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resumo Os miRNAs são pequenas moléculas (~22 nt) de RNA não-codificante que 
regulam a expressão genética ao nível pós-transcripcional através da 
degradação ou inibição dos genes alvo. Os miRNAs são abundantes nos 
genomas eucariótas, onde desempenham funções importantes no controlo da 
proliferação e diferenciação celular, apoptose, neurogénese e plasticidade 
sináptica. Apesar de ser uma substância legal, o álcool é tóxico para os seres 
vivos e o seu consumo regular pode induzir dependência. O consumo 
excessivo de álcool aumenta o risco de doença hepática e de determinados 
cancros e tem efeitos deletérios ao nível do sistema imunitário, endócrino e 
nervoso. O cérebro, para além de ser um importante alvo dos metabolitos do 
álcool, é um dos órgãos com maior expressão de miRNAs. Através da análise 
de microarrays de miRNAs pretendeu-se entender de que modo a exposição 
crónica ao etanol (0.25% EtOH) e a exposição aguda a um pulso de etanol 
(0.25%; 0.5%, 1 e 1.5% EtOH) afectam a expressão dos miRNAs. A expressão 
de 32 miRNAs foi significativamente alterada pela exposição crónica ao etanol, 
destacando-se o aumento da expressão do miR-9, miR-23a, miR-30e, miR-
133a, miR-181 e a diminuição na expressão do miR-16a, miR-145 e miR-181b. 
Genes envolvidos no ciclo celular, diferenciação, apoptose e adesão celular 
parecem ser os alvos preferenciais destes miRNAs. A exposição aguda 
também alterou a expressão de vários miRNAs, que variam consoante a 
concentração de etanol utilizada. Por exemplo, a expressão do miRNA pró-
apoptótico miR-23a aumentou durante a exposição crónica ao etanol e 
diminuiu com o aumento da concentração do tóxico (1 e 1.5% EtOH) durante o 
teste agudo. Estes resultados sugerem que o consumo de álcool, mesmo num 
curto espaço de tempo ou concentração, afecta a expressão dos miRNAs. 
Possivelmente essas alterações têm implicações no ciclo celular e apotose, 
podendo contribuir deste modo para um risco acrescido de desenvolver 
tumores.
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abstract miRNAs are short (~22 nt) non-coding RNA molecules that control gene 
expression at post-transcription level by degrading or inhibiting particular target 
genes. miRNAs are abundant in vertebrate genomes where they play an 
important role on the control of cell proliferation and differentiation, apoptosis, 
neurogenesis and synaptic plasticity. Although legally commercialize, alcohol is 
toxic for living organisms and its consumption can induce dependence. The 
regular alcohol intake increases the risk of hepatic disease and certain cancers, 
having a deleterious effect on the immune, endocrine and nervous system. The 
brain is not only an important target for alcohol metabolites, but also a rich 
source of miRNAs. Using miRNA microarrays approach, we aimed to 
understand how chronic (0.25% EtOH) and acute (0.25%; 0.5%, 1 e 1.5% 
EtOH) ethanol exposure affects miRNA expression. 
The results demonstrate that chronic ethanol intake deregulated the expression 
of 32 miRNAs. From those, miR-9, miR-23a, miR-30e, miR-133a, miR-181 
were over-expressed and miR-16a, miR-145 and miR-181b were inhibited. The 
putative target genes for those miRNAs are implicated in cell cycle, 
differentiation, apoptosis and cell adhesion. The acute ethanol exposure also 
deregulated miRNA expression profile and each ethanol concentration shows a 
distinct miRNA expression profile. For example, the pro-apoptotic miRNA miR-
23a is up-regulated in chronic ethanol exposure but is down-regulated in the 
higher ethanol concentrations (1 e 1.5% EtOH) of acute test. These results 
suggest that alcohol consumption, even consumed in a short-period or 
concentration, affects the expression of miRNAs. Possibly, these alterations 
have implications on cellular cycle and apoptosis and therefore they could 
contribute to a higher risk of developing tumours.



microRNA expression profile of Danio rerio brain exposed to ethanol

List of Contents

List of Contents......................................................................................................................1
Abbreviations.........................................................................................................................2
List of figures.........................................................................................................................5
Table content..........................................................................................................................6
I. Introduction.........................................................................................................................7

1. Alcohol abuse.................................................................................................................8
2. miRNA overview.........................................................................................................12

2.1. Biogenesis.............................................................................................................12
2.2. miRNAs in the central nervous system.................................................................15
2.3. miRNAs and ethanol.............................................................................................18

3. Neurobiology of addiction............................................................................................21
Glutamate.....................................................................................................................22
Dopamine.....................................................................................................................24
Serotonin......................................................................................................................24
Opiates..........................................................................................................................24

4. Zebrafish: a model organism for studying alcohol addiction.......................................25
5. Microarrays: a useful platform for miRNA expression profiling.................................28
6. Aims.............................................................................................................................29

II. Material and methods......................................................................................................30
1. Zootechnical conditions and experimental animals.....................................................31
2. Experimental design - ethanol exposure test................................................................31
3. RNA extraction.............................................................................................................32

3.1. RNA isolation........................................................................................................32
3.2. RNA purification...................................................................................................33

4. miRNA microarrays.....................................................................................................34
4.1. RNA quality assessment........................................................................................34
4.2. miRNA microarray production.............................................................................34
4.3. miRNA labelling and hybridization......................................................................34

5. Data analysis.................................................................................................................36
6. Target Prediction..........................................................................................................36

III. Results............................................................................................................................38
1. RNA integrity...............................................................................................................39
2. Effect of chronic ethanol exposure in miRNA profile.................................................41
3. Effect of acute ethanol exposure in miRNA expression of pre-adapted fishes............46

IV. Discussion & Conclusion...............................................................................................49
Conclusions......................................................................................................................55
Prespectives......................................................................................................................56

V. References.......................................................................................................................57
Annex A...............................................................................................................................78

List of deregulated miRNAs after chronic ethanol exposure.......................................78

1



microRNA expression profile of Danio rerio brain exposed to ethanol

Abbreviations

ADH Alcohol dehydrogenase
Ago Argonaute proteins
ALD Alcohol liver disease
ALDH Aldehyde dehydrogenase
AMPA α-amino-3-hydroxyl-5-methyl-4-isoxazole-propriate
ATP Adenosine triphosphate
BACE1 Beta-secretase 1
BDNF Brain-derived neurotrophic factor
BK Big potassium channels
Ca2+ Calcium ion
CLOCK Circadian Locomotor Output Cycles Kaput
CNS Central Nervous System
CPP Conditional place preference
Cy3 Cyanine 3
DoL Degree of labelling
DNA Deoxyribonucleic acid
D2 Dopamine receptor type 2
D1 Dopamine receptor type 1
EDTA Ethylenediamine tetraacetic acid
EtOH Ethanol
FAS Fetal alcohol syndrome
GABA Gamma-AminoButyric acid
GMP Guanosine monophosphate
GR Glucacorticoid receptor
GRIA2 Glutamete receptor ionotropic AMPA2
GRM5 Metabotropic glutamate receptor type 5
HER Hydroxyethyl radical
HNE 4-hydroxy-2-nonenal
HSWS High stringency wash solution
5-HT3 5-Hydroxytryptamine 3
IP Inositol phosphate
Kb Kilobases

2



microRNA expression profile of Danio rerio brain exposed to ethanol

KCl Potassium chloride
LSWS Low stringency wash solution
LTP Long Term Potentiation
MAPK Mitogen activate protein kinase
MDA Malondialdehyde
mGlu Metabotropic glutamate
mGlurR Metabotropic glutamate receptor
MHB Midbrain-hinbrain boundary
miRNA microRNA
miR* Star miRNA strand
mRNA Messenger ribonucleic acid
NAc Nucleus accumbens
NMDA N-methyl-D-aspartic acid
NO Nitric Oxide
nt nucleotide
PDE Phosphodiesterase
PI4K2B Phosphotidylinositol 4-kinase type 2 beta
poly(A) Polyadenylated tail
PTBP-I Polypyrimidine Tract-Binding Protein I
P450 Cytochrome P450
MgCl2 Magnesium chloride
NaAc Sodium acetate
NPC Neuronal progenitor cells
NSC Neuronal stem cells
REST Transcription repressor of neuronal genes
RGS4 Regulator of G-protein
RIN RNA integrity number
RISC RNA inducing silencing complex
RNA Ribonucleic acid
ROS Reactive oxygen species
rpm Rotation per minute
rRNA Ribosomal RNA
RT Room temperature
R1 Replicate 1

3



microRNA expression profile of Danio rerio brain exposed to ethanol

R2 Replicate 2
siRNAs Small interference RNAs 
SYNJ1 Synaptojanin 1
TRBP TAR-RNA binding protein
3´-URT 3´- untranslated region
UV Ultra-violet
VTA Ventral tegmental area
WHO World Health Organization

4



microRNA expression profile of Danio rerio brain exposed to ethanol

List of figures

Figure 1: Toxic products resulting from the ethanol breakdown

Figure 2: miRNA biogenesis and mechanism by which it regulates gene expression

Figure 3: Comparison between apoptotic signalling pathways in fish and mammals

Figure 4: Regulation of neural fate by miR-21 and miR-335

Figure  5: LTP  mechanism  mediated  by  retrograde  nitric  oxide  in  the  hippocampus 

glutamate synapse

Figure 6: Cytotoxic effect of excessive glutamate release 

Figure 7: External morphology of adult zebrafish (Danio rerio) 

Figure 8: Zebrafish larvae brain

Figure 9: Sections of adult zebrafish brain

Figure  10:  Comparison  on  molecular  techniques  available  for  the  study  of  RNA 

expression profiles

Figure 11: Example of spots excluded from the analysis

Figure 12: Gel electrophoresis of RNA samples

Figure 13: Histogram with the fluorescence intensity of low quality RNA sample

Figure 14: Histogram with the fluorescence intensity of high quality RNA sample

Figure 15: Hierarchical cluster of chronic alcohol and basal samples

Figure 16: Relative expression ratios of significant up-regulated miRNAs after 15 days of 

chronic ethanol exposure

Figure 17: Relative expression ratios of significant down-regulated miRNAs after 15 days 

of chronic ethanol exposure

Figure  18: Hierarchical  cluster  of  chronic  alcohol  samples  and  acute  ethanol  pulse 

samples.

Figure 19: Variation in the expression of deregulated miR-737, miR-23a and miR-736 

after acute ethanol exposure

5



microRNA expression profile of Danio rerio brain exposed to ethanol

Table content

Table 1: WHO statistics for alcohol consumption (2005).

Table 2:  Functional classification of miRNAs putative target genes (DAVID) and their 

role in biological processes and signalling pathways.

Table 3:  General overview of all deregulated miRNAs one hour after the ethanol pulse 

exposure.

6



microRNA expression profile of Danio rerio brain exposed to ethanol

 

I. Introduction

7



microRNA expression profile of Danio rerio brain exposed to ethanol

1. Alcohol abuse

Alcohol abuse is  a major  concern of public  health  authorities.  Although legally 

commercialized and generally consumed in social  context,  alcohol is a strong addictive 

substance that activates the reward circuits in similar ways to other recreational drugs such 

as cocaine and nicotine (Kalivas and O´Brien, 2008; Kily et al., 2008; Koob and Le Moal, 

2008).  Epidemiological  studies  reveal  that  pathologies  associated  with  ethanol 

consumption  are among the ten major risk factors  of mortality  in  USA (Danaei  et  al., 

2009), Canada and European countries (Her and Rehm, 1998; Hulrich and Hanke, 2002). 

The  World  Health  Organization  (WHO)  statistics  place  Europe  at  the  top  of  alcohol 

consumption  per  capita  per  year.  Considering  that  ranking,  Portugal  occupies  the  9th 

position, drinking 12.2 L of alcohol per capita, 2.7 L more than European average (Table 

1) (World Health Organization, 2005).

Alcohol  consumption  has  dose-dependent  effects.  Moderate  drinking  can  be 

beneficial  in  healthy  people  (Holahane  et  al.,  2010;  Liang  et  al.,  2010),  however 

uncontrolled intake can result in severe health effects (Mayfield et al., 2002; Tateno et al., 

2006;  Markis  et  al.,  2008;  Schuckit,   2009).  Considering  heavy  alcohol  intake,  two 

drinking profiles  can be distinguished:  chronic consumption,  which includes  every day 

drinkers and is related to the development of dependence (Epstein et al., 1995) and binge 

or heavy episodic drinkers (Crews et  al.,  2003; Ward et  al.,  2009). Both regimes have 

harmful effects on neurological function (Obernier et al., 2002a and Crews et al., 2004) 

and general metabolism (Ward et al., 2009). The chronic ethanol intake is associated with 

the development of various pathological conditions such as liver and pancreatic disorders 

(Lieber et al., 1979; Clemens and Mahan, 2010; O´Shea et al., 2010); cancer (Poschl and 

Seitz, 2004); fetal alcohol syndrome (FAS) (Kaminen-Ahola et al., 2010); cardiovascular 

disease (Spies et al., 2001) and central nervous system (CNS) injury (Jacobs and Miller,  

2001;  Herrera  et  al.,  2003;  Crews et  al.,  2004;  Sullivan  and Marsh,  2003).  The binge 

consumption also induces cell damage, especially due to the increase of oxidative stress 

(Obernier et al., 2002b; Crews and Nixon, 2008). Alcohol deleterious effects also includes 

the risk of psychological disorders such as dementia (Järvenpää et al., 2005), depression 

(Brady,  2006)  and aggressive  or  risky  behaviour  that  lead  to  social  problems  such as 

violence, traffic accidents or unemployment (Kushner, 2005; Schuckit, 2009).
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The severe ethanol effects are attributed to the toxic by-products that result from its 

metabolites (Das and Vasudevan, 2007). The ethanol breakdown occurs in the liver and is 

metabolised  by  alcohol  dehydrogenase  (ADH)  and  cytochrome  P450 2E1  (P450)  in  a 

greater  extent  (Figure  1).  ADH  converts  alcohol  into  acetaldehyde,  a  highly  toxic 

compound that binds to proteins and generates adducts. The chemical reaction between 

cytochrome  P450  2E1  and  alcohol  also  produces  acetaldehyde  but  the  major  reaction 

products are reactive oxigen species (ROS) (Zakhari, 2006). Oxygen radicals can interact 

with  lipids,  in  a  process  called  lipid  peroxidation,  resulting  in  the  formation  of  high 

oxidative  molecules  such as  malondialdehyde  (MDA) and 4-hydroxy-2-nonenal  (HNE) 

(Tuma et al., 2003). Lipids are essential for brain function, being the backbone of several 

membranes and also acting as second neurotransmitters in signal transduction pathways 

(Farooqui and Horrocks, 1998). On the other hands, oxidation of proteins results in the 

production of hydroxyethyl radical (HER) molecules that can also damage brain function 

(Tuma et al., 2003; Chattopadhyay and Paila, 2007).
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Table 1: WHO statistics for alcohol consumption (2005). The European mean is 9.5L per year, per 
adult. The methodology to convert alcoholic drinks to pure alcohol made the correspondation: beer 
as 4-5%; wine as 11-16% and spirits as 40% of pure alcohol equivalent. Adult is considered a 
person over 15 years of age. (Adapted from WHO – Global Health Indicators: Risk Factors, 2005)

Rank Country Number of litres of pure alcohol
consumed per adult, per year

1.º Czech Republic 14.8

2.º Ireland 13.4

3.º France 13.2

4.º Andorra 12.8

5.º Austria 12.7

6.º Croatia 12.5

7.º Hungary 12.5

8.º Lithuania 12.5

9.º Portugal 12.2

10.º Uganda 11.9

11.º Republic of Korea 11.8

12.º Germany 11.7

13.º Luxembourg 11.7

14.º Armenia 11.5

15.º United Kingdom 11.5
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Figure  1: Toxic  products  resulting  from  ethanol  breakdown  (Tuma  and  Carol,  2003).   The 
enzymes ADH and P450 are the major enzymes responsible for alcohol degradation. ADH converts 
ethanol to acetaldehyde that can react with proteins or other macromolecules to generate unstable  
molecules called adducts. Alcohol degradation by cytochrome P450 generates acetaldehyde and 
reactive oxygen species (ROS).
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2. miRNA overview

2.1. Biogenesis

miRNAs are short  (~22 nt length) non-coding RNA molecules.  They modulate 

gene-expression  at  post-transcriptional  level  by  base-pairing  to  3´-UTR  of  mRNA 

transcripts, inducing transcript repression or cleavage (Bartel, 2004). The first reference to 

a  miRNA molecule  dates  from 1993,  when Lee  and colleagues  identify a  gene,  lin-4, 

implicated  in  the  development  of  C.  elegans that  was  transcribed  into  a  small  RNA 

molecule  instead  of  a  protein  (Lee  et  al.,  1993).  The  miRNAs  are  present  in  a  wide 

diversity of unicellular and multicellular organisms including animals, plants, algae and 

virus (Griffiths-Jones et  al.,  2008) and are highly phylogenetically conserved (Ambros, 

2004). The number of miRNAs that can be found in certain species is directly proportional 

to the complexity of that organism, suggesting the importance of miRNAs in the course of 

evolution (Vreughenhil and Berezikov, 2009). It is estimated that approximately 30% of 

animal genes are regulated by miRNAs (Kapsimali et al., 2007). miRNA coding genes can 

either be located in genome coding regions, using their own  transcription machinery to 

replicate, or lie within introns of coding and non-coding genes where there are generally 

transcribed together with the host genes (Lagos-Quintana et al., 2001). The miRNA genes 

are transcribed in the nucleus by polymerase II, generating a pri-miRNA molecule with 

~1Kb length. This first transcript is similar to other mRNA transcrips, containing 5′ cap 

structure as well as 3′ poly(A) tail, but have the particularity to fold themselves generating 

hairpin structures (Lee et al., 2004). In the nucleus, pri-miRNA is recognized and cleaved 

by the  complex  constituted  by the endonuclease  Drosha and the  protein  DGCR8. The 

cleavage  occurs  near  the  base  of  the  stem  loop  and  generates  a  ~70  nt  stem  loop 

intermediate  duplex  with a  3´overhang called  pre-miRNA (Lee et  al.,  2003).  The pre-

miRNA overhang is recognized by Ran-GTP and exportin-5 that enables the transport of 

the molecule into the cytoplasm.  Once in the cytoplasm,  the pre-miRNA characteristic 

hairpin  is  cleaved  by  the  endonuclease  Dicer  and  TRBP  protein,  producing  a  ~20 

nucleotides  length  miRNA  duplex.  Depending  on  the  duplex  thermostability  and  3

´overhang identity,  one of the two strands is selected to be biological active,  while the 

other is target for degradation (Lee et al., 2002).  The selected strand it is called mature 

miRNA, while  the less  stable  strand is  identified  as passenger/star  strand (miR*).  The 
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mature miRNA is then incorporated in the RNA-induced silencing complex (RISC) that 

contains  mostly  Argonaute  (Ago)  proteins  (Hammond  et  al.,  2000).  When  the  mature 

miRNA is assembled into the RISC, the complex is guided to the complementary mRNA 

transcript.  Hybridization  between miRNA:mRNA only occurs  if  there is  perfect  match 

between 2nd-8th  nucleotides of the 5´end of the miRNA (seed sequence) and the 3´-UTR of 

the target mRNA (Lewis et al., 2003, Starck et al., 2003). The remaining miRNA sequence 

can bind to the 3’UTR of the mRNA with some mismatches. If perfect base-pairing is 

observed between miRNA:mRNA,  a similar mechanism as the one observed for siRNAs 

takes place, with the mRNA being targeted for degradation, possibly in the P-bodies; if 

there are mismatches between the miRNA and mRNA  the target translation is blocked at 

the initiation or elongation step (Bartel, 2004). If both miR and miR* strands are stable, 

miR* can also target mRNA instead of being degraded (Ghildiyal et al., 2010) (Figure 2).

13
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Figure 2: miRNA biogenesis and mechanism by which miRNAs regulates gene expression 
(adapted from Kim et al., 2005).
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2.2. miRNAs in the central nervous system

miRNAs have been found to been expressed during brain development (Giraldez et 

al.,  2005;  Kloosterman et  al.,  2006)  and in  particular  neuronal  cell  types  (Karp et  al.,  

2005), being implicated in cell proliferation (Johnnidis et al., 2008; Stadler et al., 2008) , 

neurogenesis  (Zhao  et  al.,  2009),  synaptic  plasticity  (Schratt  et  al.,  2006),  dendritic 

morphology and learning (Li et al., 2001; Ashraf et al., 2006; Schratt et al., 2006; Luigli et 

al., 2008).

Most of the knowledge on miRNA function was achieve by experiments where 

Dicer was deleted (Yi and Piatigorsky,  2009),  compromising miRNA biogenesis  or by 

blocking the miRNA action by gain- or loss-function assays (Krützfeldt and Poy, 2006). 

Aberrant miRNA expression was found to be implicated in the loss of neuron phenotype 

(Conaco et al., 2006; Makeyev et al., 2007), development malformations (Giraldez et al., 

2005), loss of homoeostasis and pathological stages (Kloosterman and Plasterk; Stark et 

al.,  2008;  Baudry  et  al.,  2010).  Together,  those  findings  suggest  that  miRNAs  play  a 

central role in the regulation of brain function.

For example, miR-124 and miR-128 are ubiquitously expressed in the brain cells 

and have a central role on neural differentiation (Smirnova et al., 2005).  The miR-124 was 

found  to  be  involved  in  the  preservation  of  neuronal  phenotype  by  regulating  the 

expression  of  neuronal  differentiation-inducing  factors,  particularly  the  transcriptional 

repressor of neuronal genes (REST), the repressor of alternative splicing in non-neuronal 

cells (PTBP-I), glial cell generation gene (Sox9) and also glucacorticoid receptors (GR) 

(Vreugdenhi and Berezikov et al., 2009). Moreover, additional analysis showed that miR-

124 expression in sufficient to revert the phenotype of non neuronal cells into neuronal 

cells  (Kim et  al.,  2005).  The  miR-128 was  also  found to  be  fundamental  to  neuronal 

differentiation and its expression was enhanced when neuronal stem cells were incubated 

with retinoic acid, a neuronal inducing agent (Krichevsky et al., 2006). Other example of a 

brain-specific  miRNA  is  miR-9.  This  miRNA  is  mainly  express  in  cells  undergoing 

differentiation and previous studies shown that the inhibition of this miRNA reduces the 

number of differentiated neurons (Krichevsky et al., 2006). The expression of this miRNA 

also defines the limits  of midbrain-hindbrain boundary (MHB) in developing zebrafish 

(Leucht  et  al.,  2008),  an  organization  centre  of  neural  tube  formation.  Other  miRNAs 

display a cell specific expression, in zebrafish miR-222 is restricted to telencephalon, miR-
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218a is expressed in motor neurons (kapsimali et al., 2007) while miR-26 and miR-29 are 

principally expressed in astrocytes (Smirnova et al., 2005). 

Several  authors  have  described  the  role  of  miRNA  in  synaptic  plasticity 

(Christensen and Schratt, 2009). Short-term synaptic alteration implicates modifications in 

pre-existing proteins and stimulation of plasma membrane receptors (Kosik, 2006). On the 

other hand, long-lasting synaptic plasticity implicates protein synthesis as it is required for 

long-term memory formation (Frey et al., 1997). The protein synthesis occurs locally in the 

synaptic terminals and dendritic spines (Aakalu et al., 2001). The presence of Dicer and 

both pre-miRNA and mature miRNA on those locations, suggests the interaction between 

miRNAs and mRNA in mRNA translation control. It is possible that neuronal stimulation 

activates Dicer, which in turn allows the processing of pre-miRNA into mature miRNAs. 

The  mature  miRNA  interacts  with  cognate  mRNA  regulating  local  mRNA translation 

(Ashraf et al., 2006; Luigli et al., 2008). The brain-specific miRNA, miR-134 is related to 

synaptic  plasticity.  This  miRNA  was  found  in  synaptoneurosome  and  Lim  domain 

containing protein kinase 1 (LimK1) was validates as one of its targets (Schratt,  2006). 

This gene modulates dendritic spine morphology by regulating actin filament organization. 

By repressing LimK1, miR-134 induced repression of LimK1 protein, inhibiting dendritic 

spine  growth.  However,  the  release  of  brain  derived neurotrophic  factor  (BDNF) after 

synaptic stimulation reverted this phenotype, but the mechanism underlying this cascade of 

regulation between LimK1, miR-134 and BDNF is currently unknown (Christensen and 

Schratt, 2009).

Several studies demonstrated that miRNAs contribute to the onset of neurological 

diseases  (Alzheimer,  Parkinson,  Huntingtin,  and  Schizophrenia)  and  affect  cognitive 

function.  Neuronal  death  is  a  common  feature  of  neurodegenerative  diseases  such  as 

Alzheimer,  Parkinson  and  Huntington  (reviewed  by  Hébert  and  Strooper,  2009).  In 

Parkinson patients,  the  loss  of  dopaminergic  neurons in  the  midbrain  is  related  to  the 

decrease in expression of miR-133b (Kim et al., 2007). A polymorphism in the pre-miR-

30e is associated with risk of schizophrenia (Xu et al., 2010) and the cluster miR-29a/b-1 is 

responsible for regulating the BACE1 protein that, together with β-secretase, is responsible 

for cleaving amyloid percurssor plaques (APP)  (Hébert et al., 2008).
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Having in mind that aberrant  cell  death is  a cause of several neurodegenerative 

diseases (Harper and Wilkie, 2003) it is important to relate deregulated apoptosis to the 

onset  of  these  pathologies  .The apoptosis,  or  programmed  cell  death,  normally  occurs 

throughout the life cycle, being implicated in development but also in the maintenance of 

adult  tissues  homoeostasis.  The  lack  of  apoptosis  is  related  to  cancer  and  some 

autoimmune diseases, while neurodegenerative diseases are associated with high apoptosis 

(Xu  et  al.,  2004).   Apoptosis  pathways  are  highly  conserved  between  zebrafish  and 

mammals  (Figure  3)  (Eimon  and  Ashkenazi,  2009)  and  miRNAs  regulate  both  pro-

apoptotic and anti-apoptotic intermediates (Subramanian and Steer,  2010). Pro-apoptotic 

or  tumor  suppressor  miRNAs  include  let  7a,  miR-15a,  miR-16  and  miR-34a  that  are 

mainly under-expressed in cancer cells (Subramanian and Steer, 2010). The capacity of 

miR-15 and miR-16 to induce apoptosis  is  because they target  the anti-apoptotic  gene 

BCL2 (B-cell CLL/lymphoma 2) (Cimmino et al., 2005). Also, up-regulation of miR-23a-

27a-24-2 cluster induces apoptosis in embryonic kidney cells (Chhabra et al., 2009) and 

the over- expression of miR-34a induces apoptosis in malignant peripheral nerve sheath 

tumour  cell  lines  (Subramanian  and  Steer,  2010).  The  let-7a  target  caspase-3  effector 

(Tsang and Kwok, 2008). Considering anti-apoptotic miRNAs, the  miR-17-5p and miR-

20a morpholino injection induces apoptosis in lung cancer cells (Matsubara et al., 2007). 

Recently,  miR-21,  miR-130,  miR-140  and  miR-290  were  associated  with  rat  liver 

mitochondria and putative target genes of those miRNA seem to be related to apoptosis, 

cell proliferation and differentiation (Kren et al., 2009). Moreover, muscle specific miR-

29,  miR-1,  miR-133  and  miR-206,  also  seem  to  be  implicated  in  the  regulation  of 

apoptosis. The miR-1 and miR-133 are implicated in various cardiovascular diseases and 

in the regulation of cardiomyocite proliferation (Tang et al., 2009). While miR-1 acts as a 

pro-apoptotic  agent  by targeting  to HSP (Xu et  al.,  2007),  miR-133 targets  caspase 9, 

acting as an anti-apoptotic effectors (Xu et al., 2007). 

17



microRNA expression profile of Danio rerio brain exposed to ethanol

Figure  3: Comparison  between  apoptotic  signalling  pathways  in  fish  and  mammals.  Several 
intermediates of apoptotic response are conserved or exist in and homologue form (Eimon and 
Ashkenazi, 2009).

2.3. miRNAs and ethanol

Cells  have  the  ability  to  adapt  to  changing  environments.  As  a  neurotoxic 

substance, ethanol elicits several cell responses that act together to minimized ethanol toxic 

effect. In the liver, alcohol is metabolized by ADH and ALDH into less toxic intermediates 

and in central nervous system alcohol induces changes in neuronal function. The central 
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nervous  system  is  constituted  by  a  complex  neuron  network  and  communication  is 

established through synapses of those neurons (Pietrzykowski, 2010; Peng and Yin, 2009). 

Changes in neuronal plasticity induced by ethanol include alteration of neurotransmitter 

basal levels, deregulation of endocrine system and alteration in both signal transduction 

pathways and gene expression (Ward et al., 2009) as it will be later discuss. These neuro-

adaptations  are  associated  with  several  aspects  of  drug  addiction  such  as  seeking-

behaviour;  withdrawal;  tolerance  and  relapse  (Kalivas  and  O´Brian,  2008).  Alcohol 

administration has been shown to alter protein translation without changing mRNA levels 

(Dodd  and  Lewohl,  1998)  suggesting  the  implication  of  miRNA  in  post-translational 

control of gene expression.

Recent findings identify some miRNAs that are triggered by ethanol and that can 

modulate  some  of  the  ethanol  addiction  symptoms.  In  fetal  mouse  brains,  microarray 

analysis shown that ethanol teratogenic effects were related to enhance expression of miR-

10a, miR-10b, miR-9, miR-145, miR-30a-3p and miR-152 and reduced expression of miR-

200a,  miR-496,  miR-296,  miR-30e-5p,  miR-339,  miR-29c and  miR-154 (Wang  et  al., 

2009). Several authors also demonstrated the importance of miR-9 in ethanol response. 

Pietrzykowski and colleagues (2008) reported that an increase on miR-9 expression after 

15 minutes of ethanol exposure. In this case, the amount of alcohol used was similar to an 

episode  of  social  drinking.  However,  exposure  to  a  higher  ethanol  doses  (similar  to 

alcoholics level) inhibited the miR-9 expression (Adachi et al., 1991; Sathyan et al, 2007), 

suggesting  the  dose  dependent  effects  of  this  drug.  The  miR-9  is  implicated  on  the 

regulation of BK channels  that  contributes  to neuron excitability,  modulation  of action 

potentials and neurotransmitter release (Shipson et al., 1999; Hu et al., 2001 and Martin et 

al., 2004). Different isoforms of BK channels have different sensibility to ethanol and the 

most sensible isoforms are targeted by miR-9. Cosnequently, loosing sensibility to ethanol 

could explain why alcoholics increase the alcohol intake to achieve the drug reward effects 

(Kalant,  1998).  Other  miR-9  targets  are  also  implicated  in  the  molecular  response  to 

ethanol intake, for example, mutations on the dopamine receptor 2 (DRD2) was associated 

with higher risk of ethanol abuse (Volkow et al, 2006), the GABA(A) receptor contributes 

to the development of dependence (Sander et al., 2009) and the SYNJ1 regulates synaptic 

vesicles recycling, which is important for synaptic plasticity (Nemoto et al., 2001). miR-9 
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also target  CLOCK genes important  to the regulation of circadian cycles  (reviewed by 

Pietrzykowski, 2010).

 Ethanol  effects  also  seem to  affect  miRNAs involved  in  the  neurogenesis,  by 

counter-balance  the  ratio  between  undifferentiated  neuronal  stem  cells  (NSCs)  and 

progenitor cells (NPCs) responsible for the generation of most adult neurons (Bayer et al., 

1993).   The  miR-21,  miR-335  and  miR-9  are  implicated  in  control  of  NSCs/NPCs 

proportion (Miranda et al., 2010). In normal conditions, the anti-apoptotic miR-21 and the 

pro-apoptotic  miR-335  counter-balance  cell  proliferation  and  cell  survival  (Figure  4). 

Under ethanol influence, expression of miR-21 and miR-335 is repressed (Xu et al., 2009). 

Theoretically, block of anti-apoptotic miR-21 should result in apoptosis but, the block of 

pro-apoptotic  miR-335  not  only  increases  cell  proliferation  but  also  repress  apoptosis 

mediated by miR-21 (Sathyan et al., 2007). The resulting phenotype is an increase on cell 

proliferation,  inducing  differentiation  of  NSC without  cell  death.  The  miR-9 was  also 

implicated in NSC fate by targeting to Foxg1 in cajal-retzius cell (Shibata et al., 2008) and 

in the differentiation of embryonic stem cell (Krichevsly et al., 2006). The simultaneously 

expression of miR-21, miR-135 and miR-335 also targets  Jagged-1, a notch ligand and the 

RNA binding protein ELAVL2/HuB implicated in neuronal identity (Sathyan et al., 2007).

Large screening of liver  miRNAs found that ethanol  modifies the expression of 

~2% of analyzed miRNAs. Deregulated miRNAs were related to lipid homeostasis  and 

inflammatory pathways (Dolganiuc et al., 2009). Alcohol liver disease (ALD) is common 

in  heavy  drinkers  (Burbige  et  al.,  1984)  and  it  is  hypothesis  that  gut  leakiness  and 

endotoxins invasion facilitate ALD onset (Keshavarzian et al., 2009). Integrity of intestine 

gut is assured by adhesion molecules. Ethanol increased the miR-212 level which is related 

to  disruption  of  thigh  junction  protein  ZO-1 (Tang et  al.,  2008)  and  thus  loss  of  cell 

adhesion. Those are some examples of how ethanol regulates miRNAs and the phenotypic 

effects of this deregulation. Having in mind that each miRNA can regulate hundreds of 

genes  and that  a  single  gene  can  be  targeted  by different  miRNAs,  it  is  important  to 

experimental validate the predicted miRNA targets in order to achieve a higher knowledge 

of miRNA regulation and function.
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Figure 4: Regulation of neural fate by miR-21 and miR-335 under normal physiological conditions 
and  ethanol  effect.  Ethanol  induces  differentiation  of  neural  stem cells  without  affecting  cell  
viability. NSC: neural stem cell; NPC: neural progenitor cell (Miranda et al., 2010)

3. Neurobiology of addiction

The  chronic  alcohol  administration  induces  adaptive  changes  manifested  as 

tolerance  and  addiction  (Damodaran,  2006)  that  reflect  the  neurotoxic  effect  of  this 

substance.  The development of  tolerance in manifested as lost of sensitivity to a certain 

drug  doses  (Torregrossa  and  Kalivas,  2008)  and  reflects  the  profound  neurological 

modifications  induced by drug intake (Torregrossa and Kalivas,  2008), while addiction 

resumes  the  vulnerability  to  relapse  after  long  periods  of  drug  abstinence.  However, 

tolerance can be triggered by a single episodes of drug intake (Morato and Khanna, 1996). 

The  mechanisms  inherent  to  tolerance  development  are  similar  to  those  implicated  in 

learning and memory acquisition. The effect of ethanol on brain “communicators” – the 

neurotransmitters glutamate, dopamine, opiates, serotonin and Gamma-aminobutyric acid 

(GABA) will be discussed below (Koob and Le Moal, 2001).
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Glutamate
Glutamate  is  the  major  neurotransmitter  implicated  in  learning  and  memory 

acquisition  (Riedel  et  al.,  2003).  It  is  released  in  synaptic  gaps,  where  it  targets  the 

glutamate receptors N-methyl-D-aspartic acid (NMDA), α-amino-3-hydroxyl-5-methyl-4-

isoxazole (AMPA) and metabotropic glutamate (mGlu) (Ward et al., 2009). The binding of 

this neurotransmitter to the NDMA receptors activate the Long Term Potentiation (LTP) 

mechanism, which is a synaptic mechanism that allows for memory formation. Briefly, the 

activation  of  NMDA receptors  increases  the  calcium ion  (Ca2+)  influx,  leading  to  the 

activation of calcium dependent proteins. These calcium proteins enhance the production 

of nitric oxide (NO) by activation of nitric oxide synthase (NOS). NO acts as a retrograde 

messenger  by  diffusing  through  the  membrane  to  the  pre-synaptic  terminal  and  the 

repetitive stimulation of pre-synaptic cells results in increased synaptic strength, leading to 

the increase of LTP and thus memory formation (Bliss and Collingridge, 1993) (Figure 5). 

However,  excessive  glutamate  release  is  also  a  major  cause  of  neuronal  cell  death 

(Stelmashook et al., 2010). Generation of NO leads to mitochondrial depolarization and 

activation of Na+  influx, leading to a unsustainable increase in ATP demand, microtubule 

depolymerization, mitochondrial damage and dendritic beading (Greenwood et al., 2007). 

Furthermore,  the  calcium influx also stimulates  phospholipase  (PLA) to generate  ROS 

(Murphy et al., 1989; Choi, 1992) (Figure 6).

Several  studies  have  described  an  increase  on  glutamate  release  in  nucleus  

accumbens (NAc) in  animals  submitted  to  binge  drinking (Szumlinski  et  al.,  2007).  A 

decrease  in  the  sensitivity  of  NMDA  receptors  occurs  during  ethanol  detoxification 

(Kumari and Anji, 2005) despite of the apparent increase in the number of receptors. Other 

studies show no differences in the density of NMDA receptors after consumption of high 

amounts  of  ethanol  (Crews  et  al.,  1996).  A  study  of  Khanna  and  colleagues  (1993) 

demonstrated that rapid tolerance to ethanol can be blocked using NOS antagonists.
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Figure  5: LTP mechanism mediated  by retrograde  nitric  oxide in  the  hippocampus  glutamate  
synapse.  The excitatory neurotransmitter glutamate activates AMPA and mGluR leading to the 
recruitment of NMDA receptor activity. Ca2+ enters into the post-synaptic site via NMDA receptor 
channels,  activating NOS production. The NO diffuses into the pre-synaptic neuron where it is 
absorbed  by  a  group  of  NO-sensitive  guanylate  kinase  enzyme  which  in  turn  triggers  the 
production of cyclic GMP, increasing neurotransmitter release. mGluR:  metabotropic glutamate 
receptors; IP: inositol phosphate; IP3: inositol triphosphate; PDE: phosphodiesterase; NO: nitric 
oxide; NOS: nitric oxide synthase (Adapted from Holscher, 1997). 

Figure  6:  Cytotoxic  effect  of  excessive  glutamate  release  (Ward  et  al.,  2009).  The  glutamate 
released on the synaptic cleft stimulates AMPA and NMDA receptors inducing Na+ and Ca2+ influx 
respectively.  The  calcium will  bind  to  calcium binding  proteins  that  activate  NO synthase  to 
produce NO and also activate PLA to produce ROS.
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Dopamine
Dopamine  is  an  excitatory  molecule  that  plays  an  important  role  on  the 

motivational and reinforcement mechanisms related to behaviour, by interacting with the 

mesolimbic system. The mesolimbic system includes the brain amygdala,  hippocampus, 

nucleus  accumbens (NAc),  ventral  striatum,  ventral  diencephalon  (including  basal 

forebrain, ventral tegmentum, and hypothalamus), as well as cortical areas (Oscar-Berman 

and  Bowirrat,  2005).  Alcohol  increases  dopamine  release  in  the  mesolimbic  system, 

particularly on the NAc and also increases the firing rate of dopaminergic frontal cortex 

neurons (Heidbreder and De Wittem, 1993; Weiss et al., 2003 and Gatto et al., 1994). 

Defects in dopaminergic circuits, including the death of dopaminergic neurons, are 

related to the development of drug addiction and a variety of neurodegenerative diseases 

such  as  schizophrenia,  attention-deficit,  hyperactivity  disorder  and  Parkinson  disease 

(Silitoe et al., 2008).

Stimulation of dopamine release in the NAc and ventral tegmental area (VTA) were 

observed in rats submitted to self-administration of ethanol (Weiss et al., 1993 and Gatto et 

al., 1994). In chronic alcohol abuse, large amount of alcohol are need to achieve the false 

sensation of pleasure induced by ethanol intake. Moreover, during withdrawal, dopamine 

levels  decrease  dramatically  which  may  cause  disphoria  and  depression  (Wang  et  al., 

2009).

Serotonin
Serotonin  is  an  excitatory  neurotransmitter  responsible  for  several  aspects  of 

behaviour: mood; sleep; pain; appetite (Carlson et al., 1998). A pulse of alcohol increases 

the serotonin release in the CNS, but repeated alcohol consumption leads to decrease in 

extracellular serotonin concentrations in the NAc (Szumlinski et al., 2007). Considering 

serotonin receptors,  the  5-HT3 receptor  is  described as  a  strong ethanol  target  and the 

presence of ethanol  deregulates this receptor,  probably through the interaction with the 

receptor proteins (Lovinger, 1999; Rood et al., 2007).

Opiates
The  opioid  system modulates  pain,  mood  reinforcement  and  response  to  stress 

(Buttner, 2010). Alcohol administration enhances the opioid activity and the result is the 
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increase in endogenous opiates (Herz, 1997). In occasional alcohol consumption events, 

opiates can modulate the dopamine release, contributing for the activation of reinforcement 

pathways (Herz, 1997). However, in chronic ethanol users, the levels of endorphins (opiate 

molecules) are low (Wand et al., 1993) which can explain some of the physical dependence 

symptoms.

4. Zebrafish: a model organism for studying alcohol addiction

Zebrafish (Danio rerio) is a freshwater teleost fish that emerged in the last twenty 

years as a promissory model organism for biological research (Grunwald and Eisen, 2002). 

The fish small size, short life cycle (larvae hatch in 5 days and reach sexual maturity is 3 - 

4 month),  high fertility rate  (each female  can produce c.a.  200 eggs per day),  embryo 

transparency that  allows  the  monitorization  of  embryo  development,  together  with  the 

genome similarity to other vertebrates, are some of the characteristics that make this fish so 

appreciated  by  scientific  community  (Lawrence,  2007)  (Figure  7).  At  the  beginning, 

zebrafish was mainly used by embryologist (Kimmel et al., 1995) and geneticist in forward 

genetic studies (Streisinger et al., 1981). The extensive mutagenesis allow large screen of 

mutations in genes implicated in development (Driever et al.,  1996). Nowadays reverse 

genetic tools, like antisense morpholino oligonucleotide injection and in situ hybridization 

are  also  very  useful  to  gain/loss  function  studies.  Moreover,  methods  for  large-scale 

screening  as microarray analysis increased the researchers interest for this organism and 

justify why zebrafish is widely used in cancer research (Feitsma et al., 2008), in vivo drug 

discovery (Zon and Peterson,  2005), development (Driever, 1996; Thisse and Zon, 2005), 

neurobiology  (Elicerci  et  al.,  2011),  toxicology  (Adrian  et  al.,  2005)  and  aquaculture 

(Dahm and Geisler, 2006).

Zebrafish shares considerable similarity with mammals in both genetic background 

(Liu et al., 2004) and organ structures (Guo, 2009) and demonstrates higher capacity to 

throughput high screenings when compared to rodents (Ninkovic et al.,  2005). A set of 

behavioural tests have also been established to allow the study of complex behaviours such 

as addiction, anxiety, learning capacity and memory (Ninkovic et al., 2005; Gerlai et al., 

2006).  Zebrafish  show  positive  response  to  alcohol  by  exhibiting  conditioned  place 

preference and alteration of genetic function (Killy et al., 2008). These results contributed 
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to validate the use of zebrafish as a model to study addiction and the implicated alterations 

on neuronal function. Still attention should be paid when using adult fish to study addiction 

because  they  are  sensible  to  handling  and  because  the  breeding  procedures  are  more 

complex than in larvae (Ninkovic et al., 2005).

Figure 7: External morphology of adult zebrafish  (Danio rerio)
http://www.focusonnature.be/keywords/zebrafish (17-12-2010)

Figure 8: Zebrafish larvae brain. MHBC: midbrain-hindbrain barrier
http://web.wi.mit.edu/sive/pub/Ongoing%20Projects2.htm (17-12-2010)
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Figure 9: Sections on  adult  zebrafish brain.  A) Lateral view: TE) Telencephalon; TO) tectum 
opticum; CB) corpus cerebelli; CR) crista cerebellaris; (XL) lobus vagi; MO) medulla oblongata; 
Arrow) Hypothalamos. B) Dorsal view. C) Ventral view (Adapted from Winkler et al., 2003).
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5. Microarrays: a useful platform for miRNA expression profiling.

Large screening studies require high throughput technologies. miRNA microarrays 

based on hybridization between sample miRNAs and complementary nucleotide sequences 

(probes) are normally used for miRNA profiling. The hybridization principle is used in 

several molecular biology techniques, namely in Southern and Northern blotting. However 

while blotting techniques only analyse few fragments, microarrays analyse thousands of 

molecules simultaneously (Figure 10) (Southern, 2001).

Microarray assay is semi-quantitative methodology, because hybridization signal is 

just  indicative  of  the  amount  of  molecules  present  in  our  sample  and  there  is  no 

quantification of the number of molecules that have been expressed. In other words, the 

measured intensities of each array correspond to relative expression values. 

Figure  10:  Comparison  on  molecular  techniques  available  for  the  study  of  RNA  expression 
profiles. The graphic highlights the high throughput capacity of microarrays  in gene expression 
studies.  A large number  of  molecules  are  detected in  a considerable  huge number  of  samples 
(adapted from Mirnics et al., 2001).
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6. Aims

miRNAs are critical regulators of cell physiology, particularly on cell proliferation, 

differentiation  and  plasticity.  Ethanol,  by  affecting  miRNA  expression  will  in  turn 

destabilize those fundamental cell processes. By comparing the expression values of basal 

treatment (no alcohol) with chronic and short-acute ethanol exposure we aimed to verify if 

alcohol  affects  miRNAs expression,  explore the impact  of different  patterns of ethanol 

exposure on zebrafish miRNA expression profile and give insights on the possible effects 

of deregulated miRNAs on brain function.
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II. Material and methods

30



microRNA expression profile of Danio rerio brain exposed to ethanol

1. Zootechnical conditions and experimental animals

Wild-type (AB strain) zebrafish were maintained at 28°C ± 0.5ºC in osmosis water 

(SGwaters) on a 14:10h (light:dark) photoperiod in a ZebTech (Tecniplast) closed flow-

through  system  .  The  system  includes  a  set  of  3.5  litre  tanks  and  a  combination  of 

biological,  mechanical  and carbon filters.  System water  sterilization  is  assured  by UV 

light.  One year  old  adult  Zebrafish  (Danio  rerio)  were  used  for  the  ethanol  exposure 

assays. The same number of males and females were used in the assays, because females 

are typically heavier than males.

2. Experimental design - ethanol exposure test

Males  and  females  were  kept  separately  and  placed  in  2.5  L transparent  tanks 

(Tecniplast),  where  they  stayed  for  acclimatizing.  Fishes  were  kept  in  tanks  with 

continuous air flow. Absolute ethanol (PanReac) was used for the preparation of ethanol 

dilutions. All solutions where prepared in system water. Solutions were replaced daily at 

the same time (14h:00m ± 15 minutes) and fishes were fed twice a day (10h:00m and 

17h:00m) with commercial fry food ZM400 (ZM). 

To perform the ethanol exposure assay, six groups of twelve fishes (50% females; 

50%  males)  were  exposed  to  a  range  of  ethanol  (EtOH)  concentrations  (v/v)  after 

accommodation.

To study the effects of chronic exposure to a continuous ethanol concentration, a 

control group (6 females + 6 males) was maintained in tanks containing system water with 

0% EtOH, while the remaining group where kept on a tank with 0.25% EtOH for 15 days.  

After 15 days of chronic exposure, fishes were dissected and brains were removed, fast 

frozen with liquid nitrogen and stored at -80ºC until RNA extraction.

To evaluate the effects of an acute exposure to higher ethanol concentrations, the 

pre-adapted fishes were placed on distinct ethanol concentrations. First, all the 5 groups of 

twelve fishes (6 females + 6 males) were placed in 0.25% EtOH for 15 days and on the last  

day each group was placed on a different concentration, described as follows: 0% System 

water;  0.25% EtOH, 0.5% EtOH; 1% EtOH and 1.5% EtOH. The concentrations were 

chosen based on previous data regarding zebrafish behavioural tests (Gerlai et al., 2000; 
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Duglos  et  al.,  2003)  and  alterations  on  gene  expression  (Kily  et  al.,  2008)  and 

neurotransmitters levels (Chatterjee and Gerlai, 2009).  After 1h of exposure to these new 

concentrations,  fishes were dissected and brains  were removed,  fast  frozen with liquid 

nitrogen  and  stored  at  -80ºC  until  RNA  extraction.   All  the  exposure  assays  were 

performed in duplicate.

3. RNA extraction

3.1. RNA isolation
Total  RNA  extraction  was  performed  using  TRIzol  reagent  (Invitrogen),  a 

combined solution of phenol and guanidine isothiocyanate, according to the manufacturer 

protocol.  This  method  is  a  modification  of  the  RNA  isolation  protocol  developed  by 

Chomczynski  and Sacchi (1987) that allows for fast  and easy isolation of high quality 

nucleic acids. The presence of TRIzol during homogenization avoids RNA degradation by 

RNases,  since guanidine isothiocyanate is a chaotropic agent and induces loss of three 

dimensional structures of macromolecules helping cell lysis and preventing ribonuclease 

activity.  One millilitre  of  TRIzol  reagent  was added to brain tissues  and homogenized 

using a Precellys 24 rotator (Bertin) and zincronium oxide spherical beads. Samples were 

subjected to three cycles of 10 seconds at 5000 rpm, followed by 5 min incubation at RT to 

complete tissue dissociation. Samples were always kept on ice between homogenization 

cycles.

For  RNA extraction,  200 µl  of  chloroform (Merck)  was added to  the  samples, 

mixed and centrifuged at 12000g for 15 minutes at 4ºC. After centrifugation, total RNA 

remained in the upper aqueous phase while most of DNA and proteins remained either in 

the  interphase  or  in  the  lower  organic  phase.  Supernatants  were  collected  into  new 

eppendorf  tubes  and 500 µl  of isopropanol  (Sigma)  was added for RNA precipitation. 

Samples were incubated for 10 min at RT with isopropanol and then centrifuged at 12000g 

for 10 min at 4ºC. After centrifugation, the supernatant was discarded and the pellet was 

washed with 1 ml of ice-cold 75% ethanol (Merck) and centrifuged at 7500g for 5 min at 

4ºC.  Ethanol  was  discharged  and  the  pellet,  often  invisible,  was  allowed  to  dry  for 

approximately 2 min on a speed vaccum dryer (ThermoFisher) in medium temperature. 

The  dry  pellet  was  ressuspended  in  20  µl  of  RNase-free  water  to  achieve  a  final 
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concentration of ≈ 10 µg/µl. RNA concentration was measured using a  NanoDrop-1000 

spectrophotometer (NanoDrop).

3.2. RNA purification
In order  to  remove possible  DNA contamination,  total  RNA was digested  with 

DNase  I  -  amplification  grade  (Invitrogen)followed  by  phenol  extraction.  For  DNA 

digestion, 1 µl of DNase I (10000 units/mg) and 2 µl of 10X DNase I Reaction Buffer (200 

mM Tris-HCl (pH 8.4), 20 mM MgCl2, 500 mM KCl) were added to 17 µl of sample. 

Samples were incubated at RT for 40 min to allow digestion. After incubation, 1 µl of 

EDTA was added and samples were incubated for 10 min at 65ºC to inactivate the enzyme.

Phenolic extraction (1:1) was performed after adjusting sample volumes to 300 µl 

with RNase-free water. 300 µL of phenol:chloroform:isoamyl alcohol (Sigma) was added 

to the RNA samples. Tubes were shaken for 15 sec and then centrifuged at 12000g for 15 

min  at  4ºC.  Supernatants  were  collected  into  new  eppendorf  tubes  and  300  µl  of 

chloroform was added. Tubes were again shaken and centrifuged in the same conditions. 

RNA kept in the aqueous phase was collected into new eppendorf tubes and precipitated 

overnight at -80ºC with 1 ml of absolute ethanol and 20 µl of sodium acetate 3M, pH 5.2. 

After  precipitation,  RNA  samples  were  centrifuged  at  12000g for  15  min  at  4ºC. 

Supernatants were discarded and the RNA pellet was washed with ice-cold 75% ethanol, 

re-centrifuged and dried as described before using “RNA isolation step”, after isopropanol 

addition.  The RNA pellet  was  reconstituted  in  20 uL RNase-free  water  and the  RNA 

concentration was determined using the NanoDrop-1000 spectrophotometer (NanoDrop).
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4. miRNA microarrays

4.1. RNA quality assessment
RNA integrity was assessed using the Agilent RNA 6000 nano kit and the 2100 

Bioanalyzer  (Agilent).  Samples  were  submitted  to  capillary  electrophoresis  and  RNA 

fractions  were  detected  either  as  gel  bands  or  as  intensity  peaks  histograms.  For  this 

analysis, 1 µl of RNA was diluted in RNase-free water to achieve the final concentration of 

25 - 500 ng/µl RNA. The RNA samples were denaturated for 3 min at 85ºC and 1 µl of 

RNA was loaded into the chip. Only samples with RNA Integrity Number (RIN) above 7.0 

were considered for microarray analysis.

4.2. miRNA microarray production
The miRNA microarrays  used were designed and manufactured  in  the National 

DNA-Microarray  Facility  located  in  the  Department  of  Biology  of  the  University  of 

Aveiro.  The  microarray  chip  (miRNAChip_MS_V1)  contained  a  total  of  1164  probes 

spotted in quadruplicate onto Nexterion E slides (SCHOTT) using a MicroGrid II compact 

spotter (Digilab Genomic Solutions). Printed slides were further processed according to 

manufacture’s  recommendations.  NCode™  Multi-Species  miRNA  probe  set  V2  from 

Invitrogen was used to  miRNAChip_MS_V1 production.  This  probe set  contains  1140 

optimized probes targeting all known mature miRNAs deposited in mirBase 9.0 for human, 

mouse,  rat,  Drosophila,  C.  elegans,  and  zebrafish  and  also  mismatch  controls  for 

monitoring hybridization specificity and the NCode™ Positive control for labelling quality 

control and easier spot finding. In addition, we have also included in the probe set 24 novel 

dre-miRNAs identified by parallel DNA pyrosequencing (Soares et al., 2009).

4.3. miRNA labelling and hybridization
Total RNA was labelled with the fluorophore Cy3 using the ULSTM   (Universal 

Linkage  System)  microRNA  labelling  kit  (Kreatech)  according  to  the  manufacturer´s 

protocol. The ULS  is a nonradioactive technology for labelling and detection of nucleic 

acids.  This  method  is  based  on the  binding  of  a  detectable  molecule,  a  complex  that 
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includes a fluorophore and a platinum (II), which binds on N7 position of guanine residue 

of nucleic acids. 

Two micrograms  of  total  RNA (Vt=17 µl)   was incubated  in  2 µl  of  labelling 

solution 10X plus 2 µl of Cy3-ULS for 15 min at 85ºC. In oder to remove non-reacted dye 

molecules,  samples  were  filtered  thought  KREApure  columns  previously  prepared  by 

centrifugation for 1 min at 16000g. Eluted solution contains the labelled RNA, including 

miRNAs. Dye incorporation was monitored by UV-visible spectroscopy and the efficiency 

of labelling (DoL) was determined using formula 1. DoL levels should be between 1 – 

3.6% (Kreatech application notes).

Formula 1: DoL (%) =   

[Cy3]: pmol/µl

[Nucleic acid]: ng/µl

Labelled RNA (20 µl) was incubated for 3 min at 85ºC with 83 µl of preheated 3X 

hybridization buffer plus 84.5 µl of RNase-free water. The mixture was then incubated on 

ice for 1 min and spin-down to collect the sample in the bottom. Afterwards, 62.5 µl of 

KREAblock 4X solution was added to the previous mixture followed by 1 min incubation 

on the dark at RT. Samples were hybridized at 42ºC for 16h.

After  hybridization,  microarray  slides  were  disassembled  with  a  low stringency 

wash solution (LSWS) followed by a high stringency wash solution (HSWS). Microarray 

slides were immersed in LSWS to remove the gasket slides and then washed during 30 sec 

in stirred LSWS solution. Slides were then quickly placed on HSWS and washed twice in 

stirred solution for 30 sec.  Slides were dried with compressed nitrogen and immediately 

scanned using the Agilent G2565AA microarray scanner (Agilent).
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5. Data analysis

The miRNA microarray  images  were analyzed  using  QuantArray v3.0 software 

(PerkinElmer).  The pixel  intensity  of  spots  was  processed,  background  subtracted  and 

quantified.   The saturated or incorrectly printed spots were excluded from the analysis 

(Figure 11). The median and standard deviations of each probe were calculated considering 

the  fluorescence  intensities  of  the  quadruplicated  spots.  The  median  and  standard 

deviations  were  first  normalized  using  BRB-ArrayTools  v3.4.0  software 

(http://linus.nci.nih.gov/BRB-ArrayTools.html)  and  then  combined  with  the  NCode 

internal control value. Normalized data were filtered to sort Zebrafish miRNAs and used to 

compare  the  miRNA  expression  patterns  in  different  conditions  by  ratio  calculation 

(Intensitytreatment/Intensitycontrol). Differentially expressed miRNAs were determined using the 

MeV - MultiExperimental Viewer software (TM4 microarray software suite) by comparing 

group means using pair Student´s T-test (p=0.05) and Bonferroni correction.

Figure 11: Example of spots excluded from the analysis (red squares)

6. Target Prediction

It is the ability to target multiple genes that allows the relatively small population of 

different miRNAs to exert their central role in regulating cell function and homeostasis. 

Several databases and algorithms are available for miRNA target prediction. Microcosm, 

miRanda, and EIMMO are databases for prediction of miRNA targets in Zebrafish. To 

understand  the  biological  significance  of  deregulated  miRNAs,  putative  targets  of  up-

regulated miRNAs (miR-9, miR-23a, miR-30e, miR-133a, miR-181a, miR-736, miR-737) 
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and down-regulated miRNAs (miR-16a,  miR-181b, miR-145) were identified using the 

databases  mentioned  above.  Only  putative  targets  that  were  common  to  at  least  two 

prediction  algorithms  for  the  same  miRNA  were  considered.  DAVID  Bioinformatic 

Resources 6.7 tool was used for gene functional classification and pathways (Huang et al., 

2009).
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III. Results
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1. RNA integrity

Before  performing  the  microarray  assay,  samples  were  submitted  to  gel 

electrophoresis  to  assess  RNA integrity.  Most  of  the  RNA is  ribosomal  18S and 28S 

rRNA. Therefore, it is assumed that analysis of these rRNAs summarize the stability of 

total RNA samples. Gel electrophoresis (Figure 12) allows one to distinguish the 18S (2 

Kd) and 28S (4 Kd) and identify good quality samples.

Figure  12: RNA  fractionation  using  gel  electrophoresis.  The  two  dark  bands  (black  arrows) 
represent 28S rRNA (~4000 nt) and 18S rRNA (~2000 nt). The first column – L – is load with the 
molecular marker and the remaining (1 to 5) are loaded with RNA samples. Sample-1 shows bad 
quality RNA (red square) and samples 2-4 contains good RNA (green square). 

L                 1               2                   3                 4           
     5

28S

18S

Legend
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Figure 13:  Histogram of fluorescence intensity of low quality RNA sample. The emission peaks 
(~2000 and ~4000 nt) represent the rRNA subunits. The ratio between rRNA 28S:18S is lower than 
1, as a consequence of rRNA 28S degradation into small fragments.

Figure 14: Histogram of fluorescence intensity of a high quality RNA sample. The two clear peaks 
of emission represent the rRNAs . The ratio between rRNA 28S:18S should be ~2 however, >1 
ratio <2 are acceptable for RNA isolation from living tissues.
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2. Effect of chronic ethanol exposure in miRNA profile

To  test  if  chronic  exposure  to  low  ethanol  concentrations  affects  miRNA 

expression, we performed miRNA microarray analysis of zebrafish brains isolated from 

fishes that were not exposed to ethanol or that were chronically exposed to 0.25% ethanol 

during a 15 day period. Hybridization intensity of miRNA from basal (0% EtOH) (Control 

group) were compared to the data obtained from the chronic ethanol group (0.25% EtOH).

After RNA hybridization and data normalization, hierarchical clustering (Pearson 

correlation,  average  linkage)  of  hybridization  intensities  was  performed  to  assess  the 

similarity between samples and among replicates (Figure 15). The replicates from chronic 

exposure cluster together, indicating similarity within replicates.

The differences in miRNAs expression profile between chronic and basal group 

was assessed using a paired t-test (p<0.05). Significant differences in the expression of 

thirty two miRNAs were found (Figure 7 e 8).  More specifically,  twenty-nine miRNAs 

showed  expression enhance,  while three exhibited decrease in the expression (see table in 

Annex A). The up-regulated miRNAs: miR-202, miR-181a, miR-27c, miR-373 and miR-

30e duplicated their expression in chronic ethanol exposed fishes when compared to basal, 

while  the  remaining  up  and  down-regulated  miRNAs  increased  or  decreased  their 

expression in, at least, 1.5 times comparing to basal. 
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Figure 15: A) Hierarchical cluster (Pearson correlation, average linkage) of chronic alcohol and 
basal  samples.  The  tree  was  generated  by  comparing  the  miRNA  intensity  values  (log2 

transformed) of basal (0% EtOH) and chronic (0.25% EtOH) groups. The two replicates of chronic 
group (chronic  R1 and chronic  R2)  cluster  together,  however  the  intensities  of  the  first  basal  
replicate (Basal  R1) are more similar  to the chronic group than with the other basal  replicate.  
Colours in the map indicates normalized intensity values:  green (intensity value below 0);  red  
(intensity value above 1) and black (intensity value 0).  B)  Zoom-in with some of the significant 
deregulated miRNAs. 
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Figure 16: Relative expression ratios of significant deregulated miRNAs  A) Relative expression 
ratios of significant up-regulated miRNAs after 15 days of chronic ethanol exposure (0.25+0% 
EtOH) (p<0.05). The expression ratios were calculated by dividing the mean intensity of chronic 
by basal values. The twenty eight up-regulated miRNA (red bars) have expression ratios above 1.5. 
B) Relative expression ratios of selected miRNAs that were used for functional analysis.
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Figure  17:  Relative  expression  ratios  of  significant  down-regulated  miRNAs  after  15 days  of  
chronic ethanol  exposure (0.25+0% EtOH) (p<0.05).  The expression ratios were calculated by 
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dividing the mean intensity of chronic by basal value. The three down-regulated miRNA (miR-145, 
miR-16a, miR-181b) have expression ratios below 0.5.
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To understand the biological consequences of deregulated miRNAs, the putative 

target for some deregulated miRNAs (miR-9, miR-23a, miR-30e, miR-133a, miR-181a, 

miR-181b, miR-145, miR-16a) were predicted using bioinformatic tools. The functional 

analysis shown that most of these miRNAs may target genes implicated in the regulation of 

cell cycle and cell viability, neurogenesis and in other cell functions like cellular adhesion, 

vesicular trafficking and lipid biosynthesis (Table 2). Most miRNAs, both under or over 

expressed,  were  somehow  related  to  the  regulation  of  MAPK  and  Notch  signalling 

pathways.  The  MAPK phosphorylation  cascade  establishes  the  cellular  communication 

between extracellular stimuli into the nucleus, where it controls gene expression of several 

transcriptional  factors  that  regulate  cell  proliferation,  differentiation,  inflammation  and 

apoptosis. The Notch pathway also controls gene expression, however in a more strictly 

context as activation of this  pathway requires cell-cell  interaction.  In adult  cells,  notch 

modulates  regeneration  by  inducing  differentiation  of  neural  stem  cells, 

oligodendrogenesis,  apoptosis  and  angiogenesis.  Therefore,  alcohol  induces  strong 

alterations on cell physiology by modulating transcription activity in the cell nucleus.
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Table 2: Functional classification of the putative target genes (DAVID) of deregulated miRNAs 
and their  role in biological processes and signalling pathways.  DR: Down-regulated |  UP: Up-
regulated

miRNA Predicted target gene miR status presumable phenotype

miR-9 dusp6 UP stimulates proliferation

miR-23a fgfr4 UP inhibitis proliferation
miR-30e bdnf UP inhibit synaptic function
miR-16a bad DR increases apoptosis

miR-30e dll4 & jag2 UP inhibits notch
miR-9 her6 UP decrease regulatory genes
miR-133a rbpjb UP decrease regulatory genes

mir-181a dll4 UP inhibits notch
miR-16a dla DR stimulates notch

miR-145 dll4 DR stimulates notch

miR-145 zic2b DR negatively modulates hg

miR-16a pik3c3 DR neural homeostasis / vesicular trafcking

mir-181b atp1b1a  DR facilitates Na2+ reuptake

mir-133a aldh1a(a) UP aldh1a modulates retinoic acid

Lipid biosynthesis

miR-133a elovl6 UP early diabetes

Celular adhesion
miR-133a nadl1.2 UP no relashionship fould
miR-181a itga5 UP invasiveness in tumor cells
miR-145 ptk2.1 DR invasiveness in tumor cells

Cardiac muscle contraction

Mitogen activated protein kinase pathway (MAPK)

Notch signaling pathway

Hedgehog signaling pathway

Endocytic and Autophagy pathways
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3. Effect of acute ethanol exposure in miRNA expression of pre-adapted fishes

A pulse of a different ethanol concentration was given to the chronic exposed fishes 

after the 15th day of exposure. Each group received an extra dose of ethanol, increasing the 

ethanol concentration to 0.25%, 0.5%, 1% and 1.5%. After 1h of exposure to the acute 

pulse, zebrafish brains were extracted and RNA was prepared for microarray analysis.

The effect of the short on miRNAs expression of pre-adapted fishes was accessed 

by comparing  the  miRNA profile  of  chronic  exposure concentration  (0.25+0%) to  the 

0.25+0.25%, 0.25+0.5%, 0.25+1% and 0.25+1.5% EtOH groups.

The  analysis  of  hierarchical  clustering  (Pearson  correlation,  average  linkage) 

reveals  no  clear  cluster  among  the  different  groups  (Figure  18).  This  result  could  be 

indicative that one hour of acute exposure is not sufficient to alter the overall expression of 

miRNAs. However,  differences  were detected in the higher  ethanol  group (1.5%). The 

0.25+1.5% EtOH  R2  group  belongs  to  the  same  monophyletic  group  (red  square)  of 

chronic,  0.25+0.5% and  0.25+1% R1 conditions,  but  it  has  the  most  different  profile 

comparing to the rest of the groups. The other 0.25+1.5% replicate R1 has also a very 

different profile, which make it belong to a different branch of the tree.

Besides  the  samples  variability,  significant  differences  were  found between  the 

expressions  of  several  miRNAs  but  the  population  of  deregulated  miRNAs  was  not 

sustained throughout all the concentrations tested (Table 3). The expression of miR-23a, 

miR-736 and miR-737 were deregulated in some of the acute concentrations tested (Figure 

19). While miR-737 expression did not vary much with the ethanol increase, miR-23a was 

the only deregulated miRNA found in higher ethanol pulses. miR-23a down-regulation was 

more  pronounced in  the  highest  ethanol  concentration.  On the  other  hand,  increase  in 

ethanol concentration induced miR-736 expression.

 Target prediction analysis shown that miR-737 may be implicated in transcription 

machinery, as gabpa were retrieved as putative targets and miR-23a putative targets fgfr4 

are mostly implicated in cell proliferation. No targets were detected for miR-736.
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Figure  18: A) Hierarchical  cluster  (Pearson  correlation,  average  linkage)  of  chronic  alcohol 
samples  and  acute  ethanol  pulse  samples.  The  tree  was  generated  by  comparing  the  miRNA 
intensity values (log2 transformed) of chronic (0.25+0% EtOH) with acute ethanol exposure groups 
(0.25+0.25%, 0.25+0.5%, 0.25+1% and 0.25+1.5% EtOH). Colours in the map indicate normalized 
intensity values: green (intensity value below 0); red (intensity value above 1) and black (intensity 
value 0). B) Zoom-in showing some of the deregulated miRNAs. C) Zoom of the tree cluster. The 
cluster  shows  no  clustering  among  replicates,  demonstrating  the  high  variability  of  the 
measurement.  The  red  square  indicates  the  closely  related  samples  that  belong  to  the  same  
monophyletic group.
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Table  3:  General  overview  of  miRNAs  deregulated  one  hour  after  the  ethanol  pulse.  All 
comparisons were performed between the chronic ethanol group (0.25+0% EtOH) and the groups  
pre-conditioned in chronic concentration that were exposed to higher ethanol concentrations, at the  
end of the assay.

miR-736 2.770 miR-128 1.881 miR-736 4.241 miR-27a 2.172
miR-454b 2.068 miR-737 0.477 miR-729 1.902 miR-146b 2.005
miR-204 1.820 let-7c 1.670 miR-135b 1.665
miR-206 1.800 miR-193b 1.646 miR-1 1.563
miR-30a 1.632 miR-365 1.569 miR-192 0.494
miR-192 0.412 miR-30d 1.519 let-7b 0.467
miR-30e 0.406 miR-23a 0.498 miR-23a 0.246
miR-737 0.403 miR-737 0.191
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Figure 19: Variation in the expression of deregulated miR-737, miR-23a and miR-736 after acute 
ethanol exposure of pre-adapted fish. The expression ratios were calculated by dividing the mean 
intensity  of  the  acute  condition  by the  chronic  value.  Expression  of  down-regulated  miR-737 
remains  stable  at  low ethanol  concentrations,  decreasing  at  1% ethanol.  The  miR-23a  is  only 
deregulated at higher ethanol concentrations and it  is negatively affected by increasing ethanol  
concentration. On the other hand, enhanced miR-736 expression is observed at 0.25+0.25% and 
0.25+1% of ethanol, with increase miR expression at higher ethanol concentration.
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IV. Discussion & Conclusion
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Alcohol  is  an  addictive  substance  that  induces  neuroadaptation  (Moonat  et  al., 

2010).  The  ethanol  effects  start  with  the  alteration  of  cell  signalling  systems 

(neurotransmitters,  hormones, signalling cascades (Ward et al., 2009)) and activation of 

transcription factors that modulate gene expression (Mayfield et al., 2002), culminating in 

proteome alteration  (Damodaran  et  al.,  2006).  The miRNAs play a  central  role  in  the 

modulation of gene expression and central  nervous system homeostasis.  Therefore,  the 

impact of alcohol on miRNA expression may result in phenotypes that are related to the 

deleterious effect of this drug (Pietrzykowsky et al., 2010). Following this hypothesis, we 

have tested the effect of different ethanol exposure patterns on zebrafish brain miRNA 

profile. Several authors validated this fish as a suitable model to study addiction (Ninkovik 

and Bally-Cuif,  2006)  and molecular  responses  (Jonah and Eisen,  2002).  In  zebrafish, 

ethanol not only modifies the behavioural response (Gerlai et al., 2000) but also affects 

gene  expression  and  elicits  conditional  place  preference  (CPP)  in  presence  of  adverse 

stimuli, which is indicative of dependence development (Kily et al., 2008).

Our results show that chronic alcohol exposure induces expression of twenty-nine 

miRNAs and decreases the expression of three. In particular, expression of miR-9, miR-

23a, miR-30e, miR-133a, miR-181a increases more than 1.5 fold while miR-16a, miR-145 

and miR-181b decreases over 1.5 times. The response of pre-adapted fishes (to the chronic 

concentration) to a higher ethanol doses show distinct expression patterns depending on the 

concentration used.

The effects of chronic ethanol exposure on miRNAs were assessed by continuous 

exposure of adult zebrafish to 0.25% (v/v) ethanol. This concentration was chosen based 

on the  work  of  Gerlai  and collaborators  (2000),  where  0.25% was  the  lowest  ethanol 

concentration that induced alterations in zebrafish behaviour. Although we did not measure 

the  ethanol  concentration  in  water  tanks,  all  solutions  were  replaced  daily  to  avoid 

fluctuations  in  ethanol  concentration  due  to  evaporation.  Our  results  demonstrate  that 

chronic  exposure  to  0.25%  ethanol  significantly  deregulates  32  of  the  243  analysed 

miRNAs (~13% deregulated) (See table in the Annex A). We have selected some of the 

deregulated miRNAs to focus on the biological function analysis.  The chosen miRNAs 

were  expressed  in  zebrafish  brain  or  are   related  to  myogenseis  and  visual  functions 

(Kapsimali et al., 2007; Leucht et al., 2008; Laterza et al, 2009). The exclusion of some up-

regulated miRNAs is mainly due to lack of annotation in databases (in the case of ZF 
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newly described miRNAs) and lack of conservation in humans tissues (miR-27c and miR-

728). However, literature shows that some of these excluded miRNAs (miR-221, miR-139 

and miR-193b) are related to liver cancer (Pineau et al., 2010; Wang et al., 2010; Xu et al.,  

2010);  miR-218a is  expressed in  motor  neurons (Kapsimali  et  al.,  2007);  miR-200b is 

implicated in cell migration (Chan et al., 2010); miR-499 is over-expressed during heart 

failure and miR-210 is indicative of hypoxia conditions (Huang and Giaccia, 2010). The 

remaining miRNAs (miR-202, miR-727, miR-130c, miR-18b* and miR-430) are poorly 

described in the literature but it will be interesting to investigate their role in organisms and 

validate putative targets genes.

To understand how  miR-9, miR-23a, miR-30e, miR-133a, miR-181a, miR-181b, 

miR-145 and miR-16a affect  cell  function  we have  performed  an  in  silico analysis  to 

predict putative target genes. The prediction associates deregulated miRNAs to cell-cycle 

regulation, apoptosis, vesicular trafficking, lipid metabolism, adhesion and modulation of 

transcript  factors  activity,  however  we  did  not  validate  the  predicted  target  genes 

experimentally and references associating those miRNA to the respective cognate gene are 

also  missing.  In  fact,  besides  the  substantial  growth  in  miRNA  research,  the  lack  of 

validated targets genes is an important weakness of the field (Khun et al., 2008; Thomas 

and Lieberman, 2010).

Considering the brain specific miR-9, it is described that this molecule is implicated 

in neurogenesis (Kapsimali et al., 2007, Leucht et al., 2008) and in the control of ethanol 

tolerance by targeting to ethanol sensible BK isoforms (Pietrzykowsky et al., 2008). Our 

array results are in concordance with other authors that describe miR-9 enhancement after 

ethanol  exposure  in  mouse  fetal  brains  (Wang  et  al.,  2009)  and  in  striatal  neurons 

(Pietrzykowsky et al., 2008). Nevertheless, Sathyan et al. (2007) described the opposite 

effect in cultured cortical neurons. Probably these differences are due to the model choice, 

because the brain is a highly regionalize organ and different regions have different cell 

populations  with  specific  functions,  but  can also be  influenced by the  type  of  ethanol 

exposure.  Our  data  also  suggest  the  cytoplasmatic  dual  specific  phosphatase  6  gene 

(dusp6) as a possible target for miR-9. This phosphatase negatively controls the activity of 

signal-regulated kinase (MAPK/ERK), a MAP kinase that activates transcription factors 

that regulates cell cycle and that is also described to be affected by ethanol (Miranda et al., 

2010). Thus, when over-expressed, miR-9 probably increases proliferation by inhibiting 
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dusp6. Nass and colleagues (2009) also observed increase of miR-9 in early-phase brain 

tumours  (Nass  et  al.,  2009).  Increase  of  miR-9  can  also  be  related  to  tolerance 

development,  because this  microRNA targets to alcohol sensitive form of BK channels 

inhibiting the channels activity (neuron excitability, control of neurotransmitters and action 

potentials). This effect can explain why, in addicted individuals, it is necessary to increase 

the ethanol doses to fire the release of certain neurotransmitters and activate the reward 

response.

The miR-23a is  other  brain specific  miRNA that  was up-regulated  in  zebrafish 

brains after ethanol exposure. From the analysis, up-regulation of this miRNA may inhibit 

fibroblast growth factor 4 expression, which may result in reduced cell proliferation. This 

miRNA is also described to induce apoptosis when associated with miR-23a approximately 

27a approximately 24-2 cluster (Chhabra et al., 2009). Together, these results suggest that 

up-regulation of miR-23a repress cell proliferation. Regarding miR-9 and miR-23a, their 

over-expression  result  in  opposite  responses.  These  results  can  be  related  to  ethanol 

deleterious effect in different brain areas responsible for coordination, learning and stimuli 

reception. 

The miR-30e was found to be up-regulated after chronic ethanol exposure. One of 

the possible targets for this miRNA is the brain derived neurotrophic factor (BDNF). Down 

regulation of BDNF after chronic ethanol exposure was previously observed in rats (Jung 

et al., 2010) and it is likely that reduction of BDNF is involved in neurodegeneration and in 

the  development  of  neurological  alcohol-related  disorders  (reviewed  by Moonat  et  al., 

2010).  So,  the  chronic  ethanol  consumption  also  elicit  a  certain  risk  to  develop 

psychological diseases.

We found that  after  chronic ethanol exposure miR-181a was up-regulated while 

miR-181b was down-regulated. Both miR-181a and miR-181b act as tumour suppressor 

factors  in  human glioma (Shi  et  al.,  2008).  Increase in  miR-181a expression  was also 

observed  after  chronic  cocaine  administration  (Chandrasekar  and Dreyew;  2009).  This 

miRNA modulates  synaptic  plasticity  by negatively  controlling  RGS4 (regulator  of  G-

protein),  GRM5 (glutamate  receptor),  GRIA2 (glutamate  receptor,  ionotropic,  AMPA2), 

PI4K2B (phosphatidylinositol  4-kinase type 2 beta) genes (Pietrzykowski,  2010). These 

genes  are  related  to  neurotransmitter  receptors  and signalling  transduction.  It  was  also 

described  that  miR-181a  also  regulates  immune  function  by  modulating  B-cell 
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differentiation  and  target  T-cell  (Okada,  2010).  We  found  that  miR-181a  may  be 

implicated in notch signalling by targeting Delta-like 4 ligand (dll4). Considering that dll4 

targets  immune  cells,  contributing  to  their  differentiation  (Schaller  et  al.,  2007; 

Mukherjee et al., 2009), it is possible that alcohol acts as an immune suppressor agent.
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Considering  the  down-regulated  miRNAs,  apoptosis  is  modulated  by miR-181b 

which represses the pro-apoptotic factor BCL-2 (Zhu et al., 2010). In our case, low miR-

181b levels were observed suggesting that ethanol may have a positive effect on apoptosis. 

Down-regulation of miR-145 under chronic ethanol conditions seems to be implicated in 

Notch and Hedgehog signalling pathways.  The Hedgehog signalling is required for the 

maintenance of progenitor cell populations in some areas in adult brain (Machold et al., 

2003) and also for the oligodendrocyte differentiations (Lu et al., 2000), while the Notch 

pathway is important in cell regeneration (Schwanbeck, 2010). Modulation of proliferative 

capability of multipotent cells by miR-145 was also observed by Cordes and colleagues 

(2009)  and  Chivukula  (2009).  Moreover,  miR-145  knockout  results  in  alterations  in 

smooth  muscle  cells  and  in  the  vascular  system  (Elia  et  al.,  2009)  and  induces  the 

expression of pro-apoptotic c-Myc (Sachdeva et al, 2009). The loss of cell adhesion can 

relate to the capability of miR-145 to induce target junctional adhesion molecule A and 

fascin (Goote et al., 2010). The under expression of miR-16a, inhibits MAPK pathways by 

activating the phosphorilation of bad, a proapoptotic factor that leads to apoptosis through 

caspase activation (Panka et  al,  2006).  Together our findings suggest that,  even at  low 

concentrations,  continuous  alcohol  intake  has  negative  effects  on  CNS.  Ethanol  may 

increase neurodegeneration by decreasing cell proliferation (at least in some brain regions) 

and slows cell  regeneration.  These processes may be regulated by miRNAs. Regarding 

apoptosis,  we  have  conflicting  results,  having  miRNAs  that  may  either  be  related  to 

apoptosis  induction (miR-16a) or repression (miR-9).  As the brain is  a complex organ 

containing regions dedicated to specific functions, this pattern of pro/anti apoptosis may be 

related to neuronal differences. To examine which areas are more affected by apoptosis 

one should do in situ hybridizations with probes against miR-16a, miR-145 and miR-181b 

targeting  different  brain  sections.  Additionally,  chronic  alcohol  exposure  induced  the 

expression of miR-9 and miR-181a that are also related to addiction to other drugs, such as 

cocaine  (Chandrasekar  and  Dreyew;  2009).  So,  these  two  miRNAs  can  be  useful  for 

diagnosing  drug  addiction  and  may  be  used  as  potential  therapeutic  targets  to  treat 

addiction.

The effects  of  acute  pulses  of  ethanol  on miRNA expression were  assessed  by 

exposing pre  conditioned  zebrafish  (0.25% ethanol)  to  different  ethanol  concentrations 

(0.25%; 0.5%; 1%; 1.5%). The data shows high variability between replicates and between 
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samples. This may suggest that one hour of high ethanol exposure is not enough to induce 

strong mirnome  destabilization  and highlights  the  necessity  to  increase  the  number  of 

replicates in future analysis. The duration of acute pulse exposure was defined based on a 

time-course assay where highest brain level of dopamine and serotonin was achieved one 

hour after ethanol exposure (Chatterjee and Gerlai, 2009). The acute-pulse concentrations 

were chosen based on previous behavioural studies (Gerlai et al., 2006) that show some 

alteration on the extent of behavioural response in fishes pre-exposure to chronic 0.25% 

ethanol and then exposure to acute ethanol concentration. Despite the variability observed, 

deregulated miRNAs could be identified. Distinct miRNA expression profiles were found 

in different acute pulses. This complicated the biological functional analysis and indicates 

that each concentration may affect cells in specific ways. miR-737, miR-736 and miR-23a 

were  deregulated  at  least  in  two  different  concentrations.  While  miR-737  was  down-

regulated and had low expression at 1% EtOH, miR-736 was up-regulated in 0.25% and 

1%,  but  one  cannot  exclude  the  technical  concerns  mentioned  above.  The  miR-23a 

expression was reduced in 1 and 1.5% of ethanol after acute exposure, conversely to what 

was  observed  in  chronic  ethanol  addicted  fishes.  Additionally,  it  was  observed  that 

increasing ethanol concentration resulted in lower miR-23a expression. 

Conclusions

Our  data  suggest  the  involvement  of  new  miRNAs  in  ethanol  response  and 

identifies putative genes targeted for those miRNAs. Deregulated miRNAs are related to 

physiological  responses  that  have  already been described as  being  involved in  ethanol 

addiction namely, regulation of MAPK pathway and loss of brain progenitor multipotent 

cells (Miranda et al., 2010). We show that low concentration chronic-alcohol exposure is 

enough  to  alter  miRNA  expression  profile  and  suggest  that  some  of  the  deregulated 

miRNAs (miR-9, miR-30e, miR-181a, miR-181b) may be potential regulators of neuro-

apoptosis. Considering the decrease of undifferentiated multipotent cells and the increase 

of neuroapotosis, long-lasting effects of ethanol in brain function may be related to loss of 

regenerative capacity. Finally, the microarray technique used here is suitable for screening 

ethanol effects  on miRNAs deregulation,  although high number of replicates  should be 

considered to minimize variability between data sets. In this study, the high number of 
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fishes that were scarified per replicate (72 fishes) limited our assays.. Nevertheless, future 

work should screen the effects  of acute ethanol exposure on miRNAs deregulation and 

should also compare that data with our chronic group.

Prespectives

Future work includes the increase on the number of replicates per assay and the 

increase  on the exposure  frequency to  acute  pulse ethanol  doses.  Moreover,  it  will  be 

useful to validate some of the putative target genes of deregulated miRNA by RT-qPCR 

and  localize  the  brain  areas  where  specific  miRNAs  are  being  expressed  by  in  situ 

hybridization. It will be also interested to explore different patterns of ethanol exposure 

because, as we observed from our data, different concentrations and exposure conditions 

affects differently miRNAs expression and have serious implication in cell homeostasis. 
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Annex A

List of deregulated miRNAs after chronic ethanol exposure

Deregulated miRNAs
up-regulated down-regulated

miR-9 miR-16a
miR-18b* miR-181b
miR-23a miR-145
miR-27c
miR-30e

miR-107b
miR-126b
miR-130a
miR-130a
miR-130c
miR-133a
miR-139
miR-181a
miR-193b
miR-196c
miR-196d
miR-200b
miR-202*
miR-202
miR-210
miR-218a
miR-221
miR-222b
miR-429b
miR-430b
miR-455b
miR-499
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miR-727
miR-728
miR-737
miR-2185
miR-2186
miR-429b
miR-1388
miR-1788
miR-2187
miR-2188
miR-2189
miR-2190
miR-2191
miR-2192
miR-2193
miR-2194
miR-2195
miR-2196
miR-2197
miR-2198
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