, s) is minimized. Let us de�ne the following equivalent conditional probability
distribution

P (x|s) =
1

Z
e−ϑd(Gx,s) =

1

Z

∏
a∈C

e−ϑd(Gax,sa) =
1

Z

∏
a∈C

Ψ(xV (a), sa) (5.4)

where Z is a normalizing constant, Ga denotes row a of G, ϑ is a parameter that is tuned via
simulations to get as good performance as possible and Ψ(xV (a), sa) = e−ϑd(Gax,sa) represents
the local constraint of check node a. It is not di�cult to see, from equation (5.4), that the
most probable codeword is also the one that minimizes the corresponding Hamming distortion.
Indeed, the best assignment for bit xi is obtained from the corresponding bit marginal value

xi = arg max
xi∈{0,1}

P (xi|s) = arg max
xi∈{0,1}

∑
∼xi

P (x|s)

= arg max
xi∈{0,1}

∑
∼xi

∏
a∈C

Ψ(xV (a), sa)
(5.5)

The last line of equation (5.5) can be obtained by taking into account the special structure of
P (x|s) of the LDGM code. Indeed P (x|s) can be factorized in a product distribution, as shown
in equation (5.4), where each element is equal to Ψ(xV (a), sa). The marginal value of bit i,
given by equation (5.5), can be e�ciently computed, if the BP/Sum-Product algorithm is used.
However, unlike the channel coding problem, where the received codeword is normally at a
short distance from a codeword, in the lossy source coding problem the source sequence is likely
to be equidistant from more than one codeword, as seen for the BEQ problem, producing belief
values, about the bit marginals, close to 1/2. Consequently, the locally operating algorithm
can get confused about the direction to proceed. The usual procedure to overcome the afore-
mentioned problem is to decimate the most biased bits, after running the BP algorithm, and
to repeat the previous two steps (BP and decimation) until all bits get decimated. This allows
the BP algorithm to be guided, in the search space, into the direction of just one codeword.
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Belief Propagation

After some algebraic manipulations, it is not di�cult to express the BP update equations
(see section 2.5.1), for the lossy source coding problem, as follows, [12]:

From variable to check:

Rn+1
i =

∏
b∈C(i)

Rnbi, Rn+1
ia =

∏
b∈C(i)\a

Rnbi (5.6)

From check to variable:

Rn+1
ai =

1− Snai
1 + Snai

, Snai = (−1)sa
1− e−2ϑ

1 + e−2ϑ

∏
j∈V (a)\i

Bn
ja (5.7)

Variable Bias:

Bn
i =

1−Rni
1 +Rni

, Bn
ia =

1−Rnia
1 +Rnia

(5.8)

where Rnia, R
n
ai and B

n
ia denote the message sent from variable node i to check node a, the

message sent from check node a to variable node i and the variable i bias, without taking
into account the information coming from check node a, at iteration n, respectively. By Rni
and Bn

i we represent the ratio between the probability of variable i being equal to one and
the probability of being equal to zero, and the variable i bias, respectively. The previous
BP update equations can be easily converted to the log-domain, using the hyperbolic tangent
function de�nition, as in section 2.5.1 (equations (2.50), (2.51) and (2.52))

From variable to check:

R̄n+1
i =

∑
b∈C(i)

R̄nbi, R̄n+1
ia =

∑
b∈C(i)\a

R̄nbi (5.9)

From check to variable:

R̄n+1
ai = 2(−1)sa+1atanh

β ∏
j∈V (a)\i

Bn
ja

 (5.10)

Variable Bias:

Bn
i = −tanh

(
R̄ni
2

)
, Bn

ia = −tanh
(
R̄nia
2

)
(5.11)

where the top bar denotes the transformation x̄ = log(x) and β = tanh(ϑ).

Hard-Decimation

The decimation step implies that the corresponding code factor graph can be reduced [12],
or equivalently that the decimated information bits always send the message +∞ or −∞, to
the neighboring check nodes. This fact can be easily incorporated into the corresponding dec-
imated variable node update equation or into their neighboring check nodes update equations.
To do that we just need to add to each check node or to each variable node or to both update
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equations an indicator function, Id(αi, t), taking the value 0 (bit still not decimated), −∞ (bit
decimated to 0) or +∞ (bit decimated to 1)

Id(αi, t) =


−∞, if αi ≤ −t
0, if − t ≤ αi < t

+∞, if t ≤ αi
(5.12)

where αi can be any parameter, normally a bit bias, and t denotes a threshold parameter, after
which the bit gets decimated. In the BiP algorithm αi = −Bi. It should be emphasized here
that the decimation step is not as simple as that. For example, the decimation, in the BiP
algorithm, only decimates a �xed number of information bits, at each round. More precisely,
it decimates the most biased m bits, even if there are more bits that respect the threshold t.
However, as we will see in the next sections, this approximation is su�cient to obtain very
good results.

Soft-Decimation

The basic idea of our method is to approximate the indicator function Id by the soft
indicator function

Îd(αi, t) =
2

µ
atanh

(αi
t

)
, αi ∈]− t, t[ (5.13)

where µ > 0 is a parameter that sets the accuracy of the approximation. Figure 5.3 shows the
function Id and the approximation for several values of µ. As µ increases the approximation
becomes more accurate. Assume that αi = −Bn

i , given by equation (5.11), and that t = 1

Figure 5.3: The dashed line shows the function Id(αi, 1) and the solid curves show Îd(αi, 1) =
(2/µ)atanh(αi), for µ = {1, 2, 4}. The curve for µ = 4 gives the best approximation.

(or αi = −Bn
ia and t = 1) then Îd(−Bn

i , 1) = (1/µ)R̄ni . Note that |t| must be higher than
1, because as |Bn

i | ≤ 1 the atanh(.) is not de�ned, in the real �eld, using |t| < 1, leading
to some indeterminacy. More precisely the indicator function, that represents the decimation
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step, is replaced by a simple linear function. Therefore, if the indicator function is added at
the variable node update equations and αi = −Bn

i , the BP update equations, with decimation
included, can be expressed by

From variable to check nodes:

R̄n+1
i =

∑
b∈C(i)

R̄nbi, R̄n+1
ia =

1

µ
R̄ni +

∑
b∈C(i)\a

R̄nbi (5.14)

From check to variable nodes:

R̄n+1
ai = 2(−1)sa+1atanh

β ∏
j∈V (a)\i

Bn
ja

 (5.15)

Variable Bias:

Bn
i = −tanh

(
R̄ni
2

)
, Bn

ia = −tanh
(
R̄nia
2

)
(5.16)

In this new formulation, we use a linear or 'soft' constraint function in place of a hard con-
straint, Id(.), like in the interior-point method [17]. A more careful look to these update
equations show that, if tanh(ϑ) = 1, this are indeed the log-domain RBP update equations
used in [13] for doing lossy source coding, with LDPC codes over GF(q). On the other hand,
if αi = −Bn

ia and the indicator function is added to the check node update equations, the BP
update equations, with decimation included, can be expressed by

From variable to check nodes:

R̄n+1
i =

∑
b∈C(i)

R̄nbi, R̄n+1
ia =

∑
b∈C(i)\a

R̄nbi (5.17)

From check to variable nodes:

R̄n+1
ai =

1

µ
R̄nia + 2(−1)sa+1atanh

β ∏
j∈V (a)\i

Bn
ja

 (5.18)

Variable Bias:

Bn
i = −tanh

(
R̄ni
2

)
, Bn

ia = −tanh
(
R̄nia
2

)
(5.19)

The main advantage of this new formulation is that the algorithm constrains the belief
of the information bits, at each iteration, in the direction of the current bit belief, instead of
constraining only the beliefs at the decimation step, allowing a re�nement of the information
bit beliefs, at each iteration. As a consequence all bits are decimated at once instead of being
decimated, a �xed number of information bits, at each decimation step, as in [11] and [12].
Since, in the new algorithm, the decimation step is incorporated in the BP update equations
and this amounts to just one more addition and multiplication, per edge, the overall computa-
tional complexity of the proposed algorithm is O(N), instead of O(N2), as will be con�rmed
in the next section.
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5.3.5 Results

To assess the performance of our algorithm we have simulated it for various code rates,
source sequence lengths and di�erent number of iterations. The modi�ed BP update equations
used in the simulations were equations (5.17), (5.18) and (5.19). The codes chosen were from
degree distributions optimized for the BEC or BSC, in light of LDPC channel coding and
LDGM source coding duality, in the erasure case [10]. All codes used in the simulations were
generated randomly according to the correspondent degree distribution. No 4-cycles or higher-
order cycles have been removed from the corresponding factor graph, only double edges. In
all results presented in this section we have considered that β = (1 − ξ)/(1 + ξ) and that
ξ = 1/µ, even if we have the freedom to tune both β and µ parameters independently. This
parametrization has been chosen due to the inherent good performance and since it simpli�es
the algorithm and the task of assessing its performance.

Concerning the information bits prior value, since no apriori information is available it
should be initialized to zero. However, since we are talking about a LDGM code and as is well
known from the channel coding framework: if no degree 1 check nodes are available the BP
algorithm never starts, it gets stuck. In [11] and [12] where a decimation step is available,
this can be easily overcome since there we always have a minimum number of bits that get
decimated at each iteration, even if all information bits have a lower bias than the threshold.
However, for the proposed algorithm, that option is not available. Consequently, we should
use a small percentage of check nodes with degree 1 or equivalently we can initialize the infor-
mation bits prior with a small value, at the �rst iteration, and remove it in the next iteration.
In all simulations presented next the information bits prior was initialized with the value 0.1,
and set to zero in the second iteration.

The procedure used to quantize a given source sequence is to run the BP algorithm with
soft decimation, given by equations (5.17), (5.18) and (5.19), for a �xed ξ value and for a
given number of iterations, and to decimate all information bits after.

The degree distribution pair (λ(x), ρ(x)) of the rate 1/2 LDGM code used in all simulations
shown in the next paragraphs was [18]

λ(x) = x6

ρ(x) = 0.275698x+ 0.25537x2 + 0.076598x3 + 0.39233x8

Distortion versus Compression Rate

Figure 5.4 shows the obtained distortion as a function of the coding rate, for di�erent
source sequence lengths. For each code we choose ξ that achieve the lowest distortion. As can
be seen from that �gure the achieved distortion is very close to the theoretical limits. Even
for a codeword length of 100 the achieved distortion is good, it is a little worse than the one
obtained in [13] for a binary LDPC code of length 12000. We can also see, from that �gure, that
the distortion loss obtained by decreasing the number of iterations from 400 to 100 is small.

Distortion versus ξ

To attest the behavior of the distortion values as a stronger constraint is enforced we plot
in Figure 5.5 the distortion obtained by running the proposed algorithm, during 100 iterations,
for a LDGM code with rate 1/2 and for three codeword-lengths, 102, 104, 105. Remember
that the parameter µ is inversely proportional to ξ. From Figure 5.5 it is evident that as a
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Figure 5.4: Lossy source coding performance of the proposed algorithm for di�erent source
sequence lengths (100, 10000) and for di�erent number of iterations, (100, 400).

stronger constraint is imposed the distortion value decreases but after the optimal ξ value it
increases abruptly, showing the existence of a threshold. As the codeword length increases the
distortion value decreases even more abruptly, close to the optimal ξ value.

Distortion versus Codeword Length

Figure 5.6 presents the distortion values, as a function of the codeword length, for the
rate one-half LDGM code. For each code, we choose ξ so that the average distortion is
minimal. The ξ value is found by simulations. The number of iterations is �xed to 400
and the distortion was averaged over 100 trials, for codeword lengths higher than 1000, and
averaged over 1000 trials otherwise. As can be observed, from �gure 5.6, the average distortion
obtained, as the codeword length increases, decreases exponentially and the gains obtained by
the joint processing of a higher number of samples, from the source sequence, gets smaller as
the codeword length increases.

Computational Complexity

In this section we analyze the number of iterations needed for convergence, as the codeword
length increase. To limit the impact of the graph cycles in the results we have considered high
codeword length codes only, from N = 104 to N = 106. All these codes were generated
randomly with only double edges removed. To analyze the number of iterations needed for
convergence, we have iterated our algorithm for 1000 iterations and averaged the corresponding
obtained distortion over 1000 trials, for the rate 1/2 code and for di�erent codeword lengths.
In Figure 5.7 we plot the corresponding average distortion obtained for each iteration and
for di�erent ξ values. As can be seen from that �gure the number of iterations needed for
convergence decrease as the codeword length increases or as ξ increase. However, the number
of needed iterations seems to be saturating as the codeword length increase, and they saturate
faster for higher ξ values (weaker constraint/higher average distortion).
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Figure 5.5: Lossy source coding performance, for 100 iterations, as a function of ξ for
a randomly generated graph with rate equal to 0.5 and for three codeword lengths N =
{102, 104, 105}.

Even if one cannot extrapolate general conclusions from these numerical results, they
indicate that the number of iterations needed for convergence tend to a constant value for
very high codeword lengths and a constant ξ value, supporting the O(N) computational
complexity of the proposed algorithm.

5.4 Binary Dirty Paper Coding

In the previous sections, we have analysed the lossy source coding problem and proposed
an algorithm for it. In the following sections of this chapter, we use the proposed lossy scheme
as a building block to design LDGM codes for the DPC problem and analyze numerically its
performance.

5.4.1 Proposed Dirty Paper Scheme

The proposed DPC code structure is presented in Figure 5.8(a). We call the proposed
structure LDGM/LDPC code, since it is formed by the concatenation of a LDGM and a LDPC
code. The main idea behind the proposed code structure is to use part of the information bits
of a LDGM code to approximate the channel interference and to use the other part for real
data transmission. However, since a LDGM code is not a good channel code the data bits
are, �rstly, precoded with a high rate LDPC code to remove the small distance codewords. In
Figure 5.8(a) we use white circles to represent the precoded data bits and dark gray circles
to denote the information bits used to approximate the channel interference. In addition,
black circles represent the channel interference, and squares represent the check nodes. By∏
i, i ∈ {1, 2, 3}, see Figure 5.8(a), we mean a uniformly drawn permutation. It can be seen

from Figure 5.8(a) and Figure 5.8(b) that, without precoding, our proposed code structure is
dual of the Bilayer expurgated code, proposed by Peyman Razaghi and Wei Yu in [7], [8], for
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Figure 5.6: Distortion values for various codeword lengths, from 102 to 104, for a LDGM code
with R = 1/2 and for 400 iterations

relay channels. As we will also see, in the following sections, the proposed scheme also �ts, at
some extent, under the superposition coding framework proposed in [14].

Encoding and Decoding

Let us consider that the upper and lower subgraphs have k1 and k2 variable nodes, respec-
tively. Denote by G,G1 and G2 the generator matrices of the high rate LDPC code and of
the upper and lower subgraphs of the LDGM code, respectively, as shown in Figure 5.8(a).
Denote by H the parity check matrix of the LDPC code. Thus, the upper, lower and global
code can be de�ned by C0, C1, and C, respectively

C0 = {x ∈ {0, 1}N | x = G1y, ∀ y ∈ {0, 1}K1} (5.20)

C1 = {x ∈ {0, 1}N |x = G2y,∀ y ∈ {0, 1}K2 : Hy = 0} (5.21)

C = {x ∈ {0, 1}N |x = x1 + x2, ∀ (x1,x2) ∈ C1×C2} (5.22)

From these de�nitions one can easily see that the global code (C) is the superposition of two
codes (C0 and C1), like in [14]. The main di�erence between our scheme and the one proposed
in [14] is that in our case binary codes are su�cient and instead of a convolutional code a
LDGM code is used for doing lossy source coding. Another important di�erence is that we
propose to optimize our code within the linear programming framework.

With the previous de�nitions, encoding and decoding with the LDGM/LDPC code, for
the binary dirty-paper channel, is as follows

ENCODING: In the encoding stage, a given message d, is �rst encoded by the lower code
C1 to obtain the lower codeword c1 = G2Gd. Then, the proposed modi�ed version of BP is
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Figure 5.7: Distortion evolution over the iteration number for various codeword lengths, for a
code rate of 1/2.

(a) LDGM/LDPC code factor graph. (b) Dual code factor graph.

Figure 5.8: LDGM/LDPC code and dual code factor graphs.

run on the upper subgraph to select the codeword c0, belonging to C0, that is closest to c1−s.
Finally the encoder inputs to the channel the sequence c0 + c1 − s.

DECODING: The decoding problem can be cast as a standard channel decoding problem,
since the received signal is given by c0 + c1 + n = c + n, where c is a codeword of the global
code C, and n is the added channel noise. Thus to decode the received data we can simply
run the standard BP algorithm (ξ = 1/µ = 0 and β = 1, in equation (5.18)) over the overall
factor graph, of code C, to infer the transmitted data bits.

5.4.2 Code Optimization

In this section, we describe how to optimize the degree distribution of the LDGM/LDPC
code for the binary dirty paper channel. In Figure 5.8(b) we present the dual of the LDGM/
LDPC code, if the precoding part is not considered. For a more detailed description of dual
codes, please refer to [10]. It is not di�cult to realize that the dual code is, in fact, the bilayer
expurgated code proposed by Peyman Razaghi and Wei Yu in [7], for relay channels. This
resemblance can be used in our favor to optimize the LDGM/LDPC code, since to optimize
the lossy source coding part of the LDGM/LDPC code, C0, the dual code approximation [10]
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can be used and also because the fact that the optimization of a LDGM code amounts to not
much more than translating results obtained for LDPC ensembles [19]. Thus, the optimization
of the proposed code for the dirty paper channel can be approximated by the optimization of
a bilayer expurgated LDPC code, for the relay channel, like in [7], [8]. However, here a further
simpli�cation is used: the binary erasure channel approximation. This choice, has been made,
mainly to simplify things and in light of the connection between LDPC channel coding and
LDGM source coding, in the erasure case [10]. Even if it is an approximation, the resultant
performance is very good, as we will see in the next sections, showing, as a proof of concept,
that the proposed scheme can be used for DPC.

Density Evolution

As stated in [7] and [8], the ensemble of bilayer expurgated LDPC codes can be character-
ized by a variable node degree distribution λi,j , i ≥ 2, j ≥ 0 and by two (upper and lower) check
node degree distributions, ρUi , i ≥ 2 and ρLi , i ≥ 2. Nevertheless, we consider regular check
node degree distributions, with degrees dUc and dLc , respectively for the upper and lower check
nodes, due to its evidenced good performance, as will be seen in the results section, and also
due to its inherent simplicity. λi,j denotes the percentage of edges connected to a variable node
with degrees (i, j), see Figure 5.9. In the ordered pair (i, j) i and j denote the upper and lower

... ...

......

Upper degree i

Lower degree j

Figure 5.9: Variable node degree.

degree of the node, respectively. Let us consider a variable node with degrees (i, j). For such a
case the corresponding message erasure probability, after applying the BP update equations, is
given by (see section 2.5.2), εyi−1

1 yj2 or εy
i
1y
j−1
2 , for the upper and lower edges, respectively. y1

and y2 represent the erasure probability of the check to variable node messages, for the upper
and lower check nodes, respectively, see Figure 5.8(b). Assume that the total number of edges,
in the global graph, is E. Therefore, λi,jE is the number of edges connected to a variable node
with degrees (i, j) and λi,jE/(i+ j) the corresponding number of variable nodes with degrees
(i, j). Hence, iλi,jE/(i+ j) represent the number of upper edges connected to a variable node
with degrees (i, j) and the corresponding percentage of upper edges is iλi,jE/(i+ j)/EU (EU

denote the number of edges in the upper graph). This value corresponds also to the percent-
age of messages, in the upper graph, emanating from a variable node with degree (i, j). As a
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consequence, after averaging over the code ensemble, the following erasure probabilities result

x =

[
ε
η

∑
i,j i

λi,j
i+j y

i−1
1 yj2

ε
γ

∑
i,j j

λi,j
i+j y

i
1y
j−1
2

]
(5.23)

where x = [x1, x2] correspond to the densities of the messages sent by variable nodes, y =
[y1, y2] to the ones sent by the check nodes, η = EU/E corresponds to the percentage of upper
edges in the overall graph, γ = 1− η, and ε is the channel erasure probability.

Using conventional density evolution and the erasure channel approximation the densities
of the messages sent by the check nodes, y = [y1, y2] are given by (like in section 2.5.2)

y =

[
1− (1− x1)d

U
c −1

1− (1− x2)d
L
c −1

]
(5.24)

As a consequence, the overall probability of erasure, at a given variable node, is

Pe = ε
∑
i,j

λi,jy
i
1y
j
2 (5.25)

Code Design

To decode a codeword successfully, the overall erasure probability, equation (5.25), should
decrease at each iteration and converge to zero. This can be enforced by constraining y1 and
y2 to decrease at each iteration and converge to zero, in the large block length limit. Due to
the one to one correspondence between y1 and x1 and between y2 and x2, this is equivalent
to both x1 and x2 decrease, which can be formulated as

ε

η

∑
i,j

i
λi,j
i+ j

yi−1
1 yj2 < x1

ε

γ

∑
i,j

j
λi,j
i+ j

yi1y
j−1
2 < x2 (5.26)

where y1 and y2 should be replaced by their respective expressions, given by equation (5.24).

The design of a bilayer expurgated LDPC code involves �nding λi,j , d
U
c , d

L
c and η, such

that the overall code and respective upper sub-code are capacity approaching for a channel
erasure probability ε and εU (< ε), respectively. One way to formulate the design problem,
like in standard LDPC code optimization (see section 2.5.2), is to �x the check node degree
distribution, (dUc , d

L
c ), and jointly optimize the parameters λi,j and λ

U
i (upper code variable

degree distribution).

Based on iterative linear programming, a rate maximization problem can be formulated,
to optimize the bilayer LDPC code as follows. The rate of the overall code is given by
R = 1 − (

∑
i ρi/i)/(

∑
i λi/i), where ρi and λi are the degree distribution of the check nodes

and of the variable nodes of the global code, respectively. Fixing the check node degrees,
dUc and dLc , the rate of the global code depends on the λi,j parameters. Therefore, the
rate maximization problem is equivalent to the maximization of

∑
i λi/i =

∑
i,j λi,j/(i + j).

As a consequence, the following linear program can be formulated to optimize the proposed
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LDGM/LDPC code, for η, ε, εU , d
U
c , d

L
c and maximum upper and lower variable degrees known

max
λi,j ,λUi

∑
i,j

λi,j/(i+ j) (5.27)

s.t.
∑
i,j

λi,j = 1; 0 ≤ λi,j , i ≥ 2, j ≥ 0
∑
i,j

i

i+ j
λi,j = η (5.28)

∑
j

i

i+ j
λi,j − ηλUi = 0

ε

η

∑
i,j

i
λi,j
i+ j

yi−1
1 yj2 < x1 (5.29)

ε

γ

∑
i,j

j
λi,j
i+ j

yi1y
j−1
2 < x2 εU

∑
i

λUi (1− (1− x)d
U
c ) < x (5.30)

Equation (5.28), on the right side, enforces that the percentage of upper edges in the global
code should be equal to η, equation (5.29), left side, expresses the relation between distribu-
tion λUi and λi,j and equation (5.30), on the right side, enforces that the error probability
of the optimized upper sub-code should decrease at each iteration and converge to zero (to
obtain a good lossy code).

5.4.3 Results

To assess the LDGM/LDPC code performance, we have optimized a code for a channel
coding rate of 1/2 (considering the high rate LDPC code) and for a lossy source coding rate
of 1/8, which gives a dirty paper rate of 3/8. For the aforementioned rates, the corresponding
channel coding threshold is p = 0.11, and the lossy source coding threshold is δ = 0.295, which
is equivalent to an input constraint of 0.295. For the optimization process, a maximum upper
and lower variable degree of 7 and 10 has been considered, respectively, for the dual code. For
the upper and lower check nodes a degree of 20 and a degree of 6 has been considered, respec-
tively. The check node degrees have been obtained experimentally by testing several di�erent
pairs of values. However, for the upper check degree, we can get an idea of the optimal value
by looking to LDPC optimized degree distributions, for a code rate of 1 − 1/8 = 7/8, since
the upper sub-code will work "alone" at the encoding stage. Nevertheless, its distribution
will in�uence the global code degree distribution. To remove the low weight codewords of the
LDGM code, a regular (3, 60) LDPC code (Rate = 0.95 ) has been used. The optimized degree
distribution, obtained from the code optimization, is shown in Table 5.1. As can be seen from
that table, a small percentage of degree (1, 0) check nodes has been added to the obtained
optimized degree distribution, to help the iterative process to start, likewise, for LDGM codes
in the channel coding setting. The code used for simulations has been generated randomly
and the codeword length considered was 105. The optimal distortion value for a code with
rate 1/8 is 0.295. In our simulations, for 100 trials and for 400 iterations of the modi�ed BP
algorithm, we have got an average distortion of 0.304 (ξ = 0.008), and for 100 iterations, a
distortion of 0.306 (ξ = 0.01). In Figure 5.10 the BER performance of the LDGM/LDPC code
is shown. These results were obtained for 100 iterations of the BP algorithm over the global
code, having as a stop criterion, for each channel crossover probability, 200 received frames in
error. One iteration of the global code corresponds to one iteration at the LDGM code and
another at the LDPC code. As a reference the capacity limit for this code rate, p = 0.11,
is also presented. As can be seen from that curve, at BER = 2 × 10−5 the threshold of our
code is p∗ = 0.094, with a gap to capacity of 0.016, similar to superposition coding proposed
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Table 5.1: Optimized LDGM/LDPC variable node degree distribution, for an upper and lower
check node degree of 20 and 6. An entry (i, j) corresponds to the percentage of edges connected
to check nodes with upper degree i and lower degree j.

(i,j) j = 0 j = 1 j = 2 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

i = 1 0.0012 0 0 0 0 0 0 0 0 0

i = 2 0.0502 0.0179 0.3875 0.0048 0.0477 0.0033 0 0 0 0

i = 3 0.0322 0.0304 0.0452 0.0273 0.0683 0.0421 0.0182 0.0004 0 0

i = 4 0.0190 0 0 0 0.0180 0.0160 0.0080 0 0 0

i = 5 0.0096 0 0 0 0 0.0085 0 0 0 0.0231

i = 6 0 0 0 0 0 0 0 0 0.0007 0.0431

i = 7 0 0 0 0 0 0 0 0 0.0320 0.0453

Figure 5.10: Bit-error-rate performance.

in [14]. However our system is only based on binary codes and instead of a convolutional code
a LDGM code is used for implementing the lossy source coding part of DPC.

It is worth noting that in the optimization, we constrained the check nodes to have regular
degree distribution. Further improvement could be achieved allowing irregularity. However,
due to its simplicity and evidenced good performance, we have focused only on regular check
dual codes, as in standard LDPC code design. Another aspect that should be emphasized here
is that instead of a high rate LDPC code a high rate LDGM code could be used to remove the
inherent LDGM code error �oor [9], reducing further the complexity of the proposed scheme.

5.5 Conclusion

In this chapter, we have proposed a new algorithm for lossy source coding, using LDGM
codes. The main idea behind the proposed algorithm was to transform the hard decimation
step, present in almost all previously proposed algorithms, into a soft-decimator and to in-
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clude it in the BP algorithm. To do that we have �rst obtained an equivalent representation
of the decimation step, with the help of an indicator function, and have included it into the
BP update equations. Next, a new formulation has been proposed, for the aforementioned
algorithm, using a linear or 'soft' constraint function instead of a 'hard' constraint. The de-
rived algorithm has linear complexity in the code block length, unlike the ones based on hard
decimation, where it grows with O(N2). Simulation results indicate that the performance
is very close to the one achieved with state-of-the-art algorithms, based on hard decimation,
with much lower complexity. Additionally, a practical scheme for implementing binary dirty
paper coding with only binary low density codes has been proposed. The main idea behind
the proposed code is to divide the information bits of a LDGM code in two parts and to use
one part to transmit data and the other part to approximate the channel interference. How-
ever, due to the inherent LDGM error �oor, the data bits are, �rstly, precoded by a high-rate
code, namely a LDPC code. To optimize the LDGM/LDPC code a simple linear program-
ming approach has been proposed. An important element, for code optimization, has been
the analogy veri�ed between the bilayer LDPC code approach, for the relay channel, and the
proposed LDGM/LDPC code. This analogy has enabled the use of research that exists for
bilayer LDPC code optimization, simplifying our task signi�cantly. Simulation results indicate
reliable transmission, close to the Shannon limit, with reduced complexity.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The wireless communications industry has evolved signi�cantly, since its birth. Over the
years, the spectral e�ciencies have increased substantially. This progress has been made
possible due to the many advances made in the signal-processing �eld. One of the main
impairments of communication systems is the noise. In 1948, Shannon has shown [1] that
it is possible to communicate reliably, at a positive rate, in the presence of noise, using
coding. The introduction of channel coding, mainly of modern coding designs (like turbo
and LDPC codes) [2�10] made possible reliable transmission of information at rates close to
the theoretical limits de�ned by Shannon. This in conjunction with the fact that the cells
are becoming smaller, to achieve higher rates and to cope with a higher density of users,
implies that interference is becoming the main limiting factor for the evolution/scaling of the
spectral e�ciencies [11]. Interference can be alleviated using cooperation techniques [11], as
in LTE [12]. Consequently, the interference can be treated as a known signal and cancelled
with the help of joint processing between the BSs included in the cooperation. On the other
hand, there has been also an intensive research on the �eld of information theory to achieve a
better understanding of the topic (interference) and to characterize the capacity region of the
interference channel [13�19].

The work developed in this thesis is within the scope of signal processing techniques for
distributed multiuser systems and has contributed with low complexity precoding techniques
for interference cancellation, both for the unidimensional as for the multi-dimensional cases.
Results show close to optimum performance, for the proposed schemes.

In the following paragraphs, we will summarize the outcomes and outline the main con-
clusions of this thesis. Concerning chapter 3 they can be summarized as

• The capacity increase, by the connection of additional transmit antennas, is maximal
when all antennas have the same mean link SNR. This can be veri�ed by the di�erential
capacity measure. It implies that the highest performance improvement will be for the
users located at the edge of the cells, which in fact are the ones that in average more
need it.

• The BER and capacity of a DAS(CAS) can be described by the singular values of
the associated path loss (correlation) matrix. For a DAS the singular values, which
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correspond to the path losses (diagonal matrix) change from geographical position to
geographical position. On the other hand, the ones of a CAS are �xed since they are
mostly dependent on the transmit antennas con�guration. Hence the DAS has more
�exibility and diversity to attain improved performance.

• The introduced di�erential measure, the DCAP, can be useful in dynamic radio resource
allocation since it provides a measure of how bene�cial the joint processing of an addi-
tional RAU is to the system. The increase in capacity is bounded and simple/accurate
upper bounds exist, for its calculation. Such bounds can be used for example to discard
from the scheduling pool some of the RAUs.

• As a �nal conclusion, of this chapter, one can say that a system architecture based on
the DAS concept will be able to address most of the problems encountered in the current
cellular systems, for users at the cell borders, since are those the ones with the highest
symmetry properties, to the system RAUs.

From chapter 4 the following conclusions can be made

• To obtain a solution to the minimum BER problem, of a multiuser system, a quadratic
constrained nonlinear program must be solved. This requires the use of sequential
quadratic programming tools. However, such a high complexity can be reduced by
considering the high SNR regime. Namely, for this regime the previous problem can be
approximated by a simple quadratic problem.

• The transformation of the interference signal into an useful signal, instead of consid-
ering it as disturbance, that has to be nulli�ed or minimized, allows to achieve high
performance gains, relatively to the standard ZF and MMSE schemes and close to the
optimum performance. This can be done by allowing the transmitter to assign power
to a given user symbol, only if the interference of the signal is not enough to recover it.
Additional gains can be obtained by carefully selecting the user processing order. This
allows to make the interference as useful as possible.

• The proposed scheme achieves a higher diversity gain than ZF/MMSE schemes, since
instead of constraining the received signal to be equal to the transmitted symbol or close
to it (like in ZF/MMSE) the received signal can lie in any point of the decoding region of
the corresponding symbol. Hence, the proposed scheme uses all the available decoding
space. Indeed, it is proven that, unlike ZF, the new scheme only inverts part of the
correlation matrix (HHH) which is better conditioned than the corresponding global
matrix. Thus, noise enhancement is less pronounced.

• For higher constellation orders (M-QAM) the signal decoding space gets more con-
strained. As a result, the gap, of the optimum and new scheme, relatively to ZF gets
reduced. Indeed for high constellations orders the ZF scheme will be close to the opti-
mum and therefore, can be used.

• In the high SNR regime the approximate solution to the minimum BER problem is
linearly dependent on the available transmit power. This allows to treat the joint pro-
cessing of a group of sub-carriers as if they were processed separately. Indeed, the main
di�erence between the two cases is that in the former the joint signal is normalized to
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meet the power constraint, instead of doing a normalization for each sub-carrier sig-
nal. This fact allows the joint processing of a group of sub-carriers to have the same
complexity as the independent processing. Nevertheless, diversity gains are obtained.

• The case of a distributed system introduces additional constraints, in the minimum
BER problem, i.e. the per-RAU power constraints. To approximate the solution of the
minimum BER problem a global power constraint can be imposed instead. Nevertheless,
the resulting signal, for each RAU, must be normalized (by a common factor) so that
each local power constraint is respected. This allows to treat, again, the initial problem
as a quadratic program, reducing signi�cantly the complexity. Such an approximation
enables close to optimum performance.

• Finally, one can conclude that the good performance of the proposed scheme makes it
well suited for practical implementations as it combines close to optimum performance
with a reduced complexity.

From chapter 5 the conclusions can be compiled as follows

• By converting the hard decimation step of the belief propagation algorithm into a soft
decimator the complexity is signi�cantly reduced. This can be achieved by using the
framework of interior point methods, i.e. by using a linear approximation for the corre-
sponding indicator function. Indeed linear complexity, in the blocklength can be achieved
with close to state-of-the art performance, as can be corroborated by the numerical re-
sults presented.

• A DPC scheme can be implemented using only a LDGM code. Nevertheless, the infor-
mation bits of the code should be divided into two parts, unlike in the channel coding
setting, where no division is necessary. One for data transmission and another to ap-
proximate the channel interference. Such a fact allows to decouple the DPC problem
into two sub problems. The �rst of which is a channel coding problem and the second a
lossy source problem. Nevertheless, to achieve reliable communication over the channel
the bits used for data transmission should be precoded, since a LDGM code is not a
good channel code.

• Using existing research on the topic of bilayer codes, for the relay channel, one can
simplify the task of DPC code optimization signi�cantly. Indeed, a similar linear pro-
gramming problem can be formulated to optimize the structure of the proposed bilayer
LDGM code.

• As a concluding remark one can say that by combining a lossy coding algorithm and a
LDGM code, reliable transmission over the DPC channel is possible, with performance
close to the Shannon limit and reduced complexity.

6.2 Future Work

This thesis has focused on interference cancellation, for distributed wireless systems. The
work carried out can be divided into three topics (capacity analysis, one dimensional and
multidimensional precoding). In this study, some problems are left open for future research.
In relation to chapter 3 the following aspects might be of interest
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• In the proposed capacity analysis, it was considered an ideal situation, i.e. no interfer-
ence, perfect CSI, no delay between cooperating BSs and no synchronization issues. The
study of the impact of each of these imperfections, on the distributed antenna system,
is of special importance, since it will make worse the improvement obtained by the joint
processing of additional DAS, than the one presented.

In the context of one dimensional precoding the following topics are regarded as interesting
for future research

• Normally, in the design of a precoder, it is assumed that the set of users, to be precoded,
is given (by an upper layer function). Indeed this is the case of the described precoder.
But, as seen in the analysis, the performance improves when the order by which the
di�erent users are processed is carefully chosen. Hence, it is of interest to see the impact
of the users scheduling in its performance and design.

• The proposed precoder uses all the available decoding space, of the symbol to be trans-
mitted, to �nd the best signal to be sent through the channel. In the derivation of the
new scheme Gray mapping was considered. Nevertheless, it is not know if this is opti-
mal. Indeed we think that by carefully choosing the available decoding space, for each
bit, better performance can be achieved. In principle, larger decoding spaces should be
better, but a search over the possible decoding spaces should be done to verify if there
is any with better performance than the one provided by Gray mapping.

• The availability of CSI at BSs is always limited, since it implies the existence of feedback
channels, whose capacity is limited. Several assumptions can be made about it. Namely,
it can be global (i.e. a BS knows the CSI of all users), local (i.e. a BS knows only the
CSI of a small set of users) and it can be quantized (i.e. not exact). In the design of
the proposed precoder it was assumed exact global CSI. An interesting extension is to
consider quantized and/or local CSI, since it re�ects best a real-world scenario.

• The proposed algorithm can handle the case of multiple receive antennas by, for exam-
ple, considering that each antenna belongs to a di�erent user. Nevertheless, a scheme
specially designed for this setup could provide performance improvements. The correct
matching between the precoder and equalizer can achieve this.

In the context of multidimensional precoding, the topics that one thinks need to be further
addressed are

• In the work presented the proposed schemes where designed for the binary case. However,
for a practical system this is not the case, and a more general design should be considered.
For example, Gaussian noise and the existence of a set of users, for precoding, should
be considered.

• A possible extension to extend the proposed DPC scheme, from the binary setting to
the more general case, is by merging the two coding schemes (the one dimensional and
multidimensional), i.e. use concepts from one into the other.

• The investigated lossy source coding algorithm has good performance. A theoretical
analysis, in the limit of in�nite block length, would be interesting, both to get an upper
bound on the performance of the scheme as to design better codes, shaped/optimized
for the algorithm.
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• To make the lossy algorithm to track just one solution of the lossy coding problem, the
most biased bits are "soft" decimated. Other ways to guide the algorithm exist. We
think that one which is worth pursuing is the one yielding the sparsest solution.
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Appendix A

Distributed Antenna System Overview

A.1 pdf Evaluation

A exponential RV X, with mean λ−1, has his MGF given by [1]

ϕX(s) =
(

1− s

λ

)−1
(A.1)

For a RV, Γ, which is the sum of N independent RV, the corresponding MGF is the prod-
uct of the N independent RV MGFs. If we have Ki antennas for each group i of M , with
each channel gain magnitude obeying a Rayleigh distribution, or equivalently an exponential
distribution, for power, the MGF of Γ is

ϕΓ(s) =

M∏
i=1

ϕXi(s)
Ki =

M∏
i=1

(
λi

λi − s

)Ki
(A.2)

which can be expanded in partial fractions as

ϕΓ(s) =
M∑
i=1

Ki∑
n=1

ain
(λi − s)n

(A.3)

where ain are the partial fraction coe�cients given by [2]:

ain =
1

(Ki − n)!

d(Ki−n)

ds(Ki−n)
[(λi − s)KiϕΓ(s)]

∣∣∣∣
s=λi

(A.4)

Having that we can evaluate the Γ RV pdf as

fΓ(γ) =M−1
Γ [ϕΓ(jw)]

=
M∑
i=1

Ki∑
n=1

ain
λni
M−1

Γ

[
λni

(λi − jw)n

]
(A.5)

where Mx[f(x)] and M−1
x [F (jw)] are the moment generating function and inverse moment

generating function, respectively

Mx[f(x)] =

∫ ∞
−∞

f(x)ejwx dx (A.6)

M−1
x [F (jw)] =

1

2π

∫ ∞
−∞

F (jw)e−jwx dw (A.7)
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The M−1
Γ part in the second equality of equation (A.5) is well known. It is the pdf of an

Erlang distribution [3], or equivalently the PDF of a Gamma distribution with an integer
shape parameter. Therefore the pdf of the Γ RV is

fΓ(γ) =
M∑
i=1

Ki∑
n=1

ainγ
n−1e−λiγ

(n− 1)!
(A.8)

A.2 Di�erential Capacity

From equation (3.17) the di�erential capacity is given by

∆CNN−1 =

∫ ∞
0

fΓN (γ)

1 + γ
dγ (A.9)

and the corresponding ΓN RV probability distribution, (3.15), by

fΓN (γ) = λN e−λNγ
∫ γ

0
fΓN−1

(x) eλNx dx (A.10)

Therefore, after some manipulations to the �rst expression we get

∆CNN−1 =

∫ +∞

0

e−λNγ

1 + γ

∫ γ

0
fΓN−1

(x)eλNxdxdγ

=

[
−e
−λNγ

λN

1

1 + γ

∫ γ

0
fΓN−1

(x)eλNxdx

]+∞

0

−∫ +∞

0

(
−e
−λNγ

λN

)[
− 1

(1 + γ)2

∫ γ

0
fΓN−1

(x)eλNxdxdγ

]
+∫ +∞

0

e−λNγ

λN

[
1

1 + γ
fΓN−1

(γ)eλNγ
]
dγ

=

[
− 1

λ2
N

fΓN (γ)

1 + γ

]+∞

0

− 1

λ2
N

∫ +∞

0

λNe
−λNγ

(1 + γ)2

∫ γ

0
fΓN−1

(x)eλNxdxdγ +
1

λN

∫ +∞

0

fΓN−1
(γ)

1 + γ
dγ

=
1

λ2
N

[
fΓN (0)−

∫ +∞

0

fΓN (γ)

(1 + γ)2
dγ

]
+
λN−1

λN
∆CN−1

(A.11)

The result of the integral in the last equation is always positive, since its argument is greater
than zero for all γ ≥ 0. Hence, the DCAP ratio can be upper bounded by

∆CNN−1

∆CN−1
N−2

≤ λN−1

λN
(A.12)

A.3 Maximum DCAP

We know from equations (3.16) and (3.17) that the capacity increase by the connection of
one more antenna to the user reduces to

∆CNN−1 =
1

λN

∫ ∞
0

fΓN (γ)

1 + γ
dγ (A.13)
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Thus its derivative in relation to λi, for all i di�erent from N , is given by

d∆CNN−1

dλi
=

1

λN

∫ ∞
0

M−1
Γ [dϕΓ(jw)

dλi
]

1 + γ
dγ (A.14)

Since the derivative of the MGF of the Γ RV in order to λi is:

dϕΓ(jw)

dλi
= −jwKi

λ2
i

λi
λi − jw

ϕΓ(jw) (A.15)

we have

d∆CNN−1

dλi
=
Ki

λ2
i

1

λN

∫ ∞
0

dfΓN+1
(γ)

dγ

1

1 + γ
dγ

=
Ki

λ2
i

1

λN

[
−λ1δN1 +

∫ ∞
0

fΓN+1
(γ)

(1 + γ)2
dγ

] (A.16)

where δij is the Kronecker delta function. Hence, for i 6= N , we have that

d∆CNN−1

dλi
≥ 0, N > 1

d∆CNN−1

dλi
≤ 0, N = 1

(A.17)

Thus the capacity increase, decreases with the SNR increase for the case of more than one
antenna connected to the user, and increases with the SNR increase for the case of only one
antenna connected to the user. Being aware of that and assuming that the new connected
antenna has the smallest SNR of all them, the capacity increase by the connection to one
more antenna can be upper bounded by

∆CNN−1(λ1, . . . , λN ) ≤ ∆CNN−1(λN , . . . , λN )

≤ 1

λN +N − 1
≤ 1

N − 1

(A.18)

The second inequality follows from section A.4.

A.4 DCAP for the Case of Equal SNRs

For the case of all equal mean SNRs the global pdf reduces to:

fΓ(γ) =
λN

(N − 1)!
γN−1e−λγ (A.19)

Thus, from equation (3.16) the capacity increase by the connection to 1 more antenna is given
by

∆CNN−1 = C1(λ,N − 1) =
1

λ

∫ ∞
0

fΓN (γ)

1 + γ
dγ

=

∫ ∞
0

(λγ)N−1e−λγ

(1 + γ)(N − 1)!
dγ

=

∫ ∞
0

γN−1e−γ

(λ+ γ)(N − 1)!
dγ

(A.20)
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From the third line of equation (A.20) we can see that as the SNR, λ−1, increases the DCAP
also increases, since

γ ≥ 0 ∧ λ ≥ λ0 ≥ 0⇔ γN−1e−γ

(λ+ γ)(N − 1)!
≤ γN−1e−γ

(λ0 + γ)(N − 1)!
(A.21)

Thus the derivative of this function in order to λ,
d∆CNN−1

dλ , is always lower than zero.

d∆CNN−1

dλ
=

∫ ∞
0

d (λγ)N−1e−λγ

(1+γ)(N−1)!

dλ
dγ

=

∫ ∞
0

(N − 1)γ(λγ)N−2e−λγ + (λγ)N−1(−γ)e−λγ

(1 + γ)(N − 1)!
dγ

=
N − 1

λ

∫ ∞
0

(λγ)N−1e−λγ

(1 + γ)(N − 1)!
dγ −

∫ ∞
0

γ

λ

λNγN−1e−λγ

(1 + γ)(N − 1)!
dγ

=
N − 1

λ
∆CNN−1 −

1

λ

∫ ∞
0

γ

(1 + γ)
fΓN (γ)dγ

=
N − 1

λ
∆CNN−1 −

1

λ

∫ ∞
0

1 + γ

(1 + γ)
fΓN (γ)dγ +

1

λ

∫ ∞
0

1

(1 + γ)
fΓN (γ)dγ

=
N − 1

λ
∆CNN−1 −

1

λ
+ ∆CNN−1

=

(
N − 1

λ
+ 1

)
∆CNN−1 −

1

λ
≤ 0

(A.22)

In the evaluation of the derivative of ∆CNN−1 over λ we have just used the de�nition of DCAP
(equation 3.16) and of ΓN RV pdf (equation (A.19)). Therefore the DCAP can be upper
bounded by

∆CNN−1 ≤
1

N − 1 + λ
≤ 1

N − 1
(A.23)

Additionally the upper bound 1/(N − 1) can be obtained in the limit of λ = 0, by evaluating
the third line of equation (A.20).

A.5 DCAP Derivation for the Multiuser Case

For the co-located transmit antennas case HiH
H
i , (i = N−1, N), is W̃K(i,Ξ) distributed.

But since HiH
H
i ∼ Ξ1/2AiΞ

1/2 , where Ai is W̃K(i, IK) distributed, the DCAP can be
expressed by:

∆CN,KN−1,K = E[log|HNH
H
N |]− E[log|HN−1H

H
N−1|]

= E[log|AN |]− E[log|AN−1|]

=

[
K−1∑
l=0

Ψ(N − l)−
K−1∑
l=0

Ψ(N − 1− l)

]

=

N∑
n=N−K+1

1

n− 1
≈ log

(
1 +

K

N − 1−K + β

)
(A.24)
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where Ψ(l) = −% +
∑l−1

n=1 1/n, is the Euler's digamma function. The result from the second
line comes from the determinant property (|AB| = |A||B|) and the result from the third line
from lemma 1 of [4] ((E[log|Ai|] =

∑K−1
l=0 Ψ(i − l))). To obtain an approximation to the

partial sum of the harmonic series we have used
∑N

n=1 1/n ≈ % + log(N + β) (% is the Euler
Constant) which has a maximum error of 4.1× 10−3.

A.6 Capacity Increase by the Connection of One More User,
for N=1

For N = 1 the broadcast channel ergodic sum-capacity, equation (3.31), simpli�es to, [5]

C
1,K
DPC = E

[
log

(
1 + P max

k=1...K
(ξ

1/2
k hHk hkξ

1/2
k )

)]
= E[log(1 + Px)] (A.25)

where ξk is the average SNR of user k, hk ∼ Ñ (0, 1) and x = maxk(ξkh
H
k hk). Hence the

cumulative distribution of x is given by [6] FX(x) =
∏K
k=1 FYk(x), where yk = ξkh

H
k hk.

Since Yk is exponential distributed with mean µ−1
k = ξk, FYk(y) = 1 − e−uky, FX(x) =∏K

k=1(1 − e−ukx) and fX(x) = dFX(x)/dx =
∑K

k=1 uke
−ukx

∏K
i=1,i 6=k(1 − e−uix). Using this

information to evaluate the expectation operator of equation (A.25) we get

C
1,K
DPC =

∫ ∞
0

log(1 + Px)fX(x)dx

=

∫ ∞
0

log(1 + Px)

K∑
k=1

uke
−ukx

K∏
i=1,i 6=k

(1− e−uix)dx

= [log(1 + Px)f(x)]∞0 −
∫ ∞

0

Pf(x)

1 + Px
dx, f(x) =

∫ K∑
k=1

uke
−ukx

K∏
i=1,i 6=k

(1− e−uix)dx

=

[
log(1 + Px)

(
K∏
k=1

(1− e−ukx)− 1

)]∞
0

−
∫ ∞

0

P

1 + Px

(
K∏
k=1

(1− e−ukx)− 1

)
dx

= −
∫ ∞

0

P

1 + Px

(
K∏
k=1

(1− e−ukx)− 1

)
dx

(A.26)

In the third line we have used integration by parts and in fourth line used the fact that f(x)
is the integral of fX(x) and thus is up to a constant equal to FX(x). In this case the constant
is equal to −1 since FX(x) = 1 + g(x), where g(x) is a sum of exponential functions, and
therefore the constant 1 is removed in the derivation.

With the help of the capacity expression obtained in the previous derivation we can obtain
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the capacity increase by the connection of an additional user, which is given by

∆C1,K
1,K−1 = C

1,K
DPC −C

1,K−1
DPC

= −
∫ ∞

0

P

1 + Px

(
K∏
k=1

(1− e−ukx)− 1

)
dx+

∫ ∞
0

P

1 + Px

(
K−1∏
k=1

(1− e−ukx)− 1

)
dx

=

∫ ∞
0

P

1 + Px

[
K−1∏
k=1

(1− e−ukx)[−(1− e−uKx) + 1] + 1− 1

]
dx

=

∫ ∞
0

P

1 + Px
e−uKx

K−1∏
k=1

(1− e−ukx)dx

=

∫ ∞
0

1

1 + y
e−νKy

K−1∏
k=1

(1− e−νky)dy, y = Px, νk = uk/P

(A.27)

Thus its derivative in relation to uk, for all k di�erent from K is given by

d∆C1,K
1,K−1

duk
=

∫ ∞
0

P

1 + Px
e−uKxuke

−ukx
K−1∏

n=1,n6=k
(1− e−unx)dx (A.28)

d∆C1,K
1,K−1

duK
=

∫ ∞
0

P

1 + Px
(−uK)e−uKx

K−1∏
n=1

(1− e−unx)dx (A.29)

Since, for all x ≥ 0, the integrand in equation (A.28) is always positive and in equation (A.29)
always negative, we have

d∆C1,K
1,K−1

duk
≥ 0, k 6= K

d∆C1,K
1,K−1

duK
≤ 0

(A.30)

Therefore using the same arguments as in section A.3 we get to the conclusion that the
maximum increase in capacity by the connection of an additional user is obtained when all
uk are equal, i.e. uk = u, k = 1, . . . ,K. For this case of all equal mean SNRs we can get a
closed form solution for ∆C1,K

1,K−1. Indeed, from the fourth line of equation (A.27), we see that

∆C1,K
1,K−1 is maximal when P goes to in�nite (High SNR), since P0 > P1 ⇔ P0/(1 + P0x) ≥

P1/(1 + P1x). As a consequence the maximum capacity increase is given by

∆C1,K
1,K−1 =

∫ ∞
0

1

x
e−ux(1− e−ux)K−1dx =

∫ ∞
0

1

y
e−y(1− e−y)K−1dy, y = ux

= −
∫ 1

0

(1− z)K−1

log(z)
dz =

K−1∑
n=0

(
K − 1

n

)
(−1)n+1log(n+ 1), z = e−y

(A.31)

The last equality is a known result (equation (57) of [7]).
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Appendix B

Minimum Bit Error Rate Nonlinear

Precoding for Multiuser MIMO and

High SNR

B.1 Gray Mapping and Corresponding Decision Regions

In this appendix we review Gray mapping for a square M-ary constellation, in the odd
complex integer grid G. By doing so our objective is to show that every decision region has a
speci�c geometry that can be easily used in our bene�t to obtain the corresponding probability
of error of the corresponding bit. So to start we show how Gray mapping can be done, for

Figure B.1: Gray mapping 16-QAM.

a given M-ary constellation. Since we are considering a square M-ary constellation, and by
that we mean that M is a square number, the bits can be divided into two groups, GI and GQ.
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Namely we divide them into two groups, because GI is used to do the Gray mapping in the
In-Phase component and GQ is used to do the Gray mapping in the Quadrature component.
By doing that we impose that only one bit changes in each direction (In-Phase and Quadra-
ture), between adjacent symbols. We also impose the decision regions to be only limited in
one of the directions, and not both in the In-Phase and Quadrature directions.

Figure B.2: Gray mapping 16-QAM.

To exemplify the aforementioned explanation in the following paragraphs we show how
to do the Gray mapping for a 16-QAM constellation and the corresponding decision regions.
Such a mapping is shown in �gure B.1. Consider that we use the �rst two bits for the In-
Phase component (GI), and the last two bits for the Quadrature component (GQ). The bits
of group GI and the ones from group GQ are represented in black and red, respectively. By
doing that we see, if we only look from left to right (in the In-Phase component direction)
that only one bit changes between adjacent symbols. The same happens in the quadrature
direction. With that in mind it is not di�cult to see that, by doing such a mapping, only
one bit changes between adjacent symbols, in both directions. Thus is also not di�cult to see
that the decision regions for each bit of the symbol ('0000') are the ones shown in Figure B.2
and that the corresponding probability of error can be expressed by the sum of Q-functions,
as mentioned in section 4.4.
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B.2 Dual Problem

The aim of this appendix is to derive the dual problem of (4.20). The Lagrangian [1, 2]
associated with the aforementioned problem is

L(z, β,x, u, γ,λλλ) = z + u(xHx− PT ) + λλλH(βb−Ax− z1)− γβ (B.1)

The variables u (u ≥ 0), γ (γ ≥ 0) and the vector λλλ (λλλ ≥ 0) are called the dual variables and the
variables z, β, and the vector x are called the primal variables [1]. The Lagrange dual function
can be obtained as the minimum value of the Lagrangian over the primal variables [1]. Since
L(z, β,x, u, γ,λλλ) is quadratic in x and a linear function of z and β we can �nd the minimizing
pair (z, β,x) from the corresponding KKT conditions [3], that are necessary and su�cient:

∂L(z, β,x, u, γ,λλλ)

∂z
= 1− 1Hλλλ = 0

∂L(z, β,x, u, γ,λλλ)

∂β
= bHλλλ− γ = 0

∂L(z, β,x, u, γ,λλλ)

∂x
= 2ux−AHλλλ = 0⇔ x =

AHλλλ

2u

(B.2)

Such conditions imply that Lagrange dual function [1], g(u, y,λλλ) is given by

g(u, γ,λλλ) =

{
−λλλHAAHλλλ

4u − u, 1− 1Hλλλ = 0; bHλλλ− γ = 0

−∞, otherwise
(B.3)

Consequently, the Lagrange dual problem [1, 4, 5] of (4.20) is to maximize g(u, γ,λλλ) subject
to the positivity of the dual variables:

min
u,γ,λλλ

λλλHAAHλλλ

4u
+ uPT s.t.1Hλλλ = 1,bHλλλ = γ,λλλ ≥ 0, u ≥ 0, γ ≥ 0 (B.4)

However the dual problem can be further simpli�ed since the value of u can be obtained analyt-

ically

(
2u =

√
λλλHAAHλλλ/PT

)
, consequently, the dual problem can be shown to be equal to

λ̂λλ = argmin
γ,λλλ

√
λλλHAAHλλλ s.t.1Hλλλ = 1,bHλλλ = γ,λλλ ≥ 0, γ ≥ 0 (B.5)
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