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palavras-chave 
 

Cimento ósseo acrílico, vidro bioativo, compósitos, polímero biodegradável, 
libertação de fármaco, ibuprofeno, resposta celular.  
 

resumo 
 
 

O cimento ósseo acrílico é o único material utilizado para a fixação de próteses 
em cirurgias ortopédicas, surgindo como uma alternativa às técnicas não 
cimentadas. Cerca de um milhão de pacientes são anualmente tratados para a 
substituição total da articulação do quadril e do joelho. Com a maior
expectativa de vida da população e o aumento do número de cirurgias 
realizadas por ano espera-se que o uso do cimento ósseo aumente
substancialmente.  
A fraca ligação do cimento ao osso é um problema comum que pode causar 
perda asséptica da prótese. Assim, torna-se necessário investir no 
desenvolvimento de cimentos ósseos alternativos que permitam promover 
maior estabilidade e melhor desempenho do implante. 
O principal objetivo desta tese foi desenvolver um cimento ósseo bioativo, 
capaz de ligar-se ao osso, com propriedades melhoradas relativamente aos 
sistemas convencionais. A preparação dos materiais foi realizada por dois 
processos diferentes, a polimerização por via térmica e a polimerização por via 
química. 
Inicialmente, utilizando o processo térmico, foram desenvolvidos compósitos 
de PMMA-co-EHA reforçados com vidro de sílica (CSi) e vidro de boro (CB) e 
comparados em termos do seu comportamento in vitro em meio acelular e 
celular. A formação de precipitados de fosfato de cálcio foi observada sobre a 
superfície de todos os compósitos indicando que estes materiais são
potencialmente bioativos. Em relação à avaliação biológica o CSi demonstrou 
um efeito indutor da proliferação das células. As células apresentaram uma 
morfologia normal e alta taxa de crescimento quando comparadas com o 
padrão de cultura. Por outro lado ocorreu inibição da proliferação celular para o 
CB provavelmente devido à sua elevada taxa de degradação, levando a uma 
elevada concentraçao de iões de B e de Mg no meio de cultura.  
O efeito do vidro nos cimentos curados por via química, incorporando um 
activador de baixa toxicidade, também foi avaliado. Os resultados sugerem 
que as novas formulações podem diminuir o efeito exotérmico na cura do 
cimento e melhorar as propriedades mecânicas (flexão e compressão). Outro 
estudo conduzido neste trabalho explorou a possibilidade de incorporar 
ibuprofeno (fármaco anti-inflamatório) no cimento, dando origem a um material 
capaz de ser simultaneamente, bioativo e promotor da libertação controlada de 
fármacos. Neste contexto foi evidenciado que o desempenho do cimento 
desenvolvido pode contribuir para minimizar o processo inflamatório associado 
a uma cirurgia ortopédica.  
Finalmente, a fase sólida do cimento ósseo bioativo foi modificada por 
diferentes polímeros biodegradáveis. A adição deste enchimento deu origem a 
um cimento parcialmente biodegradável que pode permitir a formação de 
poros e o crescimento ósseo para o interior do cimento, resultando  numa 
melhor fixação da prótese. 
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abstract 
 

Acrylic bone cement is the only material currently used for anchoring the 
prosthesis in orthopaedic surgery, being an alternative to non-cemented 
techniques. About one million patients worldwide are treated annually for total 
replacement of hips and knee joints. With the longer life expectancy of the 
population, and the increasing number of surgeries performed every year, the 
use of acrylic bone cements is expected to rise substantially. 
The non bone bonding capability of the cement is a common problem which 
can cause aseptic loosening of the prosthesis. Thus, alternative cements must 
be developed to provide higher stability and better performance of the implant. 
The main objective of this thesis was to develop a bioactive bone cement, with 
bone bonding capability, and better properties than the conventional cement. 
Two different methods of preparation were used in this study, polymerization by 
chemical route (self-cured) and polymerization by thermal route (heat cured).
Initially, through the thermal route, PMMA-co-EHA composites filled with a 
silicate glass (CSi) and a borate glass (CB) were developed and compared in 
terms of their in vitro behaviour, both in acellular and in cellular media. The 
growth of spherical calcium phosphate aggregates was observed in acellular 
medium on all composite surfaces indicating that these materials became 
potentially bioactive. Considering the biological assessment, the CSi 
demonstrated an inductive effect on the proliferation of cells. The cells showed 
a normal morphology and high growth rate when compared to standard culture 
plates. On the other hand, inhibition of cell proliferation occurred in the CB 
probably due to its high degradation rate, leading to high B and Mg ionic 
concentration in the cell culture medium.  
The effect of glass in self cured cements, incorporating an activator of reduced 
toxicity, was also assessed in this work. The results suggested that the new 
formulations may lessen the exothermal effect on curing and improve the 
mechanical properties (bending and compressive). Another study conducted in 
this thesis explores the possibility of incorporating ibuprofen (anti-inflammatory 
drug) into the cement, aiming the development of a composite that 
simultaneously show bioactive behaviour and controlled drug release . It was
evidenced that, regarding the drug release, the performance of the developed 
cements can contribute to blunt the inflammatory process associated to an 
orthopedic surgery.  
Finally the solid phase of the bioactive self-curing acrylic cements was modified 
by different biodegradable polymers. The addition of the biodegradable fillers 
made the cement partially degradable, which could allow the formation of pores 
and the ingrowth of bone to the interior of the cement, resulting in a stronger 
fixation of the prosthesis.   
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CHAPTER 1   
 
  

HISTORY AND CURRENT STATE OF ACRYLIC BONE CEMENTS 

 

HISTORY 

 

Bone cements are substances used to fix prosthesis to the bones often in joint replacements 

surgeries and to repair damaged or diseased areas of bones. Most of the bone cements 

commercially available and currently used in orthopedic procedures are acrylic cements. The basic 

component of the acrylic bone cement is methyl methacrylate (MMA) which is an ester and can 

polymerize to form poly(methyl methacrylate) (PMMA). Large scale chemical synthesis of MMA 

was achieved in the 1920s in the laboratories of Rohm and Haas, and one of the first biomedical 

applications of PMMA was the fabrication of dentures in 1935 [1, 2]. In the same period (1936) the 

company Kulzer found that prepolymerized PMMA powder (poly(methyl methacrylate)) could be 

partly dissolved in MMA, forming a dough that hardens when benzoyl peroxide (BPO) is added 

and the mixture is heated to 100 °C in a stone mould. Kulzer is at present the producer of the 

Palacos®, a commercial acrylic bone cement used in orthopaedic surgeries.  

The first clinical use of this dough was in an attempt to close cranial defects in monkeys in 

1938. Seven years later it was discovered that the polymerization of MMA could occur by itself at 

room temperature if a tertiary amine (N,N-dimethyl-4-toluidine, DMT) was added, leading to the 

establishment of a protocol for the chemical production of acrylic bone cements in 1943 [3, 4]. 

PMMA was first introduced in the orthopedic surgery by Dr. Jean Judet and his brother, Dr. 

Robert Jude. The Judet brothers developed a hip prosthesis made from PMMA, which was 

implanted in 1946 [5]. In 1951 Kaier and Jansen in Copenhagen were the first to use PMMA bone 

cements for the fixation of acrylic cups to the subchondral bone of the femoral head [6]. 

Nevertheless, it was Sir John Charnley who popularised their use in 1958 and presented the 

preliminary results of a new method for the fixation of joint prostheses to bone. The idea was to 

distribute the contact stresses between the implant and the bone over a large area by means of 

acrylic bone cement. This idea represented an important breakthrough in the field of orthopaedics 

and led to the development of a worldwide successful technique. The main advantages of the 

cemented prostheses lay in the excellent primary fixation, in the even load distribution between the 

implant and the bone, and in the fact that the technique allows a fast recovery of the patient [7]. 

The addition of antimicrobial agents to acrylic bone cements began as early as 1970. 

Engelbrecht and Buchholz started investigations on PMMA cement to determine its suitability as a 

drug delivery system [8-10]. Since 1972, radiopaque materials, like barium sulphate (BaSO4) or 
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zirconium dioxide (ZrO2), have been added to the bone cement in order to provide radio-opacity 

[11]. In the 1980s acrylic bone cements were also introduced to treat vertebral compression 

fractures caused by osteoporosis, skeletal metastases and angiomas [12].  

Since then many types of bone cements have been developed. Nowadays, there are over 30 

commercially available acrylic bone cement brands approved by the relevant regulatory authorities 

(such as the Food and Drug Administration, FDA, in the US and the Medical Devices Agency in 

the UK), for use in cemented arthroplasties [13]. In Portugal, the INFARMED is the Portuguese 

Regulatory Agency for pharmaceuticals, which is the institution in charge of guaranteeing that the 

legal requirements for the marketing of medicines are met. 

 

BIOMEDICAL APPLICATIONS 

 

The PMMA gained its popularity during World War II as a polymer for biomedical 

applications, when polymer fragments accidentally implanted in the eyes and other body tissues of 

pilots during aircraft crashes did not cause damage to the body [14]. When used for orthopedic 

applications, certain additions are made to PMMA and thus it receives the name of bone cement. 

Bone cements have been used as a fixation medium in a number of joint replacements including 

knee, hip, shoulder, elbow, ankle, and wrist replacements. In recent years, its application has been 

expanded to vertebroplasty, a procedure in which cement is injected percutaneously into the 

vertebral body in order to stabilize fractures that occur primarily as a result of osteoporosis. 

Another variation of this procedure is khyphoplasty, during which a balloon is inserted 

percutaneously into the vertebral body, inflated to restore the height of the compressed vertebrae 

and subsequently filled with injected bone cement to stabilize the fracture. These newer 

applications of bone cement have been successful in relieving pain and restoring vertebral strength 

and function [15, 16]. Some applications of bone cements are depicted in Figure 1.  

In 2002, Khan et al. [17] conducted a systematic review of the literature on treating patients 

with displaced intracapsular femoral neck fractures. The authors concluded that the publications 

tended to support the use of cemented hemiarthroplasty, suggesting a lower revision rate, less thigh 

pain and better mobility in patients whose prosthesis was cemented. 
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Figure 1: Biomedical applications of a bone cement. 
 

Nowadays the major orthopaedic surgical procedures are total hip and knee joint replacements 

with 1 million performed worldwide annually. A large proportion of these are anchored to the 

contiguous cancellous bone in an acrylic bone cement bed [13]. The clinical success rate for 

cemented implant with 15 years exceeds 90%, especially those of the hip and knee in patients aged 

over 50 years [18]. In developed countries the acrylic bone cements are used in more than 90% of 

total hip surgeries [19, 20]. In Sweden, over the period 1979–2000, about 97% of primary total hip 

replacements (THRs) were cemented [21], and in the United States, 77% of primary total knee 

replacements (TKRs) were cemented. The majority of total replacements of other joints is also 

cemented. With the ‘‘graying’’ of the populations in many countries it is expected that the use of 

acrylic bone cements rise substantially [13]. 

 

Total Hip Replacement 

A large range of rotary motion is permitted at the hip due to the fitting between femur and 

pelvis; the top of the femur terminates in a ball-shaped head that fits into a cup-like cavity (the 

acetabulum) within the pelvis. This joint is susceptible to fracture, which normally occurs at the 

narrow region just below the head, through the femoral neck. The hip may also become diseased by 

osteoarthritis; in this case small lumps of bone form on the rubbing surfaces of the joint, which 

causes pain as the head rotates in the acetabulum and a joint replacement is necessary. Damaged 

and diseased hip joints have been replaced with artificial joint successfully [22].  

One of the major issues confronting contemporary hip surgeons is the choice of fixation 

method. There is no consensus among orthopedists regarding the appropriate conditions for 
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prosthesis fixation. However, neither cemented nor uncemented fixation excludes the likelihood of 

prosthesis loosening [23]. A schematic diagram of the total hip replacement is presented in Figure 

2. 

 

Figure 2: Components of the total hip arthroplasty (THA) system [22] 
 

The hip implant fixation can be cemented, uncemented or hybrid [24, 25]. 

Cemented fixation: The acrylic bone cement is used to hold the femoral and acetabular 

components in place. The cemented hip replacement relies on a stable interface between the 

prosthesis-cement-bone resulting in a faster rehabilitation. Although cemented implants have a long 

and distinguished track record of success, they are not ideal for everyone. This fixation method is 

more commonly recommended for older patients, for patients with conditions such as rheumatoid 

arthritis, and for younger patients with compromised health or poor bone quality and density.  

Uncemented fixation: The fixation is made through direct contact to bone without the use of 

cement. The implants are textured or have a surface coating (osteoconductive coating) providing 

bone growth into their surface. In general, these designs are larger and longer than those used with 

cement. Because they depend on new bone growth for stability, uncemented implants require a 

longer healing time than cemented replacements. This method is most often recommended for 

younger, more active patients and patients with good bone quality where bone ingrowth into the 

components can be predictably achieved. 

Hybrid fixation: A hybrid total hip replacement has one component, usually the acetabular 

socket, inserted without cement, and the other component, usually the femoral stem, inserted with 

cement. This technique was introduced in the early 1980s. 
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 The superiority of either fixation method has not been proved conclusively because of the 

influences of confounding variables, such as patient age, sex, body weight, and diagnosis [26]. 

Most of the literature showed that better short and mid-term clinical and functional outcomes 

could be obtained from cemented femoral fixation than from uncemented femoral fixation [23]. 

Recent meta-analyses also support superior results of cement fixation when compared to 

uncemented fixation in large subsets of patient populations [27]. Table 1 presents the rate of 

revision prostheses according to the fixation method, which also proves that the cemented fixation 

still shows statistically the best results in terms of the whole THA population. In accordance still 

with the table uncemented prostheses have the worst performing, resulting in a higher incidence of 

revision for the studied period [28, 29]. 

 

Table 1: Revision rates for the fixation methods used in THA [28]. 

Revision rates by prosthesis type at one, three and five years for primary hip replacement 
procedures, undertaken between 1st April 2003 and 31st December 2009. 

Prosthesis type Number of patients 1 year 3 years 5 years 

Cemented 99,359 0.6% 1.4% 2.0% 

Uncemented 62,937 1.3% 2.5% 3.4% 

Hybrid 31,662 0.9% 1.8% 2.7% 

 

 

TYPICAL COMPOSITIONS  

 

A typical acrylic bone cement is self-polymerising and consists of two components, a liquid 

monomer (methyl methacrylate, MMA) and a powder component (polymethylmethacrylate, 

PMMA). The two components are mixed in the appropriate proportions to form the bone cement. 

Other additives are included in these components for specific purpose [7, 30]. 

The monomer contains: 

- Hydroquinone (HQ), an inhibitor, which prevents the monomer from prepolymerising 

spontaneously, 

- N-N dimethyl-4-toluidine (DMT), an activator/accelerator, which speeds up the 

polymerisation reaction. 

The powder component contains: 

- Benzoyl peroxide (BPO) that acts as initiator, producing free radicals when it reacts with 

the DMT promoting the polymerization of MMA at room temperature. 
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- Radiopaque agent, either barium sulphate (BaSO4) or zirconium dioxide (ZrO2), which 

allows the bone cement to be observed on x-rays. 

A number of commercial formulations can also include an antibiotic, such as gentamicin 

sulphate, that provides prophylaxis against infections, which can occur during surgery [8, 31]. 

Figure 3 illustrates the chemical structure of the main components of an acrylic cement. 

 

 

Figure 3: Main components of a typical acrylic cement 
 

There are some advantages to using two bone cement components instead of simply polymerize 

pure MMA monomer: The polymerization of MMA is too slow compared with the duration of 

surgery. The monomer has a very low viscosity and can easily diffuse into the blood stream. It is 

much easier to shape the doughy cement to fill the space between the prosthesis and bone. The use 

of less monomer and the presence of pre-polymerized PMMA decrease the amount of released heat 

and assist in heat dissipation, thus lowering the overall temperature. Pure MMA, upon 

polymerization into PMMA, has a volumetric shrinkage of 21% due to differences in the density of 

the MMA monomer and the PMMA polymer. This contraction is unacceptable and would lead to a 

large gap at the cement-bone interface, compromising the fixation of the prosthesis [32].  

 

 Antibiotics 

Surgical operating rooms have sterile conditions, but even under these conditions some bacteria 

can pass through all of the protective barriers and contaminate the open body tissues during the 



 7 

surgery. In order to prevent post-operative infections, some small quantities of antibiotics can be 

added into the bone cement [11]. 

An acrylic bone cement is a meshwork of PMMA chains. Antibiotics enclosed in these meshes 

are released by elution from the bone cement. The elution properties of cements correlate directly 

with the ability to absorb water, which is determined by the hydrophobicity of their components 

[8]. 

The first trials of adding antibiotic a bone cement were performed in late 60s and the first 

antibiotic loaded bone cement appeared in 1970. Gentamicin sulphate was chosen due to its wide 

spectrum antimicrobial activity, water solubility, thermal stability, low allergenicity and ability to 

confer long-term protection [9]. Currently most of the 18 different antibiotic-loaded bone cements 

available on the market, contain gentamicin sulphate [33]. 

The prophylactic effect of gentamicin-containing bone cement on postoperative infections in 

total hip arthroplasties was compared with that of systemically given antibiotics [34]. It was 

observed that the incidence of postoperative infections in the patients with gentamicin-containing 

bone cement was significantly less than the group which was treated with systemic antibiotic 

therapy. It was also reported that the presence of small amounts of antibiotics did not change the 

handling characteristics and did not reduce the strength of the cement below acceptable standards.  

The liberation of antibiotics from the cement matrix and the effect of antibiotics on the 

properties of the cement are two important issues [11]. Antibiotics are typically released in two 

stages: there is a peak release followed by a long tail of low lost that continues for days or month. 

Approximately 90% of the drug may be retained inside the cement, being eluted only from the 

surface and from a network of cracks and voids in the bone cement by a dissolution–diffusion 

mechanism [35]. 

Several in vitro and in vivo studies have indicated bacterial growth on antibiotic-loaded bone 

cements with increased occurrence of gentamicin-resistant strains [36-38]. The increasing bacterial 

resistance to gentamicin has prompted renewed interest in the addition of further antibiotics to bone 

cements, such as tobramycin and cefuroxime [39, 40]. Multidrug targeting is assumed not only to 

be more powerful but also to prevent the emergence of resistant strains through the synergistic 

action of two antibiotics. In Europe, one multidrug-loaded bone cement containing gentamicin and 

clindamycin, Copal® is commercially available [33]. Combination of gentamicin and clindamycin 

in a bone cement formulation has a theoretical antimicrobial effect on more than 90% of the 

bacteria common to infected arthroplasties. The release of gentamicin seems to be enhanced by the 

release of clindamycin in this cement [41]. This may be an effect of the extra antibiotic, which acts 

as a soluble additive that leaves a network of voids behind, enhancing further release [42]. 
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Multidrug targeting may be effective in preventing resistance but using it is a difficult option in 

bone cements, as the release of the different antibiotics depends on factors not easily controllable. 

For example vancomycin has a high molecular weight and shows poor release because it is trapped 

in the cement matrix [43]. Also, combinations of antibiotics must be carefully selected due to 

known cross-resistances. For this reason, it is not advisable to join the gentamicin and tobramycin. 

There is always the possibility of an antagonistic effect in the different ways by which the 

antibiotics act upon the bacterial life cycle [41]. 

 

PREPARATION OF BONE CEMENTS 

 

Bone cements are prepared under operating room conditions, which consist of a temperature of 

21-24 ºC and a relative humidity no less than 50%. When bone cement was first introduced the 

only available method was hand mixing; in this case the powder-containing pouch is cut by a sterile 

scissor, and the contents are put in a sterile bowl. Then the liquid ampoule is opened, and the 

content poured on the powder. They are mixed at atmospheric pressure until a homogeneous dough 

is obtained (1–3 min) [11, 44, 45]. This type of mixing method can introduce a significant amount 

of air into the mixture and a relatively high degree of trapped porosity (5-16%) in the set cement 

[46]. To overcome these drawbacks, new mixing techniques have been introduced such as vacuum-

mixing and centrifugation, aiming to reduce the porosity of the cement [45, 47]. Preparation of a 

cement by the hand mixing process and by a vacuum mixer are shown in Figure 4. 

 

 

Figure 4: Cement preparation by hand mixing and by vacuum mixing. 
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Pores in the cement primarily result from air bubbles which have become entrapped during 

hand-mixing of the powder and liquid components, but it is also accepted that monomer 

evaporation at the high polymerization temperatures may contribute to produce embedded bubbles 

[48].  

In vacuum-mixing, the bone cement is mixed while under a vacuum; which is supposed to 

eliminate the voids entrapped during the mixing process [49]. In centrifugation mixing the dough is 

immediately poured into a syringe that is then promptly placed in a centrifuge and spun with a 

speed of 2300 to 4000 rpm for 30-180 s [50], forcing out the air bubbles due to centrifugal forces 

[51].  

After mixing, the cement is either manually placed into the cavity by means of “finger packing” 

or injected with a cement gun. The cement may also be pressurized at this time causing increased 

cement-bone interdigitation and providing a stronger interface [52]. 

 

CHEMICAL REACTIONS AND SETTING PROCESS 

 

Mixing the two components (solid and liquid) produces the starting up of a typical addition 

polymerization reaction of the liquid monomer [7]. The MMA monomer can be polymerized 

through radicals formed by several different methods including the collision of two monomer 

molecules of sufficient energy or the decomposition of an initiator molecule by means of heat, light 

or chemical reaction [11, 53]. Bone cement polymerization is based on the free radical 

polymerization of MMA initiated by a redox system generated by reaction between the initiator 

(BPO) and the activator (DMT) which comprises three steps: initiation, propagation and 

termination.  

The initiation step involves a reaction between the initiator and the activator causing the 

decomposition of the BPO, which splits into two fragments upon dissociation of the weak peroxy 

bond resulting in benzoyl radicals at room temperature. The second step is chain propagation, 

which basically consists in successive addition of monomer units to the active radicals already 

produced in the initiation stage. The free radical attacks one of the double bonds of the MMA 

monomer resulting in a larger free radical, then this new free radical attacks another MMA 

monomer and the chain propagates until a PMMA of relatively high molecular weight is formed. A 

consequence of this propagation phase is an increase in viscosity, due to the increasing 

concentration of polymer molecules and increasing molecular weight of the growing chains. Lastly, 

the chain termination can be achieved by combination of two chains (combination) or by hydrogen 

transfer reaction (disproportionation). The first method is the simplest way, wherein the two 

unpaired electrons join to form a bond [11, 32, 54].   
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When polymerization of the monomer is complete the pre-polymerized PMMA beads that form 

the powder (as described in "Typical compositions") are embedded into a solid PMMA matrix. The 

polymerization process is an exothermic reaction; in which heat is generated firstly when the 

benzoyl peroxide molecule is split, and secondly during the propagation stage of the reaction. The 

polymerization is very rapid and reaches completion in approximately 10–15 min, at which point 

the cement has set [55].  

The variation of temperature with time, during the preparation of the material, can be monitored 

leading to a typical curve which indicates the setting process of the cement, Figure 5. 

The time at which the mixed cement mass does not adhere to a surgically gloved finger is 

known as the dough time. This time is limited by the Standard Specification ISO5833 for acrylic 

resin cements [56] to a maximum of 5 minutes. The time elapsed from the moment at which the 

powder and liquid components are mixed until the cement is set, is known as the setting time. 

Setting time can be calculated as the time at which the temperature of the mass is the sum of the 

room temperature and maximum temperature divided by two. The ISO5833 establishes that the 

range time of the setting must be 5-15 minutes. The maximum temperature or peak temperature is 

produced by the exothermic propagation reactions which take place during polymerization. The 

cement sets before the peak temperature is reached. This value is limited to 90 ºC. Finally, the 

difference between the setting time and the dough time is called the working time, and it 

corresponds to the period of time during which the cement is workable and has to be implanted (or 

molded) [3, 7, 57]. 

 

 

Figure 5: Temperature versus time curve of a curing acrylic bone cement. 
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The peak temperature recorded in vitro does not correspond to those actually reached in vivo. 

Clinical tests showed significantly lower intraoperative peaks at the bone-cement interface due to 

the thin layer of cement, the heat dissipation of the system via the implants and local blood 

circulation. The peak temperature in vivo is usually below the protein coagulation temperature, 

assumed to be around 56 ºC [4, 7]. Meyer et al. [58] found that the maximum temperature of the 

curing bone cement could be lowered by reducing the ambient temperature and the cement mantle 

thickness. 

The setting time is sensitive to ambient temperature, thus, when the temperature of the operating 

room increases, the polymerization rate also increases and the dough hardens quicker [11]. For 

example, the bone cement Surgical Simplex® P has a setting time of 9 minutes at room temperature 

of 24 ºC, 12 minutes at 21 ºC and 15 minutes at 18 ºC [59]. Also the temperature of the powder and 

liquid components, of the implant and of the mixing equipment can markedly affect the setting time 

and the curing temperature. If the cement components are stored at temperatures lower or higher 

than that of the room, sufficient time must be allowed for them to reach the appropriate ambient 

operating room temperature before they are mixed, otherwise setting time will be correspondingly 

lengthened or shortened [60]. 

Others factors that can affect the curing properties of PMMA bone cements are: 

The powder/liquid ratio of the cement, which is taken as the ratio between the weight of the 

powder in g and the volume of the liquid in ml, has a very strong effect on the curing parameters. 

Increasing the powder/liquid ratio (by increasing the amount of PMMA powder or by decreasing 

the content of monomer), produces the decrease of the peak temperature [58, 61, 62]. These results 

can be understood in terms of the relative amounts of monomer present whose polymerization 

causes heat release and of the role played by PMMA beads (powder) that absorb heat [7]. The 

optimal ratio given is about 2:1 (w/v), which is used in most of the commercial bone cement 

formulations.  

PMMA bead size, i.e. the average diameter and size distribution of PMMA beads also plays an 

important role in the curing properties. Besides its structural role as a component of the cement 

matrix, PMMA beads serve as a heat sink, dissipating energy released by the exothermic 

polymerization of MMA. The incorporation of PMMA beads with larger mean diameters and 

widespread distributions of particle size has been reported to decrease the maximum temperature 

and delay the curing process [63, 64]. Pascual B. et al. [64] prepared formulations with different 

sizes of PMMA particles and their results indicated that the use of PMMA particles of 50-60 µm 

average diameter and size distribution of 10-140 µm reduced the peak temperature by about 30 ºC 

and increased the setting time by 5-6 min, in comparison with commercial systems CMW® 
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(diameter 21 µm and interval 5-50 µm) and Rostal® (diameter 31 µm and interval 10-60 µm), 

without any noticeable mechanical deterioration.  

Initiator and activator, the rate of radical formation is dependent on the concentrations of 

activator and initiator, being also necessary to take into consideration their effects on the setting 

parameters. Regarding the kinetics, increasing the amount of DMT and BPO increases the rate of 

polymerization and, consequently, the magnitude of the maximum polymerization temperature [64, 

65]. Faster radical formation activates more monomers that act as nucleation sites for polymer 

chain growth and produces additional downstream effects such as: 1) acceleration of the overall 

polymerization process, decreasing setting time; 2) simultaneously formation of more individual 

polymer chains, decreasing the average molecular weight and affecting the mechanical properties 

of the cement. Vazquez et al. [66] reported that the peak temperature decreased with decreasing 

BPO concentration. The authors found that the difference in peak temperature for the formulation 

prepared with the highest concentration of BPO and the one prepared with the lowest concentration 

was approximately 10 ºC and the setting time increased with decreasing initiator concentration, 

with differences around 5 min. 

 

RESIDUAL MONOMER 

 

Although most of the monomer in bone cement polymerizes, there is a small portion that 

volatilizes and escapes from the surface during polymerization. Another portion of that monomer 

becomes entrapped in the polymeric matrix as residual monomer [67]. 

During the curing of the cement a substantial increase in the viscosity of the mixture takes place 

due to a partial dissolution of the PMMA in its monomer. The polymer chains from the PMMA 

become available for free radical polymerization and entanglements of these chains with newly 

formed ones occurs, leading to an intimate connection in the structure [9].  

The mobility of the monomer is greatly hindered by the increase in viscosity, and thus 

polymerization process evolves with difficulties stopping after a certain time without consuming all 

the present MMA monomer. In the curing process even the maximum temperature attained is lower 

than the PMMA glass transition temperature (Tg = 100-120 ºC) which hinders the total conversion 

of monomer into polymer [57].  

As a consequence of the increase in viscosity of the cement, there is always an amount of 2–6% 

of non-reacted monomer that remains entrapped in the cement matrix after setting due to the 

decrease of free radicals diffusion rate [4]. 
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Unreacted MMA not only acts as a plasticizer, influencing the mechanical properties of the 

cement but also leaks from the cement mantle into the surrounding tissues, causing toxic effects 

and impairing bone remodeling [68]. 

 

MECHANICAL PROPERTIES 

 

The bone cement mechanical properties are very important in terms of clinical success and they 

have been studied in great detail and reported by many authors in several reviews [18, 69-73].   

The function of bone cement is to fill the free space between the prosthesis and the bone. In this 

application it acts as an intermediary phase, fixing the implant to the bone, transmitting the applied 

force and body weight uniformly to the tissue and functioning as a load-bearing material [74]. If 

the transferred stress is higher than the capacity of load distribution, the cement can be fractured 

and the prosthesis can fail [75]. It is therefore very important that the cement is able to maintain its 

mechanical properties over a long period of time in vivo.  

Static mechanical properties such as compression, tensile, flexural and shear are the relevant 

parameters to be evaluated in terms of the biomedical applications [57]. The variation of these 

properties is related to differences in composition, mixing methods, aging, temperature and 

viscosity during cement application [32]. It is known that acrylic polymers are stronger in 

compression than in tensile, and exhibit a viscoelastic behaviour, which means that their properties 

strongly depend on temperature and strain rate [22].  

The addition of radiopaque agents has a significant effect on the mechanical properties of 

acrylic bone cements, which depend on their size and morphology [7]. The presence of antibiotics 

diminishes its mechanical properties, although the reduction depends markedly on the amount of 

antibiotic added [76]. 

An important factor that affects the bone cement mechanical properties is the porosity of the 

samples. Pores can act as weak points concentrating tensions and initiating a fracture [57]. These 

pores may be attributed to air entrapped during mixing, monomer evaporation over polymerization 

and shrinkage around particles, giving rise to formulations that can have 2-10% pores volume 

fractions [77]. To reduce its formation new mixing techniques have been introduced such as 

vacuum-mixing and centrifugation. 

The influence of body fluids and body temperature (37 °C) can be relevant to different 

properties of the cement. Sorption of water generally lowers the mechanical properties [7]. 

However, fracture mechanics studies show that the crack velocity is slower in water than in air, and 

that fracture toughness is about 15 to 20% higher in water than in air [78].  
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Low viscosity cements might not withstand the bleeding pressure in the femur with the 

consequence of blood entrapment within the cement representing potential areas of weakness with 

increased fracture risk. Normal or high viscosity cements in this regard seem to be more 

appropriate resulting in better long-term performance [3, 4]. High-viscosity bone cements have 

shown to offer a lower incidence of revision and aseptic loosening in total hip arthroplasties [11]. 

It has been reported that microcracks are usually developed in the interbead matrix just before 

failure and not through the pre-polymerized beads. These cracks propagate, and gross mechanical 

failure occurs [79].  The failure can also begin due to cracking induced by residual stress around 

pores or stress raisers. Some residual stresses are caused by the temperature differences arising 

after polymerization of bone cement [80]. 

 

ANCHORAGE MECHANISMS 

 

The interfaces cement-bone and cement-prosthesis are considered the weak-link-zones in total 

hip arthroplasty [18]. Bone cements do not form chemical bonds either with the metallic implant or 

with the natural bone. They fix the prosthesis in the desired area by forming a mechanical interlock 

between the metallic implant and the bone, and transfer the load from one to the other. Bone 

cement diffuses into the microscopic irregularities of the bone cavity and provides a mechanical 

attachment to bone (interdigitation) [11].  

The strength of the cement–bone interface and the success of an implant are related to the 

amount of interdigitation between the cement and the cancellous bone [81]. Cement pressurization 

improves cement intrusion into bone and this phenomenon may improve fixation, although it has 

been reported that it may also increase bone resorption and reduce bone formation [82]. The 

cement should be pressurized as early as possible within the rasped cavity (immediately after the 

dough stage if possible) [83]. The apparent strength of the cement–bone interface is significantly 

higher when the interface is loaded in shear rather than tensile loading [84]. 

The cement-implant interface is not very strong, similarly to what occurs with cement-bone. 

The attachment of bone cement to metallic implant is generally achieved by selecting an implant 

surface texture that creates a mechanical interlock with the cement or by an implant with a 

geometry that maintains stability. Higher surface roughness of the prosthesis leads to better 

fixation, since it allows for increased surface area contact with the cement as well as deeper 

interdigitation [85]. The interfacial bond strength also depends on the material of the prosthesis 

[86]. 

 The cement-implant interface can be improved by pre-coating the prosthesis with bone cement 

or poly(methyl methacrylate) polymer. During the surgery, the fresh cement adheres well to the 
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pre-coating cement [87, 88]. It was reported that PMMA coating increased the torsional fatigue 

strength of the metal–cement interface [89]. 

 

MAIN DRAWBACKS OF COMMERCIAL BONE CEMENTS 

 

 Aseptic Loosening  

Aseptic loosening occurs when the implants become loose within the bone; a loose implant 

tends to be painful and frequently requires a revision surgery. Aseptic loosening is the main cause 

of failure of cemented total hip arthroplasties, being often associated with significant bone 

resorption, necessitating the use of special prostheses and bone grafting [90, 91]. During surgical 

revision of a loose cemented implant, a characteristic fibrous membrane is identified at the 

interface between the bone and the bone cement [92]. This fibrous membrane is laden with 

histiocytes and giant cells surrounding and engulfing cement, polyethylene and metallic debris 

[91].  

The release of particles by the cement or by the prosthetic components can precede the 

mechanical instability and be the cause of loosening. It was shown that monocytes and 

macrophages responding to particles of bone cement are capable of differentiating into osteoclastic 

cells that resorb bone. Usually it is observed that no bone trabecula reaches the cement surface due 

to the presence of fibrous tissue [93]. This membrane can be caused by the toxicity of monomer 

release and the heat production of the polymerization, resulting in instability and movement at the 

interfaces [94]. These micromovements at the bone–cement and stem–cement interfaces can 

accelerate aseptic loosening. 

Failure of PMMA increases bone resorption at the bone–cement interface of the prostheses. 

When this happens, new particles which are small enough to be phagocytized are produced. 

Phagocytosis of the particles results in the increased production of tumor necrosis factor by the 

macrophages, which may in turn lead to bone resorption and prosthetic loosening [95].  

Loosening of the cemented prostheses involves not only the failure of the implant and/or the 

bone cement, but also the inflammatory response of the bone tissue against bone cement 

components. For example, it was shown that the inflammatory response to PMMA particles 

containing BaSO4 was greater than the response to plain PMMA particles of similar size [96].  

The main factors involved in aseptic loosening and periprosthetic osteolysis are summarized 

below [97]: 

Wear debris induced osteolysis: integration of the prosthesis into the surrounding bone can be 

hindered by a “foreign body reaction” induced by macrophages absorbing small particles, mainly 



 16 

polyethylene, PMMA and metallic debris, leading to activation of osteoclastic activity. As a 

consequence, osteolysis and bone loss around the implant occur. 

Micromovement of surfaces: implants that do not achieve adequate initial fixation will exhibit 

micromotion in response to load. The greater the area of friction the more osteoclasts are activated 

causing osteolysis around the implant which leads to fatigue failure at interfaces. When the 

distance between bone and implant exceeds 150 µm, connective tissue membranes are formed 

between implant and bone as well as between implant and cement. These membranes hinder the 

osteo-integration of the prosthesis.  

Inappropriate mechanical load and stress shielding: insertion of an implant leads to new 

biomechanical relationships between various regions of the surrounding bone and the implant. As a 

consequence of stress shielding, bone apposition and higher bone density occur in regions around 

the implant receiving high loads, whereas regions receiving lower stress loading react with bone 

loss. Appropriate load transmission is thus an essential factor in maintaining bone volume. Optimal 

load transfer is influenced by the design and stiffness of the implant.  

Post-operative immobilization: the post-operative decrease in weight bearing results in local 

immobilization osteoporosis. Overall the post-operative bone loss mainly occurs in the first 6 

months and can reach up to 50 % of the former bone stock. 

Operative trauma: thermal and mechanical necrosis caused by surgical procedure, type of bone 

cement and cementing techniques can alter bone quality. 

 

 High Polymerization Temperature  

One of the main side effects of acrylic bone cements application is the rise of the temperature at 

the bone–cement interface during the polymerization of MMA. In bone cement formulations the 

powder part is already made of pre-polymerized PMMA particles, and this prevents the explosive 

polymerization reactions [11]. The highly exothermic polymerization process of the MMA, with a 

polymerization heat of 57 kJ per mole MMA, causes an increase of the local temperature [4]. The 

peak of temperature can vary from 80 to 124 ºC [11, 98]. 

According to the ISO5833 [56], standard for acrylic bone cements, the maximum temperature 

allowed in the setting reaction must be lower than 90 ºC (recorded using a device at room 

temperature). The levels for thermal tissue damages in bone are estimated to be between 48 and 60 

ºC, and within this temperature range cell necrosis also depends on the exposure time [99]. In 

clinical hip or knee replacement, maximal interface temperatures as low as 48 °C and as high as 

105 °C have been reported [100]. 

In some cases bone cements originating high temperatures may be desirable. Some surgeons 

treat the giant cell tumors of bone tissue by using the technique of aggressive curettage through a 
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large bone window followed by acrylic cement reconstruction [101]. As the bone cement self-

heats, the possibility of heat necrosis in the bone tissue exists. It was mentioned that the damage to 

the cells due to heat may be beneficial in reducing the rate of tumor recurrence [102]. 

 

 Release of MMA monomer 

As most of the organic monomeric chemicals, MMA itself is also toxic to the bone tissue. The 

release of MMA monomers from the cement into the circulating blood causes severe drop in blood 

pressure leading to an increase in the heart rate and impairing bone remodeling [11, 94]. This is 

caused by the direct chemical effect of MMA on blood vessels. The presence of MMA has been 

also associated with irritation of skin, eyes, and mucous membranes, allergic dermatitis, liver 

toxicity, fertility disturbances, arterial oxygen tension and possible cardiac arrest [103]. 

The proportion of residual monomer remaining in the polymerized bone cement is in the range 

of 2–6% just after hardening [4]. This percentage may decrease by up to 1-2% with time and then 

remain the same for years. Haas et al [61] measured the residual MMA monomer content to be 

3.3% after 1h, 2.7% after 24h and 2.4% after 215 days under storage in an ambient air 

environment. Schoenfeld [104] found that most of the methyl methacrylate is released in the first 

hour and its toxicity disappears after 4 hours.  

 

ALTERNATIVES TO THE STANDARD COMPONENTS 

 

 Radiopaque Agents 

PMMA is not a radiopaque material, i.e., it is almost impossible to determine the borders of the 

cement applied during the surgery by ordinary x-ray imaging. Since 1972, radiopaque materials 

have been added to the bone cement in order to provide radio-opacity [11]. Addition of about 8-

13% of barium sulfate (BaSO4) and 9-15% of zirconium oxide (ZrO2) to the powder part confers 

higher opacity. Otherwise, the areas occupied by  bone cement can be determined by using 

magnetic resonance imaging [105]. Additional opacifiers are often used for interventional 

procedures such as vertebroplasty, in which visibility is a key issue. 

The presence of radiopaque materials may have some disadvantages. The lack of interaction 

between filler and matrix is the main reason for the detrimental effect of these particles on some 

mechanical properties and to the liberation of particles into the surrounding tissue [106, 107]. It 

was also observed that, osteolysis, i.e., bone resorption around bone cement application area, was 

more severe when radiopaque agents were used [108]. This situation was more evident for BaSO4 

than for ZrO2 case [109, 110].  
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The development of radiopaque agents miscible with the polymer matrix as alternative routes 

for achieving radiopacity is an area of interest in bone cement field. The possibility to confer 

radiopacity by introducing an x-ray opaque iodine containing methacrylate in the liquid phase of 

the bone cement has been studied and 2,5-diiodo-8-quinolyl methacrylate (IHQM) was proposed as 

a new radiopaque agent. It was reported that the incorporation of IHQM yielded  a decrease in the 

peak temperatures and a slight increase in the setting time. A content of 2 wt% of IHQM (over the 

total mass) was enough to render the cement radiopaque with acceptable values of curing 

parameters and enhanced mechanical properties [111]. IHQM provided significant improvements 

in tensile strength, toughness and ductility when comparing to both ZrO2 and BaSO4 containing 

cements [106, 112]. The improvement of mechanical properties was due to both, the elimination of 

porosity associated to the BaSO4 particles and the reinforcing effect attributed to the iodine-

containing monomer [112]. 

The 4-iodophenol methacrylate (IPMA) was another compound synthesized to confer 

radiopacity, via in situ polymerization. Having a higher molecular weight than MMA, it leads to a 

decrease in the monomer concentration, resulting in shorter polymerization time, although Tmax was 

approximately constant. A content of 15% IPMA conferred radiopacity equivalent to 10% BaSO4. 

Regarding mechanical properties, the performance of the formulation with IPMA was better than 

that with BaSO4 [113, 114].    

Organo-bismuth compounds such as triphenyl bismuth - TPB (a heavy metal containing organic 

compound which is relatively non-polar and thus hydrophobic or insensitive to moisture) were also 

studied as radiopaque agents by Deb et al. [107]. It was found that addition of TPB to the bone 

cement matrix up to 25% of the weight of the polymer did not affect the polymerization 

temperature and setting time. Performing the addition via dissolution in monomer phase, an 

increase in strain and reduction in brittleness was observed. The best mechanical properties were 

obtained for 10% TPB in solution. 

More recently, two bromine containing monomers, 2-(2-bromoisobutyryloxy)ethyl methacrylate 

(BIEM) and 2-(2-bromopropionyloxy) ethyl methacrylate (BPEM), were synthesized and 

characterized as being good candidates to be used as radiopacifiers [115]. The addition of BPEM 

decreased the maximum temperature and increased the setting time, when compared with the 

radiolucent cement. It also decreased the glass transition temperature, enhanced the thermal 

stability, reduced the polymerization shrinkage and increased the compressive strength of the 

resultant material [116]. 

 



 19 

 Activators 

Tertiary aromatic amines are currently used as activators in the curing of acrylic bone cements. 

Commercially available acrylic bone cements usually contain N,N-dimethyl-4-toluidine (DMT) in 

a range of 1.5–2.5 wt.% as an activator in the polymerization of the MMA monomer initiated by 

benzoyl peroxide (BPO) [117]. Figure 6 illustrates the chemical structure of some tertiary aromatic 

amines used in the curing of acrylic resins [118]. 

 

 

Figure 6: Chemical structure of activators used in MMA polymerization. 
   

Unreacted DMT may be present in small quantities in cured cements (0.5-0.7%) even after 

long-term storage in air or post-implantation [119]. The toxicity of the amine/BPO initiation system 

is related to the mobility of the amine. The tertiary aromatic amines are low molecular-weight 

compounds, which may easily leach out from the acrylic cement to the surrounding tissues [120].  

In vitro studies in osteoblasts culture demonstrated that DMT causes a delay in the cell 

replication, induces chromosomal alterations and inhibits protein synthesis, interfering with the 

process of bone mineralization [118, 121] 

Few commercial bone cement formulations contain an activator different from DMT. The 

Sulfix-60® cement, which has incorporated a tertiary aromatic amine of reduced toxicity (N,N-

dimethylamino phenethanol), when tested in vitro with osteoblast-like cells, produced the most 

positive response among other commercial formulations [121, 122]. However, with respect to in 

vivo studies scarce references are found in the literature. 

The application of some tertiary aromatic amines with reduced toxicity to the curing process of 

acrylic bone cements has been recently studied with the aim of obtaining cured materials with 



 20 

improved biocompatibility [123]. In this study the authors analysed and compared the properties 

and preliminary in vivo response to acrylic bone cements cured with N,N-dimethylaminobenzyl-

alcohol (DMOH) and with 4,4-bis-dimethylamino benzydrol (BZN). Both activators presented 

LD50 (lethal dose, 50%) values 3-4 times higher than DMT, were less cytotoxic against 

polymorphonuclear leucocytes and possessed antimicrobia character. The cement formulated with 

the activator BZN gave the most promising response and the best biocompatibility: rests of 

connective tissue were found attached to the material after intramuscular implantation and higher 

and earlier osseous neoformation were observed after intraosseous implantation.  

4-N,N-Dimethylaminobenzyl laurate (DML) is a tertiary amine activator with longer alkyl 

chain, possessing therefore a hydrophobic nature and higher molecular weight in comparison to 

DMT, being consequently less prone to leaching than DMT [120, 124]. It could as well initiate 

polymerization by amino methyl radicals, with the incorporation of DML into the macromolecular 

chains. It leads to longer tset, due to the longer diffusion time of the amine and to its long 

hydrophobic chain [120]. Although the pure DML decreased cell viability and cellular proliferation 

compared to the control, the cured cements showed good biocompatibility, with cells adhering and 

proliferating on the test materials and exhibiting normal metabolism and morphology [124].   

Tanzi et al. [125] investigated the substitution of DMT by unsaturated tertiary arylamines, such 

as acryloyl- (ANP) and methacryloyl- (MNP) N-phenylpiperazine, considered as being less toxic. 

Compression tests revealed that compressive yield stress, strain at yield, and elastic modulus values 

were quite similar to those of samples cured with DMT and ANP, and slightly lower results were 

obtained with samples cured with MNP. This work has shown that it is possible to use alternative 

tertiary amines with reduced toxicity as activators without significant changes in the curing 

behaviour and properties of the acrylic resins.  

 

BIOACTIVE BONE CEMENTS 

 

One of the major limitations of commercially available acrylic bone cements is the lack of 

adhesion to bone, which may cause aseptic loosening and failure of the prosthesis in some cases. 

Since there is no chemical adhesion to the bone and no bone growth stimulation the only source of 

bonding/adhesion of conventional bone cements is the mechanical interlocking with bone 

interstices and this process is not enough to assure the stability of the system [11]. In reality due to 

the exothermic effect of the polymerization reaction and the toxicity of the MMA, bone necrosis 

can occur, together with the formation of fibrous tissue around the implant which allows 

micromotion and the lack of fixation stability at the bone-implant interface, causing pain to the 

patient and a space for the accumulation of wear particles [94, 126]. Thus, in an effort to enhance 
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prosthesis integration and to prolong the lifetime of the implant, researches have been carried out 

on many different types of cements. 

Aiming to promote the bioactive behaviour of a bone cement, three types of formulations have 

been suggested [126, 127]: 

1) An all-bioactive bone cement where the whole material is bioactive, for example calcium 

phosphate cements. 

2) A surface-bioactive cement where bioactive filler particles are added to a non-bioactive 

matrix, for example HA or bioactive glass added to PMMA cement. 

3) An interface-bioactive bone cement where a bioactive material is placed between the bone 

and the non-bioactive cement, for example a layer of HA granules between bone and 

cement. 

Recent studies are showing that the second possibility, i.e. addition of bioactive fillers, seems to 

be the most promising procedure to improve the interfacial strength of cement to the bone. These 

fillers will be exposed at the cement-bone interface, promoting the direct growth of bone towards 

the cement surface and thus increasing the interfacial strength. The most investigated fillers are 

hydroxyapatite (HA), glasses, glass-ceramics and tricalcium phosphate (TCP) [94].  

Besides providing the bioactive behaviour, such fillers may also contribute for enhanced 

mechanical properties. However the amount of filler particles in the cement is of major importance 

since it can produce the deterioration of the mechanical properties for high contents or the lack of 

bioactivity for low contents [126].  

 

Bioactive cements filled with calcium phosphates  

A large number of studies has been carried out on the addition of hydroxyapatite (HA) into 

acrylic bone cement in order to improve mechanical strength as well as to enhance 

biocompatibility. Calcium phosphates can replicate the structure and composition of bone minerals 

in a reproducible way, so they have a biocompatible behaviour with bone cells [128, 129]. 

Furthermore HA discloses osteoconductive properties allowing the formation of bone on its surface 

by attachment, migration, proliferation and differentiation of bone forming cells [130]. 

One of the first reports on the addition of HA to bone cements was published in 1983 by  Giunti 

et al. [131]. The authors varied the percentage of HA from 0 to 50%, and observed enhanced 

mechanical properties as well as a decrease in curing temperature. The heat generated during 

PMMA polymerization may become significantly attenuated when HA is added [132], reducing the 

problems associated with cell death due to high polymerization temperatures. 

The results on the effect of calcium phosphates on the mechanical properties of bone cements 

are not always concordant and clear and they depend on a number of factors such as type of filler, 
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filler concentration and matrix chemical composition, among others. These factors also affect the 

curing characteristics of the cements.  

Alterations in the HA concentration produce changes in the mechanical behaviour of the 

cements because these particles usually act as porosity condensation centers thus modulating the 

porosity patterns of the cements [133-135]. It is reported that porosity and pore size usually 

increase with increasing fraction of filler up to a certain limit that determines the further 

impoverishment of the mechanical properties [135]. A maximum value of the Young's modulus 

(2.5 - 3.5 GPa) and of the flexural strength (58 to 69 MPa) was obtained by Olmi et al [134] for an 

HA proportion of 3 wt%, corresponding to a minimum porosity, but other authors [135] found 

flexural modulus and fracture toughness values limited to a maximum of 15 % (w/w) filler. These 

authors also verified that the compressive yield strength of samples containing 2.5 % of HA was 

higher than that of the unreinforced cement, but lower for higher HA percentages due to the degree 

of adhesion between the HA particles/matrix and the formation of pores giving rise to a weak 

interface. Considering creep properties an improvement in creep resistance was achieved with up 5 

wt% of HA [126].   

Since the addition of HA into the formulation increases the viscosity of the cement dough and 

makes handling and workability difficult, very low viscosity (VLV) cement compositions were 

developed, in order to achieve homogeneous distribution of HA particles [136]. Acrylic bone 

cements filled with HA demonstrated higher mechanical strength than the reference cement 

(commercially available CMW1 bone cement). The addition of HA into VLV cement compositions 

provided a decrease in curing temperature, an increase in compressive strength and compressive 

elastic modulus, and a slightly increase in terms of fatigue strength and fatigue life compared to 

CMW1. On the other hand, it was observed that this cement is weaker in tension tests than the 

reference. 

 The HA effect in the mechanical properties of the bone cement depends on the amount,  as 

mentioned above, particle size and surface properties of the particles. The introduction of HA to 

commercial formulations varying the particle size (2 to 137 µm) and HA content (2 to 25 wt%) 

produced great changes in the mechanical properties of the composites [126, 137]. Static tests 

revealed that up to 10 wt% of HA with particle size of 96 µm could be added without any large 

decreases in tensile strength. Fatigue results also showed that adding 10 wt% of HA of different 

average size had no significant effect or actually increased the fatigue resistance of the cement. 

However, when the concentration of filler was increased from 10% to 20% a tendency to decrease 

the tensile strength was observed for all particle size. 

The interface between HA and polymer matrix plays a critical role in determining the 

mechanical properties of the cements and the lack of adhesion between the two phases can result in 
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an early failure. The linkage of the organic hydroxyethylmethacrylate (HEMA) to apatitic calcium 

phosphate can be realized by a combination of thermally stimulated current and dielectric 

spectroscopy. The obtained apatite is used to form chemical bonds with the polymer matrix, which 

could stiffen the PMMA bone cement [138]. An improvement in the mechanical properties without 

affecting the biocompatibility of the HA-containing bone cement was also obtained through the 

addition 4-methacryloxyethyl trimellitate anhyhydride (4-META) into MMA monomer as an 

adhesion promoting agent [139]. However, it is reported [140] that in a P(MMA-co-styrene)/MMA 

acrylic cement filled with HA particles coated with a silane agent, all investigated mechanical 

properties except tensile modulus had lower values for HA-filled cement compared to the unfilled 

cement. The results were attributed to HA powder agglomeration and to the formation of porosity.  

The water absorption properties of a bone cement are critical to its long-term stability in vivo, 

since they can lead to a reduction in the strength of the polymer. The water absorption 

characteristics of modified HA-reinforced poly(ethyl methacrylate-n-butyl methacrylate) 

(PEMAnBMA) bone cements were assessed [141]. The introduction of HA reduced the water 

uptake, yielding more significant results if the HA filler was surface treated with a silane coupling 

agent. 

Among the HA filler advantages, we find cements with lower curing temperature and residual 

monomer content when compared with those for unfilled cements [140, 142], and better 

biocompatibility, with less severe necrosis and foreign body giant cell observed for this cement 

[136]. The effects of the incorporation of only 6 vol% of HA into PMMA provided higher levels of 

human osteoblast-like cells (HOB) proliferation and phenotype expression. Exposed HA particles 

served as preferential anchoring of HOB cells. Although both conventional and composite bone 

cements were able to support normal osteoblast cell growth, full confluence was achieved earlier (7 

days) on the PMMA-HA cement [143, 144].  

A comparative study of the osteoblastic response on a PMMA/HA (80/20 wt%) composite and 

on a non-filled PMMA was carried out by Moursi et al [145]. Osteoblast attachment and 

proliferation were similar on both implant materials for 2 days, whereas, on day 8 proliferation was 

significantly higher on PMMA/HA than on PMMA. Compared to PMMA, PMMA/HA composite 

promoted the formation of nodules displaying a higher degree of mineralization, considered the 

strongest indicator of true osteoblast differentiation and osteogenesis.  

In vivo studies in rabbits with implantation of Ha-filled cements [146] also revealed a 

noticeable increase of attachment to bone tissue for the higher HA specimens improving the 

interfacial shear strength at the bone–implant interface six weeks after implantation into the distal 

end of rabbit femora.  
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Although at a lesser extent than HA or bioactive glasses and glass-ceramics α-TCP, has also 

been studied as filler in bone cements. α-TCP is highly soluble at physiological pH and can 

originate a porous structure capable of osteointegration. It was demonstrated that the curing 

temperature of the bone cement can decrease from 100 ºC to 58 ºC by adding 66% of α-TCP [147]. 

According to Yang [148], when α-TCP was incorporated into commercial formulations it retarded 

the polymerization kinetics and decreased the heat release rate. This effect would decrease the 

thermal necrosis of bone and also improved the thermal stability of the system. 

Osteoblast cultures (MG63 line) were tested with PMMA/α-TCP composites [149] and it was 

demonstrated that PMMA/α-TCP significantly and positively affected osteoblast viability as 

compared to PMMA. At 12 weeks, the PMMA/α -TCP implants in rabbit bone successfully 

osteointegrated in trabecular and cortical tissue. The presence of the bioactive ceramic material 

showed to be responsible for the improvement of: the material colonization by bone cells, 

osteoblast activity, osteoinduction and osteoconduction processes, and bone remodelling. 

 

Bioactive cements filled with glasses 

The first bioactive glass studied was Bioglass® 45S5, introduced by Hench in 1971 [150], 

which still remains the most used in clinical applications and the most promising one. Bioglass® 

45S5 is produced by melting, and its specific composition is 45% SiO2, 24.5% CaO, 24.5% Na2O, 

6% P2O5 (expressed as weight %). The name ‘45S5’ refers to both the SiO2 content (45% wt) and 

to the Ca/P molar ratio (5). 

In fact, when these glasses are put in contact with biological fluids, a layer of hydroxyapatite 

(HA) analogue to the mineral phase of bones is deposited on their surface. Collagen molecules are 

incorporated into this layer, and a biological bond can be formed. It was later shown that a bond 

with soft tissue can be achieved as well, if the rate of apatite formation is high enough [151]. 

Five inorganic reaction stages (Figure 7) occur at the glass surface when a glass is immersed in 

a physiological environment [152]:   

1. Ion exchange in which modifier cations ( Na+, Mg+2, Ca+2) in the glass exchange with 

hydronium ions (H3O
+) in the external solution; 

2. Hydrolysis in which Si-O-Si bridges are broken, forming Si-OH silanol groups, and the 

disruption of the glass network; 

3. Condensation of silanols to form a silica gel layer; 

4. Precipitation of Ca and phosphate on the gel, leading to the formation of  amorphous 

calcium phosphate; 

5. Gradual transformation of calcium phosphate layer into crystalline hydroxyapatite 
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Figure 7: Mechanism of apatite formation on glass adapted from [153] . 
 

Several glass compositions may promote bioactivity and they can be further explored and used 

to improve bone bonding capability of inert matrices like PMMA. Compared to synthetic 

hydroxyapatite, the surface layer formed on bioactive glass is more similar, in terms of 

crystallinity, to the apatite of bone tissue, which produces a greater proportion of bone bonded to 

bioactive glass than to HA [154]. 

The addition of glass, glass-ceramic or ceramic particles to commercial cements affects their 

mechanical, curing and biological properties.  

Flexural, compressive, and fracture properties of commercial acrylic bone cement modified by 

different weight fractions of glass spheres were altered by the filler content [155]. It was found that 

glass particles added up to 50 wt% produced significant increases in flexural modulus and fracture 

toughness, while contents higher than 25 wt%  promoted a decrease in the compressive yield 

strength in cements cured at room temperature. The mechanical behaviour can be understood in 

terms of the reinforcing effect of the filler and the plasticizing effect of the monomer, which 

reduces the compressive strength and increases KIC.  

Recent researches, considering the bending properties, demonstrated that PMMA-co-EHA 

cements containing 30, 40 and 50 wt.% of glass of the 3CaO.P2O5-MgO-SiO2 system, achieved a 

maximum flexural strength of 29 MPa coupled with an elastic modulus of 1.1 GPa at an 

intermediate filler concentration (30 wt.%), increasing its mechanical performance to the upper 

level of the values reported for cancellous bone [156]. For materials containing proportions of filler 

higher than 30 wt.%, the strength decreased steadily with increasing glass content due to the weak 
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bonding between the matrix and the filler, attaining similar values to those of the matrix material 

for 50 wt.% filler. 

Cement formulations based on PMMA/phosphate glass (PG: 44.5% P2O5; 44.5% CaO; 11% 

Na2O, mol%) [157] or PMMA/MgO-CaO-SiO2-P2O5-CaF2 glass (GBC: 4.6% MgO; 44.7% CaO; 

34.0% SiO2; 16.2% P2O5; 0.5% CaF2, wt %) [158], in which different proportions between 30 and 

70 wt% of glass were used, exhibited appropriated mechanical performance. It was verified that the 

elastic modulus of both cements increased with the increase of the filler content. A significant 

increase of compressive strength was obtained for the composites prepared with 20% (110 MPa) 

and 40 wt% PG (118 MPa), whereas for cement filled with higher PG contents the strength was 

equal to PMMA pure (100 MPa). For GBC cement, the compression and bending strength of all 

studied formulations were higher than those of conventional PMMA bone cement. The values of 

strength of PMMA were 74 MPa for compression and 92 MPa for bending, which increased for 

131 MPa and 134 MPa respectively, when 70 wt% of glass was introduced (GBC70). 

Together with the amount of added filler, the mean particle size and its amorphous/crystalline 

nature may also affect the mechanical behaviour of the PMMA-based composites. In bioactive 

bone cements consisting of PMMA and bioactive glass beads of the MgO-CaO-SiO2-P2O5-CaF2 

system [159], was demonstrated that the bending strength increased as the mean size of the glass 

beads decreased (mean diameters 4, 5, 9, and 13 µm) due to improvement of filling effect, while 

Young’s modulus seemed to be independent of particle size, i.e. it did not change significantly. 

Additionally, the smaller particles have larger surface area, this may help expose more bioactive 

filler on the surface of the cement, creating more contact with the bone. However, they may also 

cause strong foreign body reaction, thus care should be taken to avoid their separation from the 

bone cement surface. New cement formulations developed in the Kyoto University in 1993 [160] 

consisting of a bisphenol-α-glycidyl dimethacrylate-based resin (Bis-GMA-based resin) and a 

bioactive filler (glass or glass-ceramic) have shown values for compressive strengths that were 

lower for the composites filled with glass (153-180 MPa) than for the composites loaded with 

glass-ceramic particles (167-194 MPa). 

Concerning the curing properties, values of dough, setting and working time usually increase 

with the content of glass in the cements. On the contrary, the maximum temperature reached during 

the polymerization reaction decreased with increasing concentration of glass [157]. The advantage 

of adding bioactive filler (glass beads) in PMMA, apart from bioactivity and better mechanical 

properties, is the decrease in maximum temperature of polymerization (Tmax). It was observed that 

the temperature during polymerization was 68.3°C for the cement designed GBC and 87.5°C for 

the commercial PMMA bone cement (CMW-1®). 
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Bioactive and osteoconductive properties of acrylic bone cements with different types of filler 

are reported in the recent literature. Composites containing 30, 40 and 50 wt.% of glasses of the 

3CaO.P2O5-MgO-SiO2 system, exhibited in vitro formation of an apatite layer on the material 

surface, being faster for the higher glass contents [156]. Results obtained by Kobayashi et al [161] 

with cements containing bisphenol-α-glycidyl dimethacrylate-based resin (Bis-GMA-based resin) 

and a bioactive filler (glass ceramic powder AW-GC, HA or β-tricalcium phosphate (β-TCP) 

revealed that: after soaking in simulated body fluid (SBF) for 2 days, the AW-GC cement and the 

HA cement formed bonelike apatite over their entire surfaces but the β-TCP cement did not.  

Osteoconductivity of several bone cements loaded with bioactive fillers was confirmed for 

different composite formulations [158,159,161-163]. Histological examination generally showed 

that a more effective contact with bone is facilitated by increasing the filler proportion. The 

osteoconductivity can also be evaluated by affinity indices (percentage). The calculation of affinity 

index is made from one SEM photograph and based on length of bone in direct contact with the 

cement surface divided by the total length of the cement surface, being this value multiplied by 

100. It was demonstrated that the affinity index of the cement increases with  a higher glass content 

and lower mean glass bead size [158,159]. An evaluation of interface between the bone and a 

bioactive glass cement revealed that the interfacial strength (push-out load of cylinders in contact 

with bone) of bioactive cements was much higher than that of CMW-1® [162] when implanted into 

canine femora. The interfacial strength values of the bioactive glass cements also increased with 

prolonged implantation time. Fujita and co-workers [163] examined the influence of the proportion 

(0, 30, 50, 70 and 80 %) of AW-GC glass–ceramic powder on the bone-bonding ability of Bis-

GMA-based cement. The developed cements were implanted into the proximal metaphysis of the 

tibiae of male rabbits, and the failure load was measured by detaching tests 10 and 25 weeks after 

implantation. The failure load increased with increasing content of glass and it was greater for 25 

weeks. The results show that all the tested cements had the ability to bond to bone and to function 

as bioactive composites.  

 

CEMENTS FILLED WITH BIODEGRADABLE FILLERS 

 

The introduction of biodegradable fillers in acrylic bone cements has aimed the development of 

a system for controlling drug delivery, since it was discovered that the most of the antibiotic could 

remain inside the cement for many years. Scarce examples have been reported considering the 

bioactive behaviour of the cement associated to the strategy of bone growth inside the pores created 

during the degradation of the material, which could simultaneously facilitate bone replacement, 

ingrowth and bonding. 
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A comparative study between a conventional PMMA bone cement and  a biodegradable cement 

based on PPF-MMA, in which a hydrolysable pre-polymer poly(propylene fumarate) (PPF) was 

cross-linked with MMA monomer, both carried with antibiotics and  implanted subcutaneously in 

rats, revealed that the biodegradable cement PPF-MMA achieved and maintained considerably 

higher wound antibiotic levels than the PMMA cement [164].  

Poly-L-lactic acid (PLLA) has been used to fill a PMMA matrix and to develop a drug delivery 

system [165-167]. The rate of ibuprofen release was analyzed and it was found to be affected by 

the crystalline or amorphous form of the drug. The incorporation of a ceramic component, Al2O3, 

in this composite and the presence of the biodegradable polymer, PLLA, facilitated the ibuprofen 

crystallization and consequently its rate of release [165]. When a bioactive glass powder of the 

SiO2–CaO–P2O5 system was added to the PMMA-based composites containing PLLA, [166, 167] 

it was observed the formation of an apatite-like layer in SBF although the crystallinity of this layer 

was lower on the composite than on the glass samples [166]. The rate of drug release was related to 

the ion exchange between the glass powders in the composite and the SBF. The loading of these 

composites with gentamicin led to a fast initial release during the first 10 h of soaking in SBF, 

followed by a controlled release of the drug. The results were similar for addition of ibuprofen, the 

growth of an apatite-like layer on the materials surface was demonstrated and the ibuprofen release 

rate was related with the growth kinetics of this layer, being slower when the materials do not 

contain the biodegradable polymer PLLA [167]. 

The presence of poly(ε-caprolactone) (PCL), in the partially biodegradable acrylic composites, 

provided a significant decrease in both compressive strength and elastic modulus when compared 

with the PMMA [168]. Composites loaded with 3% wt/wt vancomycin eluted 64% of the initial 

drug within the first 5 h, allowing a progressive release of nearly the total amount of the initial drug 

(90%) in approximately 2 months. The use of PCL beads as a solid component of the material 

provides lower peak temperature and longer setting times than the classical PMMA-based acrylic 

cements. The PCL/PMMA composites presented residual monomer values in the range of 2–3% 

wt/wt independently of the PCL content, and degradation test resulted in a weight loss close to 2% 

wt/wt and water uptake values in the range of 1.5–2%, after 56 days in SBF. 

Literature also refers the incorporation of the biodegradable thermoplastic starches (TPSs) in 

self-curing acrylic cements aiming the achievement of a short- to medium-term drug delivery 

system for hard tissue treatment [19]. The cements exhibited values of water absorption up to 

15.3% and mechanical properties in the range of accepted values according to standard 

specifications, although decreasing after immersion in PBS. The TPSs can gradually dissolve 

giving rise to a surface porosity, which induces a higher level of delivery of the drug (Ibandronate) 

in PBS. The drug release capacity was highly dependent of the kind of TPS added, as well as of its 
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particle size. The addition of polyesters, such as PLA, PHB and aliphatic polyester, produced a 

decrease in the mechanical properties (compression and tensile) and a very limited capacity for 

water absorption of the system. 

Degradable chitosan/β-tricalcium phosphate (β-TCP) microspheres were used as an added 

constituent to commercial available PMMA bone cement [169]. Their introduction promoted a 

significant decrease of the curing peak temperature, increased the setting time and reduced the 

mechanical properties, namely the ultimate compressive strength and the bending strength. The 

degradation test of these composites showed that the weight loss can be superior to 20% after 100 

days of immersion in phosphate buffer saline solution. SEM observations indicated that these 

composites could degrade gradually and provide rough and porous spaces for cell growth leading to 

a more stable structural anchorage of the cement with the surrounding tissues. Following a similar 

strategy, a bioactive bone cement (BBC), composed of chitosan (10 wt.%) and HA from natural 

bone powder (trabecular bone blocks of porcine spines), at concentrations of 40, 50 and 60 wt.% 

was developed [170]. Compared with pure PMMA, the water absorption, weight loss, and porosity 

increased for the BBCs, but the compressive Young’s modulus and the ultimate compressive 

strength decreased. No cytotoxic characteristics were found associated with any of the BBCs and 

cell proliferation tests demonstrated that BBC with 50 wt.% of HA was preferable to pure PMMA 

for cell attachment and proliferation. However, the addition of chitosan (concentrations of 1–5%) 

into gentamicin-loaded Palacos® R bone cement significantly decreased drug release and did not 

prevent the bacterial colonisation [171]. The mechanical performance of these cements was 

significantly reduced after 28 days of saline degradation with the compressive and bending 

strengths not in compliance with the minimum requirements as stipulated by the ISO standard for 

PMMA bone cements. 

Another interesting approach was the development of a novel class of cements, the so called 

hydrophilic, partially degradable and bioactive cements (HDBCs). These were acrylic bone 

cements based on corn starch/cellulose acetate blends (SCA), a bioactive ceramic filler (HA or 

bioactive glass) and a hydrophilic monomer (acrylic acid (AA) or then 2-hydroxyethyl 

methacrylate (HEMA)) [69, 172-174]. Higher solid/liquid ratio shortened the dough time and 

decreased the peak of temperature. Mechanical properties were in the range of conventional 

cements and the best results were obtained with a solid/liquid ratio of 55/45 and an HA content of 

about 20 wt%. The degradation percentage reached a maximum of 12% after 90 days in saline 

solution. The formulations developed with HA amounts of at least 20% were clearly bioactive 

[174]. The results for water uptake increased with increasing amount of the hydrophilic monomer, 

and could be adjusted to values ranging from 20 to 65wt%. It was found that cements containing 

AA and bioactive glass (MgO-SiO2-3CaO.P2O5) did not show a bioactive behaviour, because of the 
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deleterious effect of this monomer on the calcium phosphate precipitation on the polymeric 

surfaces [173]. HEMA did not present this inhibitory effect and the addition of 30 wt.% of 

bioactive glass to this system promoted the formation of a dense apatite layer after 7 days of 

immersion in simulated body fluid [172]. This novel concept in terms of bone cement could allow 

bone ingrowth in the cement, and induce a press-fitting effect, improving the interfaces with both 

the prosthesis and the bone [69]. 

 

CONCLUSIONS AND SCOPE OF THE THESIS 

 

Despite the success, globally recognized, of the use of PMMA bone cements in orthopaedic 

surgery there are some drawbacks that limit their performance such as non-bone-bonding 

capability, relatively low mechanical strength, release of unreacted monomer and high curing 

temperatures. A new generation of acrylic bone cements with better properties than those 

commercially available is strongly desired in order to ensure the long term clinical performance of 

the cemented arthroplasties.  

As previously shown, a lot of work has been carried out during the last 35 years to study acrylic 

bone cements and numerous changes in the preparation techniques and composition have been 

attempted to improve the properties of this material. Although several modifications have been 

proposed as alternatives to the original formulations, none was successfully introduced in the 

market. In fact most of the novel formulations had to be abandoned due to unexpected problems 

making it less adequate than the original cement. Therefore, formulations developed 50 years ago 

consisting of self-curing PMMA are still the main choice for replacement surgeries.   

In this context, the work in this thesis was intended to be a contribution towards the 

development of an improved formulation of bone cement, aiming at solving some of the main 

drawbacks of the conventional bone cements. Hence we developed a bioactive bone cement, with 

bone bonding capability, assessed by cellular tests, able to release ibuprofen at therapeutic 

concentrations sufficient to blunt the inflammatory response associated to the surgical procedure. 

Moreover, when a biodegradable filler is added to the formulations, it gradually degrades and 

provides bone cells adhesion and growth on the cement, indicating that it can further allow a 

stronger in vivo adhesion to the bone and a better stabilization of the implant. 

The thesis is divided in 6 chapters, four of which comprise the results obtained from the 

research experimental work. Two different methods of preparation were used in this study, i.e. 

polymerization by thermal route (heat cured materials) and polymerization by chemical route (self 

cured cements). 
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Chapter 1  

This chapter refers to the state of the art on the subject of the thesis, presenting a review of the 

literature on acrylic bone cements and on the several approaches employed to improve the 

properties and the performance of these cements. 

 

Chapter 2  

It is addressed the method of preparation by the thermal route. Two published papers are 

presented: First - "Preparation and study of in vitro bioactivity of PMMA-co-EHA composites filled 

with a Ca3(PO4)2-SiO2-MgO glass" published in Materials Science & Engineering C- Materials for 

Biological Applications, 2008; Second - "Silicate and borate glasses as composite fillers:  a 

bioactivity and biocompatibility study" published in  Journal of Materials Science: Materials in 

Medicine, 2011. Thus PMMA-co-EHA composites filled with a silicate glass (CSi) and a borate 

glass (CB) were prepared by free radical polymerization and it is made a discussion on their in 

vitro behaviour both in acellular (bioactivity) and in cellular media (biocompatibility). 

 

 Chapter 3 

This chapter describes the method of cement preparation by the chemical route, the procedure 

which is also used in the following chapters. One paper, "Properties and osteoblastic 

cytocompatibility of self-curing acrylic cements modified by glass fillers" submitted to Journal of  

Biomaterials Applications, is included in this part. The effect of glass content (30, 40 and 50%) in 

self cured cements, incorporating the 4,4-bis(dimethylamino)-benzhydrol activator of reduced 

toxicity, was assessed. Properties such as curing parameters, residual monomer, water uptake, 

weight loss, bioactivity, mechanical properties (bending and compressive) and osteoblastic 

cytocompatibility were investigated.  

 

Chapter 4 

The study conducted in this chapter explores the possibility of incorporating ibuprofen (anti-

inflammatory agent) into the cement, having a material that simultaneously shows controlled drug 

release and bioactive behaviour. The in vitro liberation profile, release mechanism and the 

concentration therapeutic of the drug were some of the properties analyzed in this paper entitled 

"Influence of ibuprofen addition on the properties of a bioactive bone cement", under revision to 

Biomedical Materials. 

  

 

 



 32 

Chapter 5 

Finally in this chapter we focused the characterization of cements containing biodegradable and 

bioactive fillers, which provided improvements in both mechanical and biological behaviour. This 

chapter includes one paper entitled "Acrylic formulations containing bioactive and biodegradable 

fillers to be used as bone cements: properties and biocompatibility assessment" submitted to 

Biomedical Materials. 

 

Chapter 6 

This chapter contains the general conclusions regarding the overall work carried out under the 

scope of this thesis, as well as some final remarks and future directions. 
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CHAPTER 2 
 

 

SECTION I:  

 PREPARATION AND STUDY OF IN VITRO BIOACTIVITY OF PMMA-CO-EHA 

COMPOSITES FILLED WITH A Ca3(PO4)2-SiO2-MgO GLASS 

 

 

ABSTRACT 

 

The nature of the orthopaedic implant surface affects the interaction with cells and subsequent bone 

formation. The bone/cement interface in cement-held prostheses is considered to be the main cause 

of fracture leading to implant revision. It is thought that the introduction of a bioactive phase, such 

as bioglass, in the cement may permit a more stable interface by encouraging direct bone 

apposition rather then encapsulation of the implant by fibrous tissue. In this work new 

poly(methylmethacrylate) (PMMA) based composites filled with 0, 30, 40 and 50 (wt%) of a 

Ca3(PO4)2-SiO2-MgO glass, were processed. The prepared composites consist of a 

poly(methylmethacrylate)-co-(ethylhexylacrylate) (PMMA-co-EHA) matrix filled with a glass 

(G7), with nominal composition 33.26 CaO, 28.07 P2O5, 23.03 SiO2, 15.64 MgO (wt %). The in 

vitro bioactivity of the composites was assessed by determining the changes in surface morphology 

and composition, by X-ray diffraction (XRD) and scanning electron microscopy coupled with X-

ray energy dispersive spectroscopy (SEM-EDS), after soaking in a simulated body fluid (SBF) for 

periods of up to 21 days at 37 ºC. Inductively coupled plasma (ICP) was used to assess the 

evolution of ionic concentrations in the SBF solution. The results obtained confirmed the growth of 

a hydroxyapatite (HA) layer on the surface of the prepared composites. As expected, HA formation 

was faster for composites prepared with higher glass content. 

 

 

 

This section is based on the following publication: 
Lopes PP, Ferreira BJML, Almeida NAF, Fredel MC, Fernandes MHV, Correia RN. Preparation 
and study of in vitro bioactivity of PMMA-co-EHA composites filled with a Ca3(PO4)2-SiO2-MgO 
glass. Materials Science Engineering C. 2008;28:572-577. 
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INTRODUCTION 

 

Fixation of the majority of prostheses in the past has been performed using 

poly(methylmethacrylate) (PMMA) bone cement. However, an unresolved problem with using 

PMMA as bone cement is a thickening of the intervening fibrous tissue layer, which leads to 

aseptic loosening of the cement in some cases [1, 2]. To improve fixation of PMMA to the host 

bone, various composites with bioactive materials have been developed and studied [3-5].  

Bioactive materials (e.g. glasses, sintered HA, glass-ceramics) are able to bond to living bone 

through a hydroxyapatite (HA) layer formed onto their surfaces [6, 7].A similar layer is reported to 

form on the surface of these materials in vitro, after soaking in liquids with ionic concentration 

similar to the human blood plasma [5, 8-10]. Previous studies performed in glasses from the 

Ca3(PO4)2-SiO2-MgO system, have already shown bulk superficial reactivity in the form of a HA 

like layer [11-13], when immersed in a simulated body fluid (SBF).  

The objective of the present work was to investigate if glasses of the same system could induce 

bioactivity to a new PMMA based polymeric matrix. 

 

EXPERIMENTAL 

 

Glass preparation 

A glass (G7), with nominal composition 33.26CaO, 28.07P2O5, 23.03SiO2, 15.64MgO (in this 

paper, all the compositions are referred to wt %, unless otherwise stated) was prepared form 

reagent-grade Ca(H2PO4).H2O, CaCO3, SiO2 and MgO. The raw materials were mixed in ethanol 

for 45 minutes and dried at 70 ºC. Batches of 80 g were melted in a platinum crucible at 1550 ºC 

for 1 h in air. The melt was poured onto water and the resultant glass frit was powdered in a 

planetary mill for 8 h. The milled glass powder had a particle size of approximately 10 µm. 

 

Preparation of the composites 

Methyl methacrylate (MMA) and 2-ethyl hexylacrylate (EHA) were obtained from Aldrich 

Chemical Company. Benzoyl peroxide (BPO) was obtained from Merck. Only the MMA was 

purified, for extraction of hydroquinone, all the other reagents were used as received. PMMA-co-

EHA/G7 composites were prepared by addition of the monomers to 0, 30, 40 and 50 % of the glass, 

as shown in Table 1. BPO was added to the monomer mixture in a ratio of 2.56 %, as a 

polymerization initiator. 
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Table 1: Chemical composition of the PMMA-based composites investigated (wt %). 

Sample identification MMA EHA Glass, G7 

Composite C5 25 25 50 

Composite C4 30 30 40 

Composite C3 35 35 30 

Matrix M 50 50 - 

 

 

In vitro assay in SBF 

Pieces of 5 x 5 x 3 mm were surface ground, mounted vertically and soaked in 15 mL of 

tris-buffered SBF in sterile polyethylene containers maintained at 37 ºC. The SBF solution had a 

similar composition to that of human plasma, as shown in Table 2, and was previously filtered 

trough a Millipore 0.22 µm system. Soaking periods were 1, 3, 7, 14 and 21 days. The 

concentrations of calcium (Ca), phosphorous (P), silicon (Si), and magnesium (Mg) were 

determined for each period by inductively coupled plasma spectroscopy (ICP, Jobin Yvon, JY 70 

plus). Formation of the calcium phosphate surface layer was followed by X-ray diffraction (XRD, 

Rigaku Geigerflex Dmax-C with CuKα radiation) and scanning electron microscopy coupled with 

X-ray energy dispersive spectroscopy (SEM-EDS, Hitachi S-4100, 25 kV acceleration voltage, 

beam current 10 µA). 

 

Table 2: Ion concentrations and pH of SBF and those of human blood plasma. 

 Na+ K+ Mg2+ Ca2+ Cl- HCO3
- HPO4

2- SO4
2- pH 

Plasma 142.0 5.0 1.5 2.5 103.0 27.0 1.0 0.5 7.2-7.4 

SBF 142.0 5.0 1.5 2.5 147.8 4.2 1.0 0.5 7.25 

 

 

RESULTS AND DISCUSSION 

 

Changes in SBF composition 

 
Changes in the concentrations of Ca, P, Si and Mg ions in SBF due to immersion of the 

composites are shown in Figure 1. Along the first day there is a rapid increase in Ca, P, Si and Mg 

concentration, for all the composites studied, due to filler dissolution. Between 1 and 3 days a 

concomitant deposition of calcium phosphate occurs as shown by the fall in the Ca and especially 
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in P concentrations in composite C5, Figure 1a and 1b. During this period the SBF solution in 

contact with composites C4 and C3 presented less variation in Ca and P concentrations while Si 

and Mg concentrations continued to rise. From 3 to 14 days the Ca and P concentrations still 

decreased, for composite C5. Composites C4 and C3 also presented a minor decrease in the Ca and 

P profile during this period. During the same period the Si and Mg concentrations continued to 

increase. Between 14 and 21 days the Ca and P concentration profiles are more stable, with 

comparatively minor changes for the three composites studied. This fact suggests a reformulation 

of the calcium phosphate deposits - perhaps with morphological implications - rather than 

apposition. A later increase in soluble Ca and P, for composite C5, is thought to result from 

detachment of portions of the deposit.  

 

 

 
Figure 1: Variation of ionic concentrations of (a) calcium, (b) phosphorous (c) silicon, and (d) 
magnesium in SBF, during the incubation period. 
 

 

In general, the ICP analyses reveal that composites prepared with more glass content exhibit a 

smaller initial increase in Ca and P solution concentrations, Figures 1a and 1b. Usually, one would 
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expect that composites with higher filler concentration should release more Ca and P into the SBF 

solution. However, considering the Ca and P concentration profiles we are led to assume that 

although the composite C5 releases more ions to the solution than C4, as confirmed by the Si 

analysis shown in Figure 1c, it also induces a more rapid formation of the calcium phosphate layer 

- resulting in a lower concentration of Ca and P ions in solution. The same can be said about C4 

relatively to C3. In a previous study, glasses from the same system in bulk form, showed ability to 

quickly (less than 1 day) form a calcium phosphate layer, without decreasing the Ca and P solution 

concentrations in the same length of time [13]. In Mg concentration profiles there are small 

differences between the composites, the more interesting one comes from comparing C5 and C4 

between 14 and 21 days of immersion, since it could result from incorporation of Mg ions, from the 

SBF solution, into the  layer formed on the surface of composite C5. 

 

Formation and characterization of the surface layer 

 
XRD of composite surfaces C5 and C3 during immersion in SBF, are shown in Figure 2. After 1 

day in SBF the XRD pattern is still very similar to the pattern before immersion. After 3 days 

composite C5 exhibits a broad band at 24º≤2θ≤34º that suggests a calcium phosphate deposit [14]. 

This band was also detected for composite C4 (XRD not shown). After the same period the XRD 

pattern of composite C3 does not evidentiate any new feature. After 7 days in SBF composites C5 

and C4 present two diffraction peaks characteristics of synthetic HA [15], for 2θ = 26 and 32 º, 

attributed to reflections (0 0 2) and (2 1 1), respectively. Composite C3 still presented, for 7 days, a 

XRD pattern similar to the one obtained before immersion. 

 

 

Figure 2: XRD patterns of the surface of composite (a) prepared with 50% and (b) 30% (wt) of 
glass, during the immersion period.  
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Between 14 and 21 days of immersion composites C5 and C4 present increased intensity of 

reflections previously detected while other HA peaks for 2θ = 50º and 53º - attributed to reflections 

(2 1 3) and (0 0 4), respectively - become evident. For composite C3 the appearance of the broad 

band characteristic of calcium phosphate deposit was only detected for 21 days of immersion. 

SEM images, Figure 3, revealed an almost complete coverage of the surface of composites C5 

and C4 after 3 days in the SBF solution. After 7 days a layer of spherical particle aggregates fully 

covers C5 and C4 surfaces.  

 

 

 

Figure 3: SEM micrographs of the surface of composites C5 and C4 before and after soaking in 
SBF for 3 and 21 days.  

 

These aggregates consist of numerous acicular crystallites, Figure 4. The morphology of the 

deposits suggests the formation of a HA-like layer [14, 16]. Between 14 and 21 days in SBF the 
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HA surface layer seems to exhibit morphological rearrangements - the spherical particles found at 

21 days presented a less acicular morphology than those formed after 14 days of immersion, as 

shown in more detail in Figure 4. It is known that the presence of Mg2+ ion in the apatite network 

decreases its crystallinity [17]. 

 

 

Figure 4: Detail SEM micrographs of the HA layer formed on the surface of composite C5 after 
soaking in SBF for (a) 14 and (b) 21 days. 

 

The EDS pattern for composite C5, Figure 5, reveals that after 1 day immersed in SBF some of 

the filler material has dissolved – the Ca, P and Mg signal decreased during this period. The Si 

signal also decreased, between 0 and 1 day of immersion, but in much less extension. From 1 to 3 

days the composite surfaces exhibit a pronounced increase in the Ca and P signal and a 

corresponding attenuation of the Si and Mg signals, evidenciating calcium phosphate deposition. 

The deposition rate increases between 3 and 7 days since the analysis of the surface of C5 for 7 

days only detected the presence of Ca and P. For 7 days of incubation the Ca/P molar ratio obtained 

by EDS, was 1.69. This value is very similar to the Ca/P molar ratio characteristic of stoichiometric 

HA - 1.67 [16]. After 14 days in SBF the presence of Si and Mg, besides Ca and P, was again 

detected. This reversal may be attributing to either the detachment of portions of the calcium 

phosphate layer or the incorporation of these ions into the surface layer. The presence of sodium 

was also detected for this soaking time.  
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Figure 5: EDS pattern of the surface of composite C5 during immersion period. 
 

 

The Ca/P molar ratio for the deposit on composite C5 after 14 days of immersion (1.44) is lower 

than that obtained for 7 days; however, if we assume that the alien ions detected could be 

incorporated into the HA network, we obtain a new cation/P molar ratio of 1.58, as shown in Table 

3. Previous studies confirmed the possibility of these substitutions during the immersion of HA and 

other related calcium phosphates in SBF [14, 18]. After 21 days of immersion chloride was also 

found at the surface of composite C5. There are reports of the partial incorporation of this ion into 

apatite prepared from water solutions with higher chloride concentration [17]. 

 

Table 3: Ca/P molar ratios, obtained by EDS, during the immersion of composite C5. 

Immersion time (days) Ca/P (Ca+Na+Mg)/P 

3 1.52 1.58 

7 1.69 1.69 

14 1.44 1.58 

21 1.53 1.62 
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CONCLUSIONS 

 

The investigated composites, based on a new PMMA-co-EHA (50/50) matrix filled with 0, 30, 

40 and 50% (wt) of G7 glass - 33.26% CaO, 28.07% P2O5, 23.03% SiO2, 15.64% MgO (wt.%), 

revealed their capability for the precipitation of a calcium phosphate layer after soaking in SBF. 

Structural and morphological characterization of the surface layer, by XRD combined with SEM, 

indicated that it consists of an HA-like deposit. As expected, the formation of the HA surface layer 

was faster for composites with higher glass content – 50% and 40%. Composite surfaces were 

completely covered after 7 days in SBF. Changes in SBF composition combined with EDS analysis 

suggest the incorporation of Mg2+ ions in the surface layer after 14 days of immersion. The results 

obtained are encouraging and suggest that this new bioactive composites could be an alternative to 

the typical PMMA bone cements used for fixation of orthopaedic implants. 
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CHAPTER 2 
 

 

SECTION II 

SILICATE AND BORATE GLASSES AS COMPOSITE FILLERS:   

A BIOACTIVITY AND BIOCOMPATIBILITY STUDY 

 

 

ABSTRACT  

 

Composites filled with a silicate glass (CSi) and a new borate glass (CB) were developed and 

compared in terms of their in vitro behaviour both in acellular and cellular media. Acellular tests 

were carried out in SBF and the composites were characterized by SEM-EDS, XRD and ICP. 

Biocompatibility studies were investigated by in vitro cell culture with MG-63 osteoblast-like and 

human bone marrow cells. The growth of spherical calcium phosphate aggregates was observed in 

acellular medium on all composite surfaces indicating that these materials became potentially 

bioactive. The biological assessment resulted in a dissimilar behaviour of the composites. The CSi 

demonstrated an inductive effect on the proliferation of cells. The cells showed a normal 

morphology and high growth rate when compared to standard culture plates. Contrarily, inhibition 

of cell proliferation occurred in the CB probably due to its high degradation rate, leading to high B 

and Mg ionic concentration in the cell culture medium.  

 

 

 

 

 

 

 

This section is based on the following publication: 
Lopes PP, Leite Ferreira BJM, Gomes PS, Correia RN, Fernandes MH, Fernandes MHV. Silicate 
and borate glasses as composite fillers: a bioactivity and biocompatibility study. Journal of 
Materials Science-Materials in Medicine. 2011;22:1501-1510 
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INTRODUCTION 

 

Acrylic polymers have been extensively used in orthopaedic and dental applications as filling 

and fixing agents [1]. However, a long-term problem associated with this material is the formation 

of fibrous tissue at the bone-cement interface which may compromise the fixation of the prosthesis 

[2]. Thus, over the years, a lot of research effort has been put into optimization of the properties of 

these materials [1,3,4].  

The main condition for a synthetic material to form a stable bond with the bone is the 

precipitation of an apatite layer on its surface, which is responsible for its bioactivity [5]. Several 

compositions of glasses may promote this behaviour and they can be used to improve the bone 

bonding capability of inert matrices like PMMA.  

According to previous work, the formation of hydroxyapatite (HA) seems to be induced by 

functional groups existing on material surface, such as Si-OH [6]. So, it is accepted and well 

characterized that glasses like 45S5 (Bioglass®) form a silica-rich gel layer (Si-OH), through ion 

exchange reactions with the physiological medium followed by precipitation of calcium and 

phosphate ions, resulting in a bioactive material, which enhances bonding capability with bone and 

soft tissues [7-9].  

Recent researches demonstrated that borate-based glasses derived from the 45S5 glass by fully 

or partially replacing the SiO2 with B2O3, can be converted into hydroxyapatite when placed in 

dilute phosphate solution, being the conversion rate to HA more rapid for the glasses with higher 

B2O3 content [10,11]. It is believed that the formation of apatite on B-based glasses follows a set of 

dissolution-precipitation reactions similar to those of a Si-based glass, but the silica gel layer is 

absent [10].  

The biological performance of the B-based glasses has been addressed in previous studies.  In 

vivo, particles of a boron-modified 45S5 glass containing 2 wt% of boron oxide, implanted in rat 

tibia bone marrow, promoted new bone formation and a significant increase of the thickness of 

osseointegrated tissue when compared with control 45S5 glass [12]. Also, in vitro, boron-modified 

45S5 glass containing varying amounts of B2O3, tested as-prepared and partially converted to HA 

(by soaking in a K2HPO4), allowed the proliferation of osteoblast cells, although inhibition of cell 

growth was observed for the glasses with higher B2O3 content, especially for the as-prepared 

samples and tested in static conditions [13]. In this context, it seems useful to investigate new 

materials and expand the range of glass compositions available for use in biological applications 

and the B-based glasses might be a promising material for biological applications.  

In terms of filler, innovative studies published by the present group showed that some glasses of 

the 3CaO.P2O5-MgO-SiO2 system have the potential to be used as biomaterial [14] and the high 
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MgO content in the composition of these glasses does not hinder their apatite forming ability 

[15,16]. Therefore further investigation into its biological behaviour will be of great interest, since 

the effect of this filler on the proliferation of cells has not been disclosed. 

In this context, the main purpose of the present work is to analyse the behaviour of PMMA-co-

EHA composites filled with silicate (CSi) and new borate (CB) glasses, in acellular and in cellular 

media, regarding their capability for calcium phosphate formation and osteoblast cell proliferation 

and differentiation. The proposed borate glass composition was prepared by replacing all the 

silicate of the silica based glass by borate, thus becoming to our knowledge the only B-based glass 

with addition of MgO, for biomedical application, found in the literature. Bioactivity of the 

composites was assessed in SBF and cytocompatibility studies were performed firstly with the 

osteoblast-like MG63 cell line for a rapid screening assay and, afterwards, with human bone 

marrow cells to assess the performance of the material regarding osteoblastic proliferation and 

differentiation events.  

 

MATERIALS AND METHODS 

 

Preparation of the glasses 

Two different glass compositions were used in the experiments. A silicate glass composed of 

(mol%) 38% CaO, 12.7% P2O5, 24.8% MgO, 24.5% SiO2 and a borate glass, which consists of a 

similar composition where SiO2 was entirely replaced by B2O3. The glasses were prepared through 

the classic melt-quenching method and the resultant glass frit was dry-milled (Retsch, RM100 

Mortar Grinder Mill) to a powder with mean particle size of 10 µm, measured with a Coulter LS 

Particle Size Analyzer. The amorphous character of the glasses was confirmed by X-ray diffraction 

(XRD, Rigaku Geigerflex Dmax-C with CuKα radiation). 

 

Preparation of the composites 

PMMA/EHA/Glass composites in a ratio (wt%) of 25:25:50 respectively, were synthesized and 

compared according to the glass composition [16]. Methyl methacrylate (MMA) and 2-ethyl 

hexylacrylate (EHA) were obtained from Aldrich Chemical Company and Merck supplied benzoyl 

peroxide (BPO). All the reagents were used as received. The composites were prepared by free 

radical polymerization at 80 ºC for 24 h and no activating agent was used. The monomers were first 

mixed in a glass recipient, afterwards BPO (polymerization initiator) was dissolved in this liquid 

mixture and finally the glass was incorporated into the mix. It was poured into a Teflon mould 

where polymerization took place. Samples of 5×5×3 mm3 were prepared for the bioactivity and 

biocompatibility studies, and sterilized by 70% alcohol. 
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In vitro bioactivity 

In order to evaluate the in vitro bioactivity and compare the degree of apatite formation on the 

composites, specimens were mounted vertically and soaked in simulated body fluid (SBF) at 

physiological conditions of temperature and pH, respectively, 37 ºC and 7.4. The SBF solution was 

prepared according to the formulation of Kokubo and Takadama [17], with ion concentrations 

nearly equal to those of human blood plasma (Table 1). This solution was previously filtered 

through a Milipore 0.22 µm system and it was used a constant specimen surface area to solution 

volume ratio of 0.1 cm−1. The materials were soaked for periods of 1, 3, 7, 14 and 21 days. After 

immersion the samples were removed from the fluid and their crystallinity, morphology and 

surface modification were followed by X-ray diffraction (XRD) and scanning electron microscopy 

coupled with X-ray energy dispersive spectroscopy (SEM-EDS, Hitachi S-4100, Japan) at an 

acceleration voltage of 25 keV and beam current of 10 µA. The solution was characterized by 

inductively coupled plasma spectroscopy (ICP, Jobin Yvon, JY70 Plus) to measure ionic 

concentration and pH was evaluated at the different times.  

 

Table 1: Ionic Concentrations (mM) of SBF and Human Blood Plasma. 

 

 Na+ K+ Mg2+ Ca2+ Cl- HCO3
- HPO4

2- SO4
2- 

Plasma 142.0 5.0 1.5 2.5 103.0 27.0 1.0 0.5 

SBF 142.0 5.0 1.5 2.5 147.8 4.2 1.0 0.5 

 

 

Biocompatibility studies 

 

MG63 osteoblast-like cells 

The MG63 cell line, originally derived from a human osteosarcoma, has shown numerous 

osteoblastic features, being largely used in biocompatibility tests [18]. These cells were cultured at 

37 ºC in a humidified atmosphere of 5% CO2 in air, in α-Minimal Essential Medium (α -MEM) 

containing 10% fetal bovine serum, 50 µg/mL ascorbic acid, 50 µg/mL gentamicin and 2.5 µg/mL  

fungizone. For subculture, PBS (phosphate-buffered saline) was used to wash the cell monolayer 

twice, which was then incubated with trypsin – EDTA solution (0.05% trypsin, 0.25% EDTA) for 5 

min at 37 ºC to detach the cells. Cells were resuspended in culture medium and cultured (2x104 cell 

cm-2) for 7 days in standard polystyrene culture plates (control) and on the surface of the 

composites. The medium was changed every 2–3 days. Control cultures and seeded material 
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samples were evaluated at days 1, 3, and 7 for cell viability/proliferation and observed by confocal 

laser scanning microscopy (CLSM; Leica SP2 AOBS). 

 

Human bone marrow cells 

Human bone marrow, obtained from orthopaedic surgery procedures (after patient informed 

consent), was cultured in the same experimental conditions as those used in the culture of MG63 

cells. Primary cultures were maintained until near confluence (10–15 days) and, at this stage, 

adherent cells were enzymatically released (trypsin–EDTA solution). The cells were seeded at a 

density of 2x104 cell/cm2 in control conditions (standard plastic culture plates) and on the surface 

of the composites. Control cultures and seeded material samples were cultured for 21 days in the 

presence of 50 µg/ml ascorbic acid, 10mM β-glycerophosphate and 10 nM dexamethasone, 

experimental conditions reported to allow the osteoblast differentiation in this culture system [19]. 

All the experiments were performed in the first subculture, since the sequential passage of bone 

marrow cells results in a progressive loss of the osteoblastic phenotype [20]. Control cultures and 

colonized composites were evaluated throughout the culture time for cell morphology, cell 

viability/proliferation, alkaline phosphatase (ALP) activity and ability to form calcium phosphate 

deposits, as follows.  

 

 Cell viability/proliferation 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay is a simple 

colorimetric method to measure cytotoxicity and viability/proliferation, first developed by 

Mosmann [21]. This method is based on the capacity of viable cells to metabolize tetrazolium salt 

by forming purple formazan crystals, which can be dissolved and quantified by measuring the 

absorbance of the solution at 600 nm. Cultures were incubated with 0.5 mg/mL of MTT in the last 

4 h of the tested culture period; the medium was then decanted, formazan salts were dissolved with 

200 µL of dimethylsulphoxide and the absorbance was measured in an ELISA reader. Results were 

compared in terms of macroscopic surface area and expressed as Acm-2. 

 

Alkaline phosphatase activity 

Alkaline phosphatase is a glycoprotein that participates in processes leading to mineral 

formation in tissues like bone [22]. ALP activity was determined in cell lysates (obtained by 

treatment of the cultures with 0.1% triton in water) and assayed by the hydrolysis of p-nitrophenyl 

phosphate in alkaline buffer solution, pH 10.3, and colorimetric determination of the product (p-

nitrophenol) at λ=405 nm: Hydrolysis was carried out for 30 min at 37 ºC. Results are expressed in 

nanomoles of p-nitrophenol produced per min per µg of protein (nmol.min-1 /µg protein). 
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SEM and CLSM microscopy  

The samples for SEM observation were fixed in 1.5% glutaraldehyde in 0.14M sodium 

cacodylate buffer (pH 7.3), then dehydrated in graded alcohols, critical-point dried, sputter-coated 

with gold and analysed in a JEOL JSM 6301F scanning electron microscope equipped with a X-ray 

energy dispersive spectroscopy (EDS) microanalysis capability (voyager XRMA System, Noran 

Instruments). 

For CLSM assessment, the samples were fixed in 3.7% paraformaldehyde (10 min). Cell 

cytoskeleton filamentous actin (F-actin) was visualized by treating the cells with Alexa Fluor90 

488 Phalloidin (1:20 dilution in PBS, 1 h) and counterstaining with propidium iodide (1 µg.mL-1, 

10 minutes) for cell nuclei labelling. Labelled cultures were mounted in Vectashield® and 

examined with a Leica SP2 AOBS (Leica Microsystems) microscope. 

 

Statistical analysis 

Values are expressed as mean ± standard deviation (SD) of three replicates and were compared 

using the student's t-test, with a significance level of p<0.05. 

 

RESULTS AND DISCUSSION 

 

In vitro Bioactivity 

Bioactivity of CSi and CB composites was assessed in SBF, which is widely employed as 

synthetic plasma, unlike most of the reported studies regarding the bioactivity of the B-based 

glasses [10,11,13,23], that used a 0.02M K2HPO4 solution (with a phosphate ions concentration 

approximately 20 times that of the human blood plasma). 

SEM images of CSi and CB composites after immersion in SBF for various periods are shown 

in Figure 1. Similar results were obtained for the two composites, prepared with different glass 

compositions, clearly showing the precipitation of a surface layer on both.  
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Figure 1: SEM micrographs, for the CSi composite (a) before immersion, (b) after 3 days and (c) 
after 7 days in SBF. For CB, (d) before immersion, (e) after 3 days and (f) after 7 days. Bars 60 µm 
(insert: bar = 6 µm). 
 

As seen in Figure 1 the initial samples (before immersion) were constituted by the glass 

particles dispersed in the polymeric matrix. This morphology changed with the soaking time and, 

after 3 days in SBF, the spherical precipitates began to grow and partially cover the surface of the 

composites. After 7 days, the composites were covered with a homogeneous layer of precipitates 

which consisted of numerous needle-like crystalline aggregates characteristic of hydroxyapatite 

[24]. With further increase in the soaking time, there was no significant change in the surface 

morphology, and a layer identified as calcium phosphate could still be observed after 14 and 21 

days (not shown).      
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The surface chemical analysis was carried out by EDS and the patterns of the composite surface 

composition before and after soaking in SBF are depicted in Figure 2.  The obtained results for 0 

days confirmed that the elements that constitute the composites before immersion are in agreement 

with the glass composition. The CB composite revealed the presence of Ca, P and Mg (B is not 

detectable by EDS) and for CSi, besides these same elements, Si was also identified. The surface of 

composites CB and CSi exhibited an increase in Ca and P concentration and a corresponding 

decrease of the Mg and Si signal (when it is present) after 3 days of immersion, evidencing a 

calcium phosphate formation. Furthermore, for the CB composite the presence of a small amount 

of Cl ions incorporated in the mineral phases was detected, probably coming from the SBF. The 

surface analysis of the composite CSi, for 7 days, only showed the occurrence of Ca and P, and the 

Si and Mg signal disappeared. For CB, after 7 days, the spectrum was similar to earlier time. The 

measured Ca/P molar ratio for this immersion time was 1.69 for CSi and 1.57 for CB. 

 

 

Figure 2: EDS results, for CSi (a) before immersion, (b) after 3 days and (c) after 7 days. For CB 
(d) before immersion, (e) after 3 days and (f) after 7 days. 
 
 

XRD patterns of composites after the several soaking periods are illustrated in Figure 3. The 

composites without immersion showed typical spectra of amorphous phase and absence of 

detectable crystalline phase. Peaks accusing crystallinity of the surface precipitates began to appear 

after 3 days of immersion and sharpened for the longest period. The results indicate that a calcium 



 59 

phosphate was deposited on the surface of CSi, being identified the peaks characteristic of 

hydroxyapatite at 2θ= 26º, 32º, 50º and 53 º attributed to reflections (0 0 2), (2 1 1), (2 1 3) and (0 0 

4) respectively [25]. The intensity of these peaks increased with soaking time, due to the growth, 

on the composite surface, of an apatite layer of enhanced crystallinity with time. The CB spectrum 

revealed the presence of Mg-substituted tricalcium phosphate phase (whitlockite) together with the 

apatite phase in the newly formed layer. After 3 days, the peaks of diffraction for 2θ= 28º, 31º and 

35º were assigned to the reflection (2 1 4), (0 2 10) and (2 2 0) of whitlockite. The apatite phase 

was detected after 7 days immersion through the peaks at 2θ= 26º, 32º, 53º. The precipitation of 

two phases (apatite and whitlockite) was also identified on the surface of sol-gel glasses containing 

Mg when exposed to SBF [26,27].  

 

 
 

Figure 3: DRX patterns of composite (a) CSi and (b) CB. 
 

When magnesium is incorporated into the atomic structure of HA, the central calcium atom is 

substituted by magnesium. Since the ionic radius of Mg2+ (0.69 Å) is considerably smaller than that 

of Ca2+ (0.99 Å), the placement of Mg into Ca position distorts the HA structure, resembling more 

to whitlockite [28]. Prolonged soaking time of the composite arose the apatite phase herewith 

whitlockite.  

Variation of ions concentration and pH in SBF solution versus soaking time of the composites 

are presented in Figure 4.  For CSi composite, the release of Ca and P occurred during the first 

period of immersion due to the dissolution of the glass followed by their consumption for the 

growth of calcium phosphate layer, resulting in the observed decrease in the concentrations of these 

ions in the solution. The Mg and Si concentration slightly increased as a result of glass dissolution 

and ionic exchange with the solution. For CB composite, the release of Ca and P showed a similar 

profile to CSi indicating that these ions are required for the build up of the calcium phosphate layer 
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on the composite. The Mg and B concentration in solution increased continuously up to 14 days, 

reaching values much higher than those regarding CSi.  

 

 

Figure 4: Variation of ionic concentration in SBF due to immersion of (a) CSi and (b) CB, and (c) 
pH evolution with time. 
 
 

The less cohesive structure of borate glass compared to the silicate glass can be responsible for 

its higher degradation rate. Despite the high dissolution of the borate glass, the pH did not change 

significantly until the end of the test. The elevated Mg concentration in SBF for this composite can 

explain the formation of both apatite and whitlockite phases detected by XRD and consequently the 

presence of its signal in EDS for all soaking periods. For other bioactive materials it is reported that 

when the Mg/Ca molar ratio of the solution is higher than 0.05, a Mg-substituted TCP can be 

formed [29]. 
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Biological Assessment  

 

As-prepared CSi and CB composites were seeded with MG63 osteoblast-like cells for a 

preliminary and quick screening. Results are presented in Figure 5. Regarding the MTT assay, 

control cells, seeded in standard polystyrene culture plates, presented a lag phase followed by an 

increase in the cell proliferation, especially from days 3 to 7. Comparatively, seeded CSi displayed 

significantly higher values at day 1, suggesting that a higher number of cells attached to the 

composite, and, afterwards, cells proliferated with a similar growth rate, resulting in higher MTT 

reduction values throughout the entire culture time. By contrast, seeded CB composite presented 

low MTT values at day 1, and, following, cell proliferation increased slowly during the culture 

time. CLSM observation of the cultures is in line with the MTT assay. At day 7, seeded CSi was 

completely covered by a continuous and thick well-organized cell layer, whereas CB showed only 

few and altered attached cells. 

 

 

Figure 5: Behaviour of MG63 osteoblast-like cells cultured up to 7 days over CSi and CB 
composites. (A) Cell viability/proliferation, estimated by MTT assay, (*) Significantly different 
from control culture. CLSM images at 7 days, on (B) CSi and (C) CB.  
 



 62 

In addition, CSi and CB composites were seeded with human bone marrow cells and were 

cultured in conditions known to favour osteoblast differentiation [19]. Observation of the seeded 

materials by CLSM (Figure 6) showed that, following cell plating, cells attach to the material 

surface within minutes. Over CSi, at 1 h, attached cells showed varying degrees of cytoplasm 

expansion, displaying an elongated morphology at 24 h with a well defined nucleus and F-actin 

cytoskeleton. Cells proliferated throughout the culture time and, at day 21, the material surface was 

covered with a continuous and well organized cell layer.  

 
 
Figure 6: CLSM observation, for CSi composites seeded with human bone marrow cells and 
cultured for (A) 1 hour, (B,C) 24 hours, (D) 7 days, (E) 14 days and (F) 21 days. For CB composite 
(G) 1 hour, (H, I) 24 hours, (J) 7 days, (K) 14 days and (L) 21 days. A, B, G and H: bar, 60 µm; C 
– F and I – L: bar, 500 µm.  

 

The MTT assay, Figure 7 confirmed this behaviour, i.e., an increase in the cell 

viability/proliferation during the culture time. In addition, cells presented a high ALP activity, 

which increased significantly during the third week suggesting that the growing cells were engaged 

with an osteoblast differentiation process [20,30]. 
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Figure 7: Cell viability/proliferation by MTT assay (A), and alkaline phosphatase activity (B) of 
human bone marrow cells grown over CSi and CB for 21 days. (*) Significantly different from 
control culture.  

 

Accordingly, SEM observation of colonized CSi composite at day 21 showed a thick cell layer 

with a fibrillar matrix and associated calcium phosphate mineral deposits, Figure 8, a proof of the 

complete expression of the osteoblast phenotype [19]. By contrast, cells cultured over CB 

composite showed signs of deleterious effects regarding the cell adhesion process, reflected by a 

low number of attached cells at 1 h and impaired cytoplasm expansion at 24 h. Cell proliferation 

was also impaired with only small cell clusters scattered over the surface at day 21. ALP activity 

was also lower than that on CSi, and matrix mineralization did not occur. Results for CB composite 

are shown in Figures 6-8. 

 

 

Figure 8: SEM appearance of human bone marrow cells cultured for 21 days over CSi composite, 
inset: EDS spectrum of the mineralized structures, and CB composite. 
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As mentioned before, CSi and CB composites were seeded “as-prepared” and the differences 

regarding the biological performance might be related to the behaviour of the composites following 

cell culture. Exchange reactions between the material surface and the culture medium such as 

dissolution/precipitation reactions along with the simultaneous adsorption of biologically active 

molecules such as peptides and proteins creates a specific microenvironment that can positively or 

negatively influence cell adhesion and the subsequent proliferation and differentiation events [31-

33]. Results reported in the previous section showed a different behaviour of CSi and CB following 

immersion in SBF, suggesting that differences in the chemical composition and dissolution of the 

glasses have an important impact on cell growth. 

The improved biological performance of CSi compared with CB is related with its lower 

degradation rate, which is directly correlated to the chemical composition and structure features of 

the glass used as filler in percentages of 50 %wt. The structure and network connectivity strongly 

determine the solubility and bioactivity of the glass showing that the adhesion and proliferation of 

the cells on the composite filled with silicate glass is favoured. In addition, the positive effect of 

CSi on cell behaviour may also be related to the release of silicon, which plays an important role in 

physiological process during the growth and development of the bone, acting on the proliferation 

and differentiation of osteoblasts [34]. The levels of the released Si (20 ppm) are within a wide 

range, between 0.1 and 100 ppm, which leads to a dose dependent increase of human osteoblast-

like cells’ proliferation and differentiation, in short-term cultures [35], and within the variable 

physiological range in humans [36]. 

In the CB composite, the structure of the borate glass is less cohesive and therefore more 

soluble, resulting in two apparently competing effects: the formation of calcium phosphate layer 

improving biological performance, and the high release of ions into the cell culture medium 

causing a greater inhibition of cell proliferation. As suggested by the results found in SBF, B and 

Mg ions in the culture medium released from CB may attain levels high enough to cause 

cytotoxicity. Previous in vitro works demonstrated that borate glass resulted in a greater inhibition 

of cell proliferation under static culture conditions, if the boron concentration was above a certain 

threshold value [13,23]. Although it has already been reported the whitlockite stimulation of cell 

proliferation and the synthesis and secretion of collagen [37], the ICP measurements showed an 

abnormal concentration of magnesium, which together with B may result in a negative effect on 

cell proliferation. 

Results provided in vitro evidence of poor biocompatibility for this composite. However, it is 

believed that, in vivo, the effects of ion release might be less severe than those seen in the cell 

cultures experiments performed under static conditions. The body fluids represent a more dynamic 

system in which the local chemical changes are attenuated by metabolic processes and by the 
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continuous circulation, preventing the excessive level of ions at the interface cell/material. 

Moreover, in living body, upon the implantation of a material in the bone tissue, there is a 

continuous availability of osteoblast progenitor cells that can adhere to the material surface when 

the appropriate sets of conditions are met. These factors most probably will increase the 

performance of the CB composite. 

 

CONCLUSIONS 

 

The investigated composites, CSi and CB, promoted the growth of spherical calcium phosphate 

aggregates after soaking in SBF, indicating that these materials are potentially bioactive. The key 

difference between their cell behaviour is the chemical nature and structural features of the glass 

fillers, responsible for the dissolution rate and chemical environment around the cells. The CSi 

composite demonstrated an inductive effect on the proliferation of MG63 and human bone marrow 

cells, and stimulated specific metabolic activities such as ALP activity and matrix mineralization 

suggesting that this composite may have a stimulatory effect on bone formation in vivo. The CB 

composite produced a certain inhibition of cell proliferation, probably due to the excessive 

presence of its ionic dissolution products in culture medium. The use of more dynamic cell culture 

conditions is expected to alleviate the observed deleterious effect on cells. Composites filled with 

lower percentage of borate glass may have better cellular behaviour, due to an expected decrease of 

ionic concentrations of the glass dissolution products. The comparative study of CSi and CB 

composites evidenced the high performance of CSi regarding bioactivity and biocompatibility and 

clearly indicated that, with respect to CB composite further and new experiments are required and a 

more in depth study should be made in order to assess its performance in biomedical applications. 
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CHAPTER 3 
 

 

PROPERTIES AND OSTEOBLASTIC CYTOCOMPATIBILITY OF SELF-CURING  

ACRYLIC CEMENTS MODIFIED BY GLASS FILLERS 

 

 

ABSTRACT 

 

New formulations of surgical PMMA-based bone cements with better properties than those 

commercially available were attempted. Materials filled with a silicate glass (MSi) and a borate 

glass (MB) were developed and compared in terms of their in vitro behaviour. The effect of 

proportion (0, 30, 40 and 50 wt%) and composition of filler on the curing parameters, residual 

monomer, water uptake, weight loss, bioactivity, mechanical properties (bending and compression) 

and osteoblastic cytocompatibility was evaluated. The addition of bioactive glass filler exhibited 

significant improvements in the curing parameters and in the mechanical properties of the cements. 

The most relevant results were obtained for the lower filler concentration (30 wt.%) a maximum 

flexural strength of 40.4 MPa for MB3 and a maximum compressive strength of 95.7 MPa for 

MSi3. On what concerns the bioactivity, the formation of the apatite layer was more effective for 

cements with higher glass content as expected. Regarding the biological assessment, the 

incorporation of the silicate glass significantly improved osteoblastic cytocompatibility, whereas 

the presence of the borate glass resulted in a poor cell response. Nevertheless it was demonstrated 

that the surviving cells on the MB surface were in a more differentiated stage compared to those 

growing over non-filled PMMA. Results suggest that the developed formulations offer a high range 

of properties that might be interesting for their use as self-curing cements.  

 

 

 

 

This chapter is based on the following publication: 
Lopes PP, Garcia MP, Fernandes MH, Fernandes MHV. Properties and osteoblastic 
cytocompatibility of self-curing acrylic cements modified by glass fillers. Journal of Biomaterials 
Applications, submitted.  
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INTRODUCTION 

 

PMMA-based bone cements occupy a distinctive place in the hierarchy of synthetic 

biomaterials, because they are the only materials currently used for anchoring the prosthesis in 

orthopaedic surgery, being an alternative to non-cemented techniques [1].  

The history of cemented joint arthroplasty begins with Charnley who described a totally new 

surgical procedure in 1958 [2]. Nowadays, acrylic bone cements are used in more than 90% of total 

hip surgeries in developed countries [3]. The clinical success rate of implanted cemented 

arthroplasties, especially those of the hip and knee in patients aged over 50 years, is very high, 

averaging at least 90% after 15 years [1].  

The function of PMMA bone cements is to fill the space between the prosthesis and the bone, 

forming a mechanical bond with the surfaces, and transmitting the applied force and body weight 

uniformly to the tissue, working as a load bearing material [4]. Although universally used for many 

years PMMA bone cements are beset with a number of drawbacks that limit their performance such 

as non-bone-bonding capability, relatively low mechanical strength, release of unreacted monomer 

and high curing temperatures. These problems can cause serious complications in vivo, such as 

necrosis of the surrounding tissues and even loosening of the implant [5-7]. 

Among the attempts made to improve the properties of the bone cements, one can find the 

incorporation of a bioactive filler, promoting bioactivity, i.e. bone growth around the implant, 

resulting in increased longevity of the prosthesis [8]. However, it has been previously reported that 

the addition of a bioactive filler is limited due to the detrimental effect on the mechanical properties 

of the cement. The effect of filler is not clear, as it depends on a number of factors, such as the type 

of matrix and filler as well as their concentration [9, 10]. Vallo et al, showed that a maximum of 15 

wt% HA (hydroxyapatite) [11] and 50 wt% of glass particles [8] can be incorporated in a cement to 

increase flexural modulus and fracture toughness. Lopes et al, verified that the addition of 30 wt.% 

glass, referring to the wt.% of the solid component, to a PMMA-co-EHA matrix resulted in 

significant increases in flexural strength and elastic modulus, thus enhancing the mechanical 

performance of the material [5]. Harper et al, reported that the addition of HA up to 40 wt% to a 

poly(ethyl methacrylate)-based bone cement increased both the flexural strength and modulus [12]. 

The N,N-dimethyl-4-toluidine (DMT) is currently used as activator in the curing of 

commercially available formulations of acrylic bone cements. In vitro studies on the toxicity 

produced by this activator demonstrated that it causes a delay on the cell replication when it is 

exposed to osteoblastic cell cultures [13]. Other undesirable characteristics of this compound 

include high toxicity, possible carcinogenic effects, chromosome-damaging, and inhibition of 

protein synthesis [14, 15]. To overcome these drawbacks alternative compounds have been 
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suggested. The application of 4,4-bis (dimethylamino) benzydrol has been recently studied giving 

rise to cured materials with improved biocompatibility [16], which was attributed not only to the 

reduced cytotoxicity of this new activator but also to its antiseptic properties [13]. 

The present study reports the preparation of cements with a low toxicity activator and the 

modification of the respective solid phase through the addition of two bioactive glasses (a silicate 

glass and a borate glass). The aim of the incorporation of the glass fillers was to improve the 

mechanical properties and to induce bioactivity on the system. It has been shown in previous works 

by the authors of this study that PMMA-based composite filled with the same glasses compositions 

(thermally cured composite) exhibited a fast formation of apatite in simulated body fluid (SBF), 

indicating the suitability of these materials for bone repair [17, 18]. The effect of the glass filler on 

the curing parameters, residual monomer, water uptake and weight loss was also investigated. In 

addition, the biological performance of the prepared cements was assessed with human osteoblastic 

bone marrow cell cultures. 

 

MATERIALS AND METHODS 

 

Cement preparation 

New formulations of bone cements were prepared from a solid and a liquid phase by free radical 

polymerization. Methyl methacrylate (MMA monomer, Aldrich) was mixed with 4,4-bis 

(dimethylamino) benzydrol (Aldrich) as an accelerator/activator of the polymerization, resulting in 

the liquid phase. The solid phase was constituted by PMMA polymer (molecular weight of 120,000 

and mean particle size of 100 µm, Aldrich), glass particles and benzoyl peroxide (BPO, Merck) as 

initiator. Two different glass compositions (Table 1) were used in this work, a silicate-based glass 

and a borate-based glass.  

 

Table 1: Glass composition (mol%), specific surface area and density. 

Glass CaO P2O5 MgO SiO2 B2O3 
SSA 

(m2/g) 
Density 
(g/cm3) 

Silicate 38,0 12.7 24.8 24.5  0.030 2.91 

Borate 38,0 12.7 24.8  24.5 0.029 2.69 

 
 

The glasses were prepared through the classic melt-quenching method following a procedure 

described in Lopes PP [17, 18]. The specific surface area (SSA) was measured following the BET 

(Brunauer–Emmett–Teller) method (Qyantasorb, QuantaChrome) and helium pycnometry 

(Micromeritcs, Accupyc 1330) was used to determine the glass powder density. The solid and 
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liquid phases were manually mixed with a glass bar until the mixture became dough with a high 

viscosity. Then the dough was placed into a poly(tetrafluoroethylene) (PTFE) mould and cured at 

room temperature. The formulations were prepared by varying the composition of the solid phase, 

replacing 0, 30, 40 or 50 wt.% of the PMMA by the bioactive glasses. The final nominal 

composition of the cements is presented in Table 2, where PMMA refers to 0% glass, MSi3 and 

MB3 to 30%, MSi4 and MB4 to 40% and MSi5 and MB5 to 50% glass, in relation to the wt.% of 

the solid phase. The solid:liquid ratio employed was 1.75:1, with the initiator/activator in a molar 

ratio of 1.3. Some pores were observed in the cured cements which may be attributed to entrapped 

air during mixing and monomer evaporation over polymerization. When MMA polymerizes the air 

bubbles are embedded and covered by the PMMA matrix, which also encloses the bioactive glass 

particles. 

 

Table 2: Composition of the solid and liquid phases of the developed cement (wt%). 

Solid Phase Liquid Phase 
Samples 

PMMA GSi GB MMA 

PMMA 63.6   36.4 

MSi3 44.6 19  36.4 

MSi4 38.6 25  36.4 

MSi5 31.8 31.8  36.4 

MB3 44.6  19 36.4 

MB4 38.6  25 36.4 

MB5 31.8  31.8 36.4 

 

 

Determination of curing parameters 

Both cement components were mixed together in a small PTFE beaker for 1 min, and 

approximately 6 g of the obtained dough was then placed into a cylindrical mould at room 

temperature. The exothermic polymerization temperature was measured using a digital 

thermometer inserted in the curing mass at approximately 3 mm from the bottom of the tube, and 

was recorded every 10 seconds. Time was measured with a chronometer from the onset of mixing 

the powder with the liquid. Setting time (tset) was calculated as the time at which the temperature of 

the mass corresponded to the sum of the ambient temperature (Tamb) and the maximum temperature 

(Tmax) divided by two.  








 +
=→

2
max amb

set
TT

Tt        (1) 
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The measurements were done in triplicate according to ISO 5833 standards for acrylic resins by 

recording the polymerization temperature–time profiles [19]. 

 

Residual monomer content 

The residual monomer content was measured by means of H NMR (proton nuclear magnetic 

resonance) spectroscopy with a BRUKER AVANCE 300 Spectrometer operating at 300 MHz at 

room temperature. The samples were dissolved using deuterate chloroform as solvent and 

tetramethylsilane (TMS 1 vol.%) as the internal reference. The percentage of monomer moles 

present in the cured cement sample (%Mr) was calculated using the following expression: 

1005.1 ×






 ×=
Am

Av
Mr       (2) 

where Av and Am stand for the area of vinyl and methoxyl signals, respectively and 1.5 is a factor 

relating the number of protons of the methoxyl group (three) to those in the vinyl region (two). All 

the values were the average of three replicates [20, 21]. 

 

In vitro bioactivity 

Specimens of 5x5x3 mm were mounted vertically and soaked in simulated body fluid (SBF) at 

physiological conditions of temperature 37 ºC and pH 7.4. The SBF solution was prepared 

according to the formulation of Kokubo and Takadama [22], with ion concentrations nearly equal 

to those of human blood plasma. This solution was previously filtered through a Milipore 0.22 µm 

system and a constant specimen surface area to solution volume ratio of 0.1 cm−1 was used. The 

materials were soaked for periods of 3, 7, 14 and 21 days. 

 

Mechanical Properties 

The various composites were tested on bending and compression. All samples were prepared in 

the same way to avoid the eventual influence of the preparation technique upon mechanical 

properties. Bending test specimens were produced by cutting the original composite slabs into 

beams of 40 mm x 5 mm x 4 mm using a band saw (Struers Secotom-10). Three-point bending 

tests were performed at room temperature in a Bose/Electro Force 3400 machine at a crosshead 

speed of 1 mm/min [6, 23]. Six samples of each composition were tested. The strength (σB) and the 

flexural modulus (EB) were calculated using the standard formulae [24]. The E data were extracted 

from the initial linear portion of the load - displacement curve. 

22

3

hb

LF
B ××

××=σ     (3) 
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where F is the highest load of the load –displacement curve, L is the distance between end supports, 

b is the width, h is the height of the specimen, ∆F and ∆y are the gradient of load and displacement, 

respectively, of the initial straight-line portion of the curve. 

In compression tests, cylindrical samples (diameter 6 mm and height 12 mm) were deformed at 

speed of 20 mm/min. This mechanical assay was also carried out at room temperature in a 

Bose/Electro Force 3400 machine. For each set of composition 5 samples were tested. The strength 

(σC) and the flexural modulus (EC) were calculated using the relationship: 

A

F
C =σ     (5) 

Ay

hF
EC ×∆

×∆=   (6) 

where F is the load applied just before crushing, A is the initial cross-sectional area, h is the height 

of the sample [24]. 

 

Water uptake and weight loss 

These parameters of the self-curing materials were evaluated under simulated physiological 

conditions. The specimens were soaked in Phosphate Buffered Saline (PBS) at pH 7.4 and 

maintained at temperature 37 ºC. A constant specimen surface area to solution volume ratio of 0.1 

cm−1 was used. At appropriate times, 3, 7, 14, 21, 28 and 60 days, the samples were rinsed with 

ultrapure water, blotted on filter paper to remove surface solution/water, and immediately weighed. 

Water uptake (WU) and weight loss (WL) were calculated using the following equations:  

100
m

mm

o

ot ×






 −
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
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

 −
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where mt stands for the mass of the specimen at time t (days), mo  is the mass prior to immersion 

and mf,t  is the final mass of the specimen kept in the oven until constant mass after t days of 

immersion in the PBS [25, 26]. 

 

Osteoblastic cytocompatibility 

Cytocompatibility studies were performed with human osteoblastic cell cultures. Human bone 

marrow, obtained from orthopaedic surgery procedures, after patient informed consent, was 

cultured in α-Minimal Essential Medium (α -MEM) containing 10% fetal bovine serum, 50 µg/ml 
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ascorbic acid, 100 IU/ml penicillin, 2.5 µg/ml streptomycin and 2.5 µg/ml  fungizone, at 37 ºC in a 

humidified atmosphere of 5% CO2 in air. Primary cultures were maintained until near confluence 

(10–15 days) and, at this stage, adherent cells were enzymatically released (trypsin–EDTA 

solution). First-passage cells were seeded at a density of 2x104 cell/cm2 over the surface of the 

cements. Seeded cements were cultured for 21 days in the presence of 50 µg/ml ascorbic acid, 

10mM β-glycerophosphate and 10 nM dexamethasone. Colonized material samples were evaluated 

for cell viability/proliferation, alkaline phosphatase (ALP) activity and were observed by scanning 

electron microscopy (SEM) at days 7, 14 and 21, to evaluate cell morphology, pattern of cell 

growth and matrix mineralization. 

 

Cell viability/proliferation 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to 

assess the cell viability/proliferation. At days 7, 14 and 21, colonized materials were incubated with 

MTT, during the last 4 hours of the culture time tested. The formazan salts were dissolved with 

dimethylsulphoxide and the absorbance was measured at 492 nm in a ELISA reader (Synergy HT, 

Biotek). Three replicates were set up at each condition. Results were compared in terms of 

macroscopic surface area and expressed as Acm-2. 

 

Alkaline phosphatase activity  

The colonized materials were treated with 0.1% triton in water (to lyse the cell layer) and the 

cell lysates were evaluated for ALP activity and total protein content. ALP was assayed by the 

hydrolysis of p-nitrophenyl phosphate in alkaline buffer solution, pH 10.3, 30 min at 37 ºC, and 

colorimetric determination of the product (p-nitrophenol) at λ=405 nm. Enzyme activity was 

normalized by total protein content (determined by Lowry method). Results are expressed in 

nanomoles of p-nitrophenol produced per min per µg of protein (nmol.min-1 /µg protein). 

 

Scanning electron microscopy 

For SEM observation, materials samples were fixed (1.5% glutaraldehyde in 0.14M sodium 

cacodylate buffer, pH 7.3, 10 min), dehydrated in graded alcohols, critical-point dried, sputter-

coated with gold and analysed in a JEOL JSM 6301F scanning electron microscope equipped with 

a X-ray energy dispersive spectroscopy (EDS) microanalysis capability (voyager XRMA System, 

Noran Instruments). 
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Statistical analysis 

Statistical significance between groups was performed by one way analysis of variance 

(ANOVA) followed by Tukey multiple comparison test post-analysis to evaluate statistical 

differences among samples. All values are expressed as mean and SD. A p-value below 0.05 was 

considered significant. 

 

RESULTS AND DISCUSSIONS 

 

Curing Parameters 

In all cases, the maximum temperature of the composites containing bioactive glass was lower 

than that of the PMMA formulation used as reference. The incorporation of higher percentages of 

glass increased the setting time and decreased the maximum temperature Figure 1. 

 

 

Figure 1: Curing parameters for cements filled with silicate glass (a) and cements filled with 
borate glass (b). 
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One way ANOVA indicated that the values obtained for the curing parameters of the different 

composites were significantly different (p < 0.05). To explore the differences among the means, 

Tukey’s multiple comparisons were performed. The results showed that for the setting time, there 

is no statistical difference between the groups MSi5 and MB3, and MSi4 and MSi3. Regarding the 

maximum temperature, the mean of MSi3 and MB3 differs from the mean of the other groups and a 

significant difference was also detected between MSi5 and MB4. With respect to the control 

(PMMA), all obtained values were significantly different.  

The maximum temperature reached during the curing of bone cements is directly related to the 

amount of heat produced as a consequence of the polymerization reaction of the liquid phase. This 

temperature is lower when the glass is present, since a homogeneously distributed solid material in 

the cement dough may absorb some of the heat produced by the exothermic reaction of 

polymerization [27]. Moreover, it is known that during the mixing a partial dissolution of the 

PMMA beads in MMA monomer occurs, hence their polymer chains become available for free 

radical polymerization acting as an additional initiator and consequently affecting the reaction 

kinetics [28]. Thus decreasing the amount of these PMMA particles will retard the polymerization, 

increasing the setting time and possibly decreasing the maximum curing temperature. Regarding 

this, it is worth mentioning that the peak temperatures, recorded in vitro, do not correspond to those 

actually reached in vivo. Clinical tests showed significantly lower intraoperative peaks at the bone-

cement interface due to the thin layer of required cement, the heat dissipation of the system via the 

implants and local blood circulation [29]. 

The values of curing parameters of the cement with different glass contents fulfilled standard 

requirements for the bone cement [30]. The composition of glass (silicate or borate glass) does not 

have much influence on the maximum temperature, and even the effect of the proportion is limited 

since there is no difference between compositions with 40 and 50% of the glass. The cement filled 

with borate glass showed a setting time higher than the cement filled with silicate glass for all 

proportions (30, 40 and 50%). This behaviour can be related with the lower density of borate glass, 

2.69 g/cm3, compared to the silicate glass, 2.91 g/cm3, resulting in a higher volume, for the same 

wt.%  in the composite and a similar surface area of the glasses (Table 1). The high volume of glass 

promotes an increase of the contact interface, i.e. higher volume of the particles will be wetted by 

the monomer becoming unavailable for the curing process and thus the glass particles act as an 

array of barriers to the polymerization, delaying the setting time [31]. 
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Residual Monomer content  

It is known that the polymerization reaction of MMA ceases before consuming the available 

monomer. A total conversion can never be reached due to the mobility of the monomer molecules 

that diminish dramatically with the increasing dough viscosity. Therefore an amount of 2–6% of 

residual monomer can be present in a cement matrix [29]. The %Mr content for the prepared 

formulations is shown in Figure 2. One way ANOVA showed that the obtained values were 

significantly different (p < 0.05), except between PMMA and MSi3, and MSi4 and MB4.   

 

 

Figure 2: Residual monomer content for the studied cements. 
 

The results revealed that the residual monomer content slightly increased with the addition of 

the glasses. It is believed that part of the monomer liquid can be immobilized on the filler surface, 

causing the increase of viscosity and consequently, the decrease of the polymerization rate with the 

filler content [32]. Moreover it was already mentioned that the presence of insoluble phases can 

interfere in the polymerization reaction, acting as an array of barriers. The mobility of the monomer 

can thus be greatly decreased leading to the increase of non-reacted monomer that remains trapped 

in the cement matrix. In the present study the values of the residual monomer content for all 

developed cements were lower than 5% which is within the acceptable limits for use as bone 

cements.  

 

In vitro bioactivity 

Figure 3 compares the precipitates formed on the surface of cements filled with silicate and 

borate glasses, later identified as calcium phosphate. It is clear that after soaking for 7 days 

spherical precipitates developed on all cements surfaces.  
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Figure 3: SEM micrographs of the cements surface after soaking in SBF and EDS spectra. 
 

It can be seen from the micrographs that a dense layer was formed on the MSi5 and MB5 within 

7 days, while the surface of MSi3 and MB3 were covered by sparse nuclei and few agglomerates. 

After 21 days, the layer completely covered MSi5 and MB5 surfaces, and its thickness increased. 

For MSi3 and MB3, their surfaces were not fully covered with the precipitates even after 21 days 

of immersion. The morphology of the precipitated layer on MSi5 and MB5 samples is different 

from that on MSi3 and MB3. This could be explained by the difference in the degree of 

crystallinity of the formed calcium phosphate, as it will be discussed below in detail based on the 

XRD patterns. The composition of the layer, on all cements, is similar and composed by Ca and P, 

with residual amounts of Na, Mg and Cl. After 21 days of immersion, the calculated Ca/P ratios for 

the precipitates were 1.64 for MSi3, 1.67 for MSi5, 1.55 for MB3 and 1.60 for MB5. As expected, 

the formation of the calcium phosphate layer was faster for cements with higher glass content. 

For the cements filled with 40% glass after 21 days of immersion (results not shown), the MSi4 

exhibited a behaviour similar to MSi5 developing a dense apatite layer, whereas for the MB4 the 

calcium phosphate formation was comparable to MB3 and a few precipitates were formed.  



 80 

Further information on the structure of the layer was obtained by XRD, Figure 4. The patterns 

exhibited the characteristic peaks at 2θ = 26 and 32º attributable to apatite, reflections (0 0 2) and 

(2 1 1) respectively, for all cements investigated.  

 

 

Figure 4: XRD patterns of surface cements MSi3 (a), MSi5 (b), MB3 (c) and MB5 (d). 
 

For MSi5, other apatite peaks for 2θ= 50° and 53° – attributed to reflections (2 1 3) and (0 0 4) 

– became evident after 21 days of immersion [18]. The diffraction peaks were more defined and 

intense for MSi5 and MB5 when compared to those of MSi3 and MB3. In addition, the intensity of 

these peaks improves with increasing immersion time, indicating the enhancement of crystallinity 

of the apatite layer growing on the cement surface with time. XRD results also showed that the 

cements filled with higher glass concentration induced the precipitation in SBF of calcium 

phosphates with a higher degree of crystallinity.  

The ICP curves for all formulations studied are illustrated in Figure 5. The variation of Ca and P 

concentration for both cements was due to the filler dissolution (increasing the concentration in the 

solution) followed by their consumption for the formation and growth of the calcium phosphate 

layer, resulting in the observed decrease in the concentrations of these ions in the solution at 21 

days. 
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Figure 5: Variation of ionic concentration in SBF due to immersion of cements filled with a 
silicate glass (a, b) and cements filled with a borate glass (c, d). Dashed lines are to guide the eye. 
 

 This behaviour is more pronounced for cements filled with borate glass, especially in the case 

of Ca. The Mg and Si, for cements filled with silicate glass, and Mg and B for cement filled with 

borate glass, had their concentration continuously increasing as a result of glass dissolution and 

ionic exchange with the solution. The B concentration in solution is higher than the Si 

concentration. The less cohesive structure of the borate glass compared to the silicate glass can be 

responsible for the higher B release rate [33].   

Structural and morphological observation of the surface layer indicated that cements with higher 

glass content induce higher calcium phosphate formation.  

 

Mechanical Properties 

The maximum strength and the elastic modulus, for bending and compression, of the samples 

are shown in Table 3. Glass filled cements exhibited improved mechanical properties when 

compared with the PMMA formulation used as reference. The most relevant results were obtained 
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for the lower filler concentration (30 wt.%) a maximum flexural strength of 40.4 MPa for MB3 and 

a maximum compressive strength of 95.7 MPa for MSi3.  

 

Table 3: Mechanical properties of the samples. 

Bending Properties Compressive Properties 
Samples 

σ (Mpa) E (Gpa) σ (Mpa) E (Gpa) 

PMMA 24.3 ± 1.9 1.5 ± 0.1 85.5 ± 2.1 1.4 ± 0.1 

MSi3 40.0 ± 4.8 2.1 ± 0.1 95.7 ± 2.2 1.8 ± 0.2 

MSi4 34.8 ± 4.5 2.1 ± 0.2 92.3 ± 3.3 1.8 ± 0.2 

MSi5 30.4 ± 4.4 2.1 ± 0.2 92.2 ± 3.3 1.9 ± 0.2 

MB3 40.4 ± 2.9 2.2 ± 0.1 95.2 ± 3.2 1.9 ± 0.1 

MB4 34.7 ± 2.2 2.1 ± 0.1 92.3 ±1.5 1.8 ± 0.2 

MB5 30.0 ± 2.6 2.1 ± 0.2 92.3 ± 2.0 1.9 ± 0.1 

 

One-way ANOVA revealed that the differences in the bending and compressive strength and 

elastic modulus were significant (p < 0.05). Tukey's multiple comparison tests were used for 

pairwise comparisons among the group means. The bending strength of the cement filled with glass 

does not differ significantly (p > 0.05), except between cements MSi3 and MSi5/ MB5; and MB3 

and MB5/MSi5 (p < 0.05). The elastic modulus (bending and compression) and compressive 

strength for the glass-reinforced composites were considered to be similar, but significantly 

different when compared to that of control (PMMA). 

A 30 wt.% addition of glass brings improvements in the mechanical properties. However the 

increase in glass content to 50% can cause a heterogeneous distribution and agglomeration of the 

filler. When the filler starts aggregating, it behaves as a point of possible stress concentration, 

thereby weakening the cement and therefore the strength is reduced even if the filler is strong 

enough to increase the elastic modulus of the material [10, 34]. The same happens with the 

compressive properties. 

The strength in composites depends on the strength of both the filler and the matrix, and the 

degree of adhesion between them. During the exothermic polymerization reaction, thermal stresses 

are generated due to the differences in the thermal expansion coefficients of the composite 

components. The shrinkage of the PMMA matrix is greater than of the glass particles according to 

the literature [35], resulting in a circumferential tensile stress adjacent to the glass. This leads to a 

weak bonding between the matrix and the filler and, hence, polymer–glass detachment can occur 

[27]. Previous studies have indicated that poor interface adhesion between the constituents of 
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composites can be responsible for their decreased mechanical properties [5, 11, 36]. The increase in 

glass content contributes to the aggravation of this problem.  

 

Water uptake and weight loss 

Water absorption may affect composite materials namely reducing their mechanical properties. 

Since dissolution of glass occurs in physiological medium, it was considered important to analyze 

both water uptake (WU) and weight loss (WL) in the developed cements. The evolution of the WU, 

WL and pH values with time is illustrated in Figure 6. 

 

 

Figure 6: Water uptake (a), weight loss (b) and pH values (c) for the investigated formulations. 
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The data showed that the WU values for cements filled with borate glass were higher than 

control (PMMA), while for the cements filled with silicate glass the behaviour was the opposite, 

with the material showing a lower/similar water uptake. The amount of incorporated glass can also 

influence the water uptake. Overall, the results indicated that the compositions containing 50% of 

glass presented a higher WU capability than formulation with 30% glass during the same period. 

For cements with higher glass content the formation of void spaces around the glass particles are 

more likely to occur, allowing an easier penetration of water through these voids.  

Bone cements are expected to maintain good mechanical properties after long periods of 

implantation, and consequently the water uptake should be constrained. It is known that 

commercial bone cements, due to their hydrophobic behaviour, present a low WU usually lower 

than 3 %, which can lead to a slight decrease in compressive and bending properties after 4 weeks 

in water at 37 ºC [37]. In the formulations studied in the present work the highest obtained values 

for WU reached around 4% (Fig. 6a).  

All the materials exhibited a small loss of weight during the test period (Fig. 6b). The obtained 

values were less than 1.6%, similar to those reported in other works, with HA-filled bone cements 

[38, 39]. In the present study, the cements filled with silicate glass presented lower WL, compared 

to the composites containing borate glass, which again is most probably due to the less cohesive 

structure of this glass [18, 33]. In general, for a given time, the formulations with higher WL 

correspond to the cements filled with higher glass filler amounts.  

MSi3 showed a low WL during the 60 day immersion, but MSi5 exhibited an increase in WL 

after 14 days incubation, and at days 21 and 28, values were similar to those found in the materials 

containing borate glass. WL increased continuously in the B-glass composites up to day 14, being 

approximately constant until day 28. The MB5 showed the highest weight loss. The behaviour of 

borate glass composites correlate well with the observed WU, since the increase of water content 

would allow for more material to be leached out.  

For a long incubation time (60 days), there was a decrease in WL, observed in both types of 

composites. The WL tests were carried out in PBS. It is known that the PBS is a buffer solution, 

isotonic, non-toxic, and does not contain Ca in its composition. However, it does not inhibit the 

calcium phosphate formation on the material surface. Thus it is probable that in the present case the 

ion exchange reactions between the glass and the solution is followed by the precipitation of a 

calcium phosphate layer, characteristic of the observed bioactive behaviour of the cements. The 

competition of both processes, degradation of the cement and calcium phosphate precipitation, is 

likely to explain the observed results.  

The pH did not change significantly until the end of the test, with values lying between 7.3 and 

7.6. 
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Osteoblastic cytocompatibility 

 

Cell viability/proliferation 

Human bone marrow cells, first subculture, were cultured over PMMA samples and the composite 

cements in conditions that favour osteoblastic differentiation [40, 41], and results regarding the 

proliferation/differentiation behaviour are shown in Figures 7 – 10. 

 

 

Figure 7: Cell viability/proliferation (A) and alkaline phosphatase activity (B) of human 
osteoblastic bone marrow cells cultured over PMMA and the glass-filled cements, for 21 
days.*Significantly different from PMMA. 

 

Colonized PMMA samples presented low values of cell viability/proliferation, which increased 

slowly throughout the 21-day culture period. The incorporation of Si glass resulted in an increase in 

the cell proliferation, but this positive effect decreased with the increase in the glass content. 

Compared to PMMA, compositions MSi3 and MSi4 presented significantly increased values 

(around 2 fold, at day 21). However, the composition MSi5 presented lower cell proliferation and, 

compared to PMMA, values were only slightly higher at days 7 and 14 and similar at day 21. The 

incorporation of B-glass did not improve the behaviour of PMMA regarding cell 

viability/proliferation. The composites presented lower values in the MTT assay and the negative 
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effect increased with the increase in the percentage of incorporated B-glass. The compositions 

MB3 and MB4 showed a low increase up to day 14 but, at day 21, MTT reduction values were very 

low. The composition MB5 exhibited low and progressively decreased values throughout the 

culture time. Results are shown in Figure 7A.  

 
 
Osteoblastic differentiation 

Cultures growing over PMMA presented low ALP activity at days 7 and 14, and a small 

increase at day 21. The compositions MSi3 and MSi4 showed significantly increased values, and 

enzyme activity also increased with culture time; at day 21, values were ~ 2 and 1.5 fold higher, 

respectively for MSi3 and MSi4, compared to PMMA. The composition MSi5 presented lower 

ALP activity, still an increase was noticed from day 7 to day 14, but afterwards values decreased. 

The composites MB3 and MB4 also showed an increase in ALP activity at day 14, being 

significantly higher than that on PMMA, but, at day 21, ALP activity was lower. MB5 displayed 

low values throughout the culture time. 

ALP is an enzyme produced by osteoblastic cells and represents a frequently used early marker 

for osteogenic differentiation, as this enzyme has a determinant role in the mineralization of the 

extracellular collagenous matrix, by providing phosphate ions that, with calcium ions are used in 

the formation of the cell-mediated mineralized matrix [41]. The present results showed that the 

incorporation of Si-glass and B-glass in the PMMA matrix, in some of the tested concentrations, 

induced ALP activity, suggesting a positive effect in the osteoblast differentiation pathway. In the 

case of the Si composites, the ALP results were in agreement with those observed for cell 

proliferation, i.e. the compositions with a higher cell proliferation also presented a high increase in 

ALP activity. However, in the case of the B-composites, MB3 and MB4 showed low values for cell 

viability/proliferation but, still, an increase in ALP was noticed at day 14, suggesting that the 

surviving cells were in a more differentiated stage compared to those growing over PMMA. 

SEM observation of the colonized materials was in line with the previous results, Figure 8. At 

day 14, PMMA showed few cells, but the surface was partially covered by a cell layer at day 21 

(Fig. 8A,B). The cements containing the Si-glass presented a higher cell growth. At day 14, MSi3 

and MSi4 (and also MSi5, at a lower extent) exhibited a cell layer partially covering the surface 

(Fig. 8C,E,G); cells showed an elongated morphology that tried to adapt to the underlying irregular 

surface, establishing cell-to-cell contacts. At day 21, MSi3 and MSi4 were completely covered by a 

thick cell layer (Fig. 8D,F), however, over MSi5 only few cells were visible (Fig. 8H). Regarding 

the composites with B-glass, at day 14, MB3 and MB4 showed few cells, mainly located in small 

niches/clusters scattered over the material surface (Fig. 8IK). However, at day 21, cells were rarely 
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seen (Fig. 8J,L). MB5 barely supported cell growth, and cells were not evident on SEM 

observation (Fig. 8M,N). 

 

Figure 8: SEM observation of PMMA and the glass-filled cements colonized with human 
osteoblastic bone marrow cells, at days 14 and 21. Over PMMA, at day 14, cells were barely seen, 
but partially covered the material surface at day 21 (A, B). On the Si-glass compositions, cells were 
clearly seen at day 14 (C, E, G) and, at day 21, formation of a thick cell layer was observed over 
MSi3 and MSi4 (D, F), but few cells were visible on MSi5 (H). The B-glass cements  presented 
significantly lower cell growth. Cells were visible at day 14 on MB3 and BM4 (I, K), mostly 
forming small cell clusters, but not over MB5 (M); at day 21, the presence of cells was not evident 
on the three composites (J, L, N). Bar = 100 µm, except for B, D, F (200 µm). 
 

High amplification images, Figure 9, show that, at day 14, the compositions MSi3, MSi4 and 

even MSi5 presented mineralized globular deposits associated with the cell layer (Fig. 9A-C). At 

day 21, these globular formations were more abundant and organized on MSi3 and MSi4 (Fig. 

9D,E), and X-Ray analysis showed well-defined Ca and P peaks (Fig. 9J). By contrast, MSi5, at 

day 21, exhibited a low number of cells, partially buried in a thick apatite layer that covered the 

material surface. This observation is in line with that reported in the bioactivity studies performed 

in SBF (Fig.3). The compositions MB3 and MB4 were also able to support the formation of cell-
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mediated mineralized deposits within the small clusters/niches that were able to grow in localized 

areas of the surface (Fig. 9G,H). The X-Ray analysis also showed Ca and P peaks, although very 

discrete when compared to those seen on MSi3 and MSi4. It is worth mentioning that PMMA was 

not able to support matrix mineralization during the 21-day culture time. The globular structures 

associated with the cell layer, seen at day 21 (Fig. 9I), did not contain Ca and P peaks (Fig. 9L). 

 

Figure 9: High magnification SEM images of PMMA and the glass-filled cements colonized with 
human osteoblastic bone marrow cells. The Si composites were able to form a mineralized matrix 
at day 14 (A – C) and MSi3 and MSi4 also showed a mineralized cell layer at day 21 (D, E); 
representative X-Ray spectrum of the globular mineral structures showed well evident Ca and P 
peaks (J). The MB3 and MB4 cements showed the formation of globular structures associated with 
the cell clusters at day 14 (G, H) and the x-Ray spectrum exhibited small Ca and P peaks (K). At 
day 21, PMMA also showed cell-associated globular structures (I), but they did not contain Ca and 
P peaks (L). A, C, E: Bar = 50 µm; B, F-I: Bar = 20 µm; D: Bar = 10 µm. 
 

As mentioned earlier, the prepared cements presented some pores scattered all over the surface, 

which on SEM observation appeared with a very smooth surface (Fig. 10A,D,E). SEM images of 

colonized MSi3 and MSi4 strongly suggested that cells did not colonize these locals. 

Representative images, Figure 10, shows a ring of cells growing around one of this pores and even 

forming bridges (Fig. 10A,D,E). Fig. 10B,C shows a more advanced stage, with the cells in the 

process of covering the pore and also some pores completed covered by a cell layer. Considering 

the protocol used in the preparation of these composites and that mentioned in materials and 

methods, the surface of these pores might be exposed PMMA that, together with the very smooth 

surface, probably explains the impaired cell growth within this structures. 
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Figure 10: SEM images of MSi3 and MSi4 cements colonized with human osteoblastic bone 
marrow cells, showing that cells hardly colonized the pores present on the material surface. Images 
show the pores with a very smoth surface (A, D, E) and the cells growing around the pore (C, D), 
forming bridges (A, E) and covering the pores (B, C, arrows). A, D, E: Bar = 200 µm; B, C: Bar = 
500 µm. 
  

Results showed that the incorporation of Si-glass in the PMMA structure improved cellular 

behaviour regarding viability/proliferation, ALP activity and matrix mineralization. However, this 

positive effect decreased with the increase in the percentage of incorporated glass. MSi3 presented 

a significant increase in these parameters, followed by MSi4, but MSi5 showed a modest effect. 

The immersion studies in SBF showed that these composites released Si ions (Fig. 5), and a similar 

behaviour is expected to occur in the culture medium. Silicon plays an important role in bone 

physiology, having a positive effect on osteoblasts [42]. The levels released (~5 – 10 mg/ml) are 

within a wide range (between 0.1 and 100 mg/l) reported to cause a dose-dependent increase in the 

proliferation and differentiation of osteoblastic cells and within the variable physiological range in 

humans [43]. Also, upon immersion in SBF, formation of an apatite layer was observed (Fig. 3), 

and this might also contribute to the improved osteoblastic cell response. However, the formation 

of this layer was faster on the cements with higher glass content due to a higher dissolution rate. 
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Accordingly, MSi5 developed a thick apatite layer and presented a high weight loss, suggesting a 

very dynamic surface with dissolution/ deposition events and a high ionic concentration in the cell 

environment, impairing cell survival. This was evidenced in SEM images, at day 21, showing 

mostly a thick apatite layer with some partially buried cells. Thus, the composites MSi3 and MSi4 

probably meet a favourable combination of an appropriate apatite layer and Si release, resulting in 

significantly improved cell behaviour. 

On the other hand, the incorporation of B-glass in the PMMA structure resulted in composites 

with a poor biological performance. Cell viability/proliferation was lower than that on PMMA. 

Some cell growth was noticed over MB3 and MB4, up to day 14, and ALP activity increased also 

at day 14 (attaining higher maximum levels, compared to PMMA). SEM images showed that cells 

were able to grow in small niches sparsely seen on the material surface. These niches, apparently, 

provided a protected environment allowing for a complete osteoblastic differentiation. The poor 

performance of the B-composites is most probably related to the less cohesive structure of borate 

glass, leading to a high degradation rate, as shown by the water uptake and weight loss studies (Fig. 

6). As referred above, this originates highly dynamic ion exchange reactions, which is deleterious 

for cell growth. This behaviour was more evident in the composites with higher glass content, and, 

in line with this, MB5 barely supported cell growth. Also, it provides an explanation for the 

deterioration of the cell behaviour during the last week in all the B-glass compositions. The high 

degradation rate also contributes to a higher release of B ion (Fig. 5), which is reported to be toxic 

above a certain threshold value [44, 45], and, also, of the residual cytotoxic monomer present in the 

preparation.  

In vivo, it is believed that the deleterious effect of a high degradation rate might be greatly 

attenuated. The continuous circulation of the body fluids would probably prevent an excessive ion 

concentration at the cell/material interface. Also, upon the implantation of a material in the bone 

tissue, there is a continuous availability of osteoblast progenitor cells that can adhere to the material 

surface when the appropriate sets of conditions are met. 

 

CONCLUSIONS 

 

The results suggest that the properties of the investigated cements are more dependent on the 

filler concentration than on the composition of the glass (silicate or borate glass). The addition of 

higher percentages of the glass promoted a diminishing of the exothermal effect on curing, 

reducing the peak of temperature, which is expected to contribute to the decrease of thermal 

necrosis of the surrounding tissue. All cements modified with glass reached higher mechanical 

properties than the PMMA matrix, although the most relevant results were obtained for the lower 
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filler concentration (30 wt%). Regarding the bioactive behaviour, the formation of the apatite layer 

was more effective for cements with higher glass content. The composition of the glasses was 

relevant to WL and WU measurements, since the cements filled with borate glass showed the 

highest weight loss and water uptake along the test. The performance of the cements filled with 

silicate glass was similar to the unfilled PMMA matrix, except for MSi5, at 21 and 28 days, for 

which the WL values were comparable to those of the cement filled with borate glass.   

The Si-glass and the B-glass cements differed significantly in the elicited osteoblastic cell 

response. Incorporation of the silicate glass improved osteoblastic cytocompatibility, whereas the 

presence of the borate glass resulted in a poor cell response. For both types of composites, the cell 

response progressively deteriorates with the increase of the glass content. The less cohesive 

structure of the borate glass might be responsible for the increased degradation rate, the high B ion 

concentration in the physiological fluid and, eventually, favouring the monomer release, all 

probably contributing to a poor cell response.  

Results suggest that the developed formulations exhibit a wide range of properties that might be 

interesting for their use as self-curing modified cements.      
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CHAPTER 4 
 
 

INFLUENCE OF IBUPROFEN ADDITION ON THE PROPERTIES OF  

A BIOACTIVE BONE CEMENT 

 

 

ABSTRACT 

 

Bioactive bone cements can promote bone growth and the formation of a strong chemical bond 

between the implant and bone tissue increasing the lifetime of the prosthesis. This study aims at 

synthesizing a new bioactive bone cement with different amounts of ibuprofen (5, 10 and 20 wt.%) 

using a lower toxicity activator, and investigating its in vitro release profile. The effect of ibuprofen 

(IB) on the setting parameters, residual monomer and bioactivity in synthetic plasma was also 

evaluated. It was verified that the different IB contents do not prevent the growth of calcium 

phosphate aggregates on composite surfaces, confirming that the cements are potentially bioactive. 

A relevant advantage of these formulations was a significant improvement in their curing 

parameters with increasing IB amount, associated to a reduction of the peak temperature and an 

extension of the setting time. The cements released about 20% of the total incorporated ibuprofen 

during 30 days test. This behaviour was attributed to the low solubility of this drug in aqueous 

media and was also related with the hydrophobic character of the polymer. Regarding the 

therapeutic concentration sufficient to suppress inflammation, the cement with 10% of ibuprofen 

achieved the required release rate for one week and the cement with 20% for two weeks. 

 

 

 

 

 

 

 

This section is based on the following publication: 
Lopes PP, Silva MS, Fernandes MHV. Influence of ibuprofen addition on the properties of a 
bioactive bone cement. Biomedical Materials, under revision. 
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INTRODUCTION 

 

Bone cements are  typical bioinert materials exhibiting as major limitation the lack of adhesion 

to bone, which may cause aseptic loosening and failure of the prosthesis in some cases [1, 2], 

owing to the formation of fibrous tissue around the cement that impedes the bone growth towards 

the surface [3]. In order to achieve better clinical results for fixation of orthopaedic implants 

bioactive PMMA bone cements have been developed showing a direct bond with living bone [4, 5] 

due to the precipitation of an apatite layer on their surface also found when in contact with a 

physiological medium [6]. It is known and currently accepted that this phenomenon is a reliable 

indication that, in vivo, bone growth will occur on the surface of the implanted material [7-10]. 

Thus the incorporation of a bioactive component such as a bioactive glass, into acrylic bone cement 

formulations seems to be the proper path towards the improvement of the interfacial cement-bone 

attachment. 

Cemented orthopaedic implants are indwelling medical devices, intended for long-term 

presence in bone tissue. So they are at risk of infection or inflammation if a small amount of 

bacteria succeeds in colonising the foreign material [11]. In addition, microcracking may lead to 

PMMA-particle release, which can also induce local inflammation and osteolysis [12]. 

Although it is possible to use non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment 

of inflammations, their applications are often restricted owing to side effects caused on the 

gastrointestinal tract resulting from the high oral doses [13-15]. Moreover, inflammatory conditions 

in bone tissue cause a reduced supply of blood and also of drugs transported via blood circulation. 

The potential side effects of systemic treatment and the relatively slow absorption (Bramlage and 

Goldis [16] report that peak plasma concentrations of ibuprofen are reached within about 1 to 2 

hours after ingestion) can be avoided through local application, providing therapeutic drug 

concentrations only to intended targeted sites. Hence it is desirable to administer the drug locally  

with controlled dosage level, thus reducing the required drug concentration and potentially 

minimising its undesired secondary effects [17].  

The addition of therapeutic agents to acrylic bone cements to assess its suitability as a drug 

delivery system began as early as 1969 [11]. Local delivery of NSAIDs from PMMA acrylic bone 

cement has been studied as a possible tool in the treatment of inflammations related to periodontitis 

[18]. Other studies demonstrated that bioactive acrylic bone cements loaded with anti-

inflammatory/analgesic agent could be used as injectable formulations for minimally invasive 

vertebroplasty, showing some advantages over the PMMA. The results indicated a mild 

inflammatory reaction around the implanted material [19]. In this context, it appears as quite 
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pertinent and useful to investigate new cements that simultaneously exhibit controlled drug release 

and bioactive behaviour.  

Ibuprofen is one of the most representative compounds of NSAIDs series. It is an analgesic, 

antipyretic and anti-inflammatory drug extensively used to treat bone diseases like rheumatoid 

arthritis, osteoarthritis and a number of other painful conditions [20]. It is known that ibuprofen 

reduces inflammation by the inhibition of the enzyme cyclooxygenase, halting prostaglandin 

synthesis and therefore diminishing  the pain and swelling associated with the inflammatory 

process [21, 22]. This drug has a short half-life of about 2 hours, which is the period of time 

required for the concentration of the drug in the body to be reduced to exactly one-half of a given 

concentration, and a duration of action of 4-6 hours [23]. The therapeutic concentration of 

ibuprofen in plasma is usually in the range 20 to 30 mg/L, and a single oral dose of 400 mg 

produces a peak plasma concentration of 37 mg/L [24].  

An important parameter to consider in the development of bone cement is the toxicity of the 

activator. In the recent years research has concentrated on developing an alternative to N,N-

dimethyl-4- toluidine considered a highly toxic amine [25]. Lower toxicity activators, such as 4,4-

bis-dimethylamino benzydrol  have been studied, giving rise to systems with antiseptic properties 

and low toxicity that allow connective tissue to grow and attach to the material [26].  

This study aims to prepare new formulations of self-curing acrylic bone cements containing 

bioactive glasses of the 3CaO.P2O5-MgO-SiO2 system and to investigate the effect of ibuprofen 

proportion (5%, 10% and 20%) on its in vitro release profile, setting parameters, residual monomer 

content and bioactivity in simulated plasma. An activator of reduced toxicity was chosen for the 

preparation of the investigated cements. The observed in situ release of drug suggested that the 

ibuprofen-loaded cements can be appropriate to counteract the inflammatory response associated to 

the cement implantation. 

    

MATERIALS AND METHODS 

 

Materials 

Methyl metacrylate (MMA monomer), PMMA beads (polymer), 4,4-bis (dimethylamino)-

benzydrol (activator) and Ibuprofen were purchased from Aldrich. PMMA beads, with a molecular 

weight of 120,000, were milled in a rotor mill (Retsch ZM 200) to a mean particle size of 100 µm. 

Benzoyl peroxide (BPO, Merck) initiator and activator were used as received for the 

polymerization reaction. 

A glass from the 3CaO.P2O5–MgO–SiO2 system with the composition (mol%) 38% CaO, 12.7% 

P2O5, 24.8% MgO and 24.5% SiO2 was fabricated by the traditional melt quenching method. The 
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resultant glass frit was dry-milled (Retsch, RM100 Mortar Grinder Mill) to a powder with mean 

particle size of 10 µm, measured with a Coulter LS Particle Size Analyzer. The amorphous 

character of the glass was confirmed by X-ray diffraction (XRD, Rigaku Geigerflex Dmax-C with 

CuKα radiation). 

 

Preparation of the cements 

The preparation of the investigated bone cements was carried out by adding the solid 

components to the liquid components. The activator (4,4-bis (dimethylamino) benzydrol) was 

dissolved in the liquid phase and the initiator (benzoyl peroxide) was added to the solid phase. Both 

phases were manually mixed with a glass bar until the mixture became dough with a high viscosity. 

Then the dough was placed into a poly(tetrafluoroethylene) (PTFE) mould and cured at room 

temperature. Five formulations were prepared (Table 1) by varying the composition of the solid 

phase, replacing the PMMA by a bioactive glass and adding different amounts of ibuprofen (5, 10 

and 20 wt.%). The solid:liquid ratio employed was 1.75:1, with the initiator/activator in a molar 

ratio of 1.3. The addition of ibuprofen was carried out during the preparation of the cement and not 

by soaking into a highly concentrated drug solution because the hydrophobic character of the 

matrix and the low porosity of the cement could hamper the proper incorporation of drug.  

 

Table 1: Solid phase composition of the formulations produced (wt%) 

Solid Phase 
Formulations 

PMMA BG IB 
PMMA 100  -   -  

IB0 50 50  -  

IB5 45 50 5 

IB10 40 50 10 

IB20 30 50 20 

            Liquid phase constituted by MMA monomer. 
            The solid:liquid ratio employed was 1.75:1 
 

 

Setting parameters 

Both cement components were mixed together in a small PTFE beaker for 1 min and 

approximately 6 g of the dough was then placed into a glass tube in an oil bath at a temperature of 

37 ºC. The exothermic polymerization temperature was measured using a digital thermometer 

inserted in the curing mass at approximately 3 mm from the bottom of the tube, and was recorded 

every 10 seconds. Time was measured from the onset of mixing the powder with the liquid using a 
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chronometer. Setting time (tset) was calculated as the time at which the temperature of the mass 

corresponded to the sum of the test temperature (37 ºC) and the maximum temperature attained 

(Tmax) divided by two. All the values were the average of at least three replicates. This procedure 

was based on earlier works [25, 27, 28]. 

 

Residual monomer content 

The residual monomer content was measured by means of H NMR (proton nuclear magnetic 

resonance) spectroscopy with a BRUKER AVANCE 300 Spectrometer operating at 300 MHz at 

room temperature. The samples were dissolved using deuterate chloroform as solvent and 

tetramethylsilane (TMS 1 vol.%) as the internal reference. The residual monomer in the cured 

cement was measured one month after the polymerization at room temperature. The percentage of 

monomer moles present in the sample (Mr) was calculated using the following expression: 

 

1005.1 ×






 ×=
Am

Av
Mr        (1) 

where Av and Am stand for the area of vinyl and methoxyl signals, respectively and 1.5 is a factor 

relating the number of protons in the vinyl region (two) to those of the methoxyl group (three) [29, 

30]. All the values were the average of three replicates. 

  

 Assessment of in vitro bioactivity 

The bioactivity of a material is regarded as its capability to bond to living bone through the 

precipitation of an apatite layer on its surface and this in vivo apatite formation can be reproduced 

in vitro through acellular tests using buffer solutions [8]. 

In a first stage, the in vitro bioactive behaviour of the prepared bone cements was studied in 

Phosphate Buffered Saline (PBS). The specimens were mounted vertically and soaked in PBS at 

physiological conditions of temperature 37 ºC and pH 7.4. This solution was previously filtered 

through a Milipore 0.22 µm system and a constant specimen surface area to solution volume ratio 

of 0.1 cm−1 was used. The materials were soaked for periods of 7, 14 and 21 days. After immersion 

the specimens were removed from the fluid and surface modifications were followed by X-ray 

diffraction (XRD) and scanning electron microscopy coupled with X-ray energy dispersive 

spectroscopy (SEM-EDS, Hitachi S-4100, Japan) at an acceleration voltage of 25 keV and beam 

current of 10 µA. EDS analyses were performed with a magnification of 500x on an analyzed area 

of 60 µm x 60 µm, to assess the evolution of the chemical composition of surface.  

Then, in a second stage, the immersion tests were conducted in the same experimental 

conditions using Simulated Body Fluid (SBF) [8]. The cements were soaked for periods of 3, 7 and 
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14 days. The samples surfaces were observed by SEM-EDS and the fluid was analyzed by 

inductively coupled plasma spectroscopy (ICP, using a Jobin–Yvon JY70 Plus spectrometer). 

 

In vitro drug release 

The drug release study was carried out in PBS for periods up to 30 days and the IB release was 

followed by ultraviolet (UV) spectroscopy, using a Perkin-Elmer 554 spectrophotometer.  The 

samples were soaked in 10 ml of solution at pH 7.4 and maintained at 37 ºC. The solution was 

renewed after every analysis, following a protocol suggested in the literature [17], namely every 2 

hours during the first day, once a day in the first week and every 2 days until the end of the test. 

The IB released to the buffer solution was measured at λ = 264 nm, and its corresponding 

concentration was calculated from a previously prepared calibration curve. The results were the 

average of four samples for each studied formulation.  

The release mechanism of ibuprofen was further examined in order to better understand its 

liberation profile and the controlling key parameters. Drug release from a polymer system, 

following the Korsmeyer [31] and Peppas [32] model, can be described by the semi-empirical 

equation widely known as power law: 

nt kt
M

M
=

∞

       (2) 

where Mt stands for the drug released at time t, M∞ is the quantity of drug released at infinite time, 

k is the kinetic constant and n is the release exponent, indicative of the drug-release mechanism. 

For cylindrical specimens, n≤ 0.45 means a Fickian diffusional release, 0.45 ≤ n ≤ 0.89 an 

anomalous (non-Fickian) diffusion, and n ≥  0.89 the Case II relaxational release [20].   

 

Statistical analysis 

One-way ANOVA and multiple comparisons by the Tukey all pairwise approach were 

performed to determine the statistical significance (p < 0.05) of the differences among the groups. 

 

RESULTS AND DISCUSSIONS 

 

Curing Parameters 

The temperature–time curves during the polymerization and the values of curing parameters of 

the formulations developed are illustrated in Figure 1. The results are shown as the arithmetic mean 

and the standard deviation (± SD). One way ANOVA test indicated that the values obtained for the 

maximum temperature (Tmax) and setting time (tset) were significantly different (p < 0.05).  The 

addition of bioactive glass and ibuprofen to the bone cement promoted significant improvements in 
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the curing parameters, usually associated with decreases in Tmax and increases in tset inducing a 

slower curing process. 

 

 

Figure 1: Setting parameters for the investigated formulations. 
 

This behaviour was expected since the presence of a homogeneously distributed solid material 

in the cement dough may absorb some of the heat involved in the exothermic reaction of 

polymerization, causing a decrease in the temperature of the cement [33]. Moreover, the PMMA 

particles may contain peroxides and act as an additional initiator, affecting the reaction kinetics and 

contributing to the increase in the system viscosity [34]. Thus decreasing the amount of these 

particles will retard the polymerization, increasing the setting time and decreasing the maximum 

curing temperature. 

The values of curing parameters for different ibuprofen contents fulfilled standard requirements 

for acrylic bone cements, which constrain the maximum temperature to 90 ºC and the maximum 

setting time to 15 min (900 s), in accordance with ISO specifications [35]. 

 

Residual Monomer content  

During the curing of the cement a substantial increase in the viscosity of the mixture takes place 

due to a partial dissolution of the PMMA in its monomer. The mobility of the monomer is greatly 

decreased by the increase in viscosity, which always causes the presence of 2–6% of residual 

monomer in a cement matrix [36, 37]. This percentage may be decreased with time up to 1-2% and 

then remain the same for years [38]. Haas et al measured the residual MMA monomer content to be 

3.3% after 1h, 2.7% after 20h and 2.4% after 215 days under storage in an ambient air 

environment, indicating that the variation was negligible between 20h and 215 days [39]. 
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In the present study, the residual monomer in the cured cement was measured one month after 

the polymerization at room temperature. The values are depicted in Figure 2, being evident that the 

residual monomer content lies in the range 0.9 – 1.75%. One way ANOVA test indicated that the 

obtained values were significantly different (p < 0.05), except between IB5 and IB20, and IB10 and 

IB20.  Although within acceptable limits for use as bone cements, showing that the polymerization 

reached high conversions, the values of %Mr demonstrate that the addition of ibuprofen to the 

cement increased the residual monomer content. The presence of an insoluble phase like ibuprofen 

can interfere in the polymerization reaction, thus the mobility of the monomer is greatly decreased 

and the process evolves more slowly, leading to the increase of non-reacted monomer that remains 

trapped within the cement matrix. 

 

 

Figure 2: Residual monomer content for the studied cements, one month after polymerization. 
 

 

In vitro bioactivity 

The bioactivity test showed that for all ibuprofen contents the composites developed a calcium 

phosphate layer on its surface after immersion in a PBS solution. Micrographs of the composite 

surfaces are shown in Figure 3.  
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Figure 3: SEM micrographs of the bone cements surface (a) before immersion, (b) after 7 days and 
(c) after 21 days in PBS. 

 

It is clear that after soaking for 7 days precipitates developed on the composite surface, although 

with undefined morphology probably due to the small amount, small size and low crystallinity of 

the formed precipitates. The crystallinity of the layer does not seem to be altered even for the 

higher immersion time, 21 days. This result was also confirmed by the XRD analysis shown in 

Figure 4.  

The surface chemical analysis by EDS, for all cements is depicted in Figure 5. The obtained 

results for 0 day of immersion (indicated as Initial in figure) confirmed that the relation between 

elements that constitute the composites before immersion are in agreement with the respective ratio 

in the glass composition. After 7 days, the Si and Mg signal decreased and the composite surfaces 

exhibit a pronounced increase in the Ca and P signal, suggesting calcium phosphate deposition. The 

presence of Na and Cl was also detected for this soaking time. The sodium chloride could be 

incorporated into the calcium phosphate network due to their high concentrations in PBS. After 21 

days a clear increase in Ca and P signal was found at the surface of all composites.  
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Figure 4: XRD patterns of composites after 21 days of soaking in PBS 
 

Unlike other solutions that simulate the biological fluid, PBS does not have Ca in its 

composition and the absence of this element can delay the crystallization of the layer formed on the 

surface cement. In solutions where the Ca is present such as SBF (Simulated Body Fluid), there is 

usually a faster crystallization of calcium phosphate on the soaked materials surface. The PBS 

solution was chosen because it is a buffer solution, isotonic and non-toxic, which can give valuable 

preliminary indications on bioactivity. 

Preceding work by these authors [40] has shown that PMMA-co-EHA composite filled with 50 

wt.% of a silicate glass (the same glass used in this work) exhibited a fast formation of apatite in 

SBF, indicating that the composite became potentially bioactive and seems to be a suitable material 

for bone repair.  

In order to confirm the crystallization of the layer formed on the surface cement a new 

immersion test using SBF was conducted. SEM images of composites and EDS spectra after 

immersion in SBF are presented in Figure 6. In contrast with PBS, the formed precipitates 

exhibited needle-like “cauliflower” morphology typical of apatite formation [8]. The composition 

of this layer was assessed by EDS. Before immersion, the presence of all elements that constitute 

the glass - Mg, Si, Ca and P - was detected (EDS spectrum not shown). After 14 days of immersion 

Ca and P were mainly identified, and the other elements like Mg, Cl and Na were residually present 

on the surface. The calculated Ca/P ratios for the several precipitates were 1.68 for IB5, 1.70 for 

IB10 and 1.65 for IB20 (Ca/P ratio for hydroxyapatite is 1.67) 
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Figure 5: EDS profiles of the surface (a) IB5, (b) IB10 and (c) IB20. For each measurement a 
standard deviation of approximately 0.2 was determined. 

 

 



 106 

 

Figure 6: SEM micrographs of the cements surface (a) after 3 days, (b, c) after 14 days in SBF; (d) 
EDS spectra. 
 

Analysis of the fluid by ICP (Figure 7) show that the release of Ca and P occurs up to 3 days of 

immersion, indicating dissolution of the glass, followed by its consumption which is associated to 

the formation of a calcium phosphate layer on the surface of the composite. The in vitro bioactivity 

of the fabricated cements was thus confirmed by these results. The morphology of the formed 

calcium phosphates is quite equivalent probably because the same percentage of bioactive glass 

was used in all formulations.  
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Figure 7: Variation in ionic concentrations of Ca and P in SBF. Dashed lines are to guide the eye. 
 

Ibuprofen Release 

The release of drug from an acrylic bone cement is a complex process in which it is expected a 

gradual liberation over time. The release curve of each ibuprofen concentration from the studied 

cements is shown in Figure 8.  

 

 

Figure 8: Ibuprofen release curves of the studied cements. 
 

During 30 days test the cements released about 20% of the total incorporated ibuprofen. The 

highest percentage of drug released from the IB20, IB10 and IB5 was 20.6%, 19.1% and 17.6% 

respectively. During the first week of testing the proportion of drug released was not significantly 

different for the various studied amounts of ibuprofen. The delivery profiles showed that up to 7 

days (168 h) 10% of ibuprofen content was released (half of the total amount of ibuprofen 

liberated) and between 7 and 30 days (168 to 720 h) the delivery rate is much lower, i.e. only about 
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10% was lost until the end of the test. Similar performances were reported in previous works, 

where it is suggested that the release was very incomplete because most of the drug beads were 

encapsulated by the hydrophobic PMMA matrix [41, 42]. 

The study of the release mechanism of ibuprofen was based on Equation 2. The analysis of the 

release curves can indicate the mechanism of drug liberation following the power-law model where 

n represents the release exponent. According to Cox et al, Fickian diffusional (n≤ 0.45) and Case II 

(n≥ 0.89) are the limits of this process only valid for samples of cylindrical shape like tablets [20]. 

Other values for n, between 0.45 and 0.89, indicate non-Fickian (anomalous) transport kinetics and 

can be described as a superposition of both phenomena.  

In the present study the drug release mechanism from the bioactive cement follows an 

anomalous behaviour during the first week, with n varying from, approximately, 0.58 to 0.68 

(Figure 9a). This behaviour may be due to the fact that only ibuprofen particles located in the 

superficial layers of the cement are accessible to the surrounding medium, leading to a competition 

between the dissolution of drug adsorbed to the material surface and the diffusion of drug close to 

the surface.  

 

 

Figure 9: Release curve analysis and parameters according to power law (a) up to 7 days, (b) 
between 7 and 30 days. 

 

For the time interval 7-30 days (Figure 9b), the release exponent indicates that the diffusion 

becomes the predominant mechanism (n varying from about 0.39 to 0.45). In this case the release 

occurs by the usual molecular diffusion of the drug due to a chemical potential gradient. The 

extremely low rate of transportation of the molecules is probably performed by bulk diffusion [11, 

43]. 

The obtained results indicate that approximately 80% of ibuprofen was retained in the cement 

showing a very slow release of the drug. It is believed that the continuation of the slow liberation 
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along time is not harmful in vivo. Surface commercial bone cements loaded with antibiotics like 

gentamicin demonstrate similar release behaviour. In vitro experiments have shown that most of 

the antibiotics may be retained within the PMMA matrix; sometimes as much as 90% of the initial 

load [44-46] . 

The drug release process may be ruled by the penetration of dissolution fluid into the polymer 

matrix, the solubility of the drug in solution and the possible physical or chemical interactions with 

the surface of the delivery device [11, 47]. Considering the cement after the MMA polymerization 

the drug particles are not free but embedded and covered by the PMMA matrix, which also 

encloses the bioactive glass and the PMMA beads initially added forming part of it as a 

homogeneous mixture. Hence the presented behaviour can be related with the low solubility of 

ibuprofen in aqueous media and the hydrophobicity of the developed formulations, which interfere 

in the contact with the dissolution fluid.  

It is very important to try to predict whether the amount of ibuprofen released from the 

investigated cements has the suitable effect to potentiate the required therapeutic action in a real 

situation. As previously described the IB released from the cements was measured by UV 

spectroscopy and its corresponding concentration calculated from the calibration curve. Based on 

these results some calculations on the amounts of released drug from the different cement 

formulations were made and shown in Table 2, representing an exercise to predict the performance 

of the developed material.   

When considering the drug release during the first week, period in which the inflammation is 

more critical, the loss of 10% of drug in a volume of 10 mL corresponds to a daily liberation of 

0.063, 0.126 and 0.251 mg/mL of ibuprofen from respectively, samples IB5, IB10 and IB20. Since 

the therapeutic concentration of ibuprofen in human plasma is usually in the range 20 to 30 mg/L 

or 0.02 – 0.03 mg/mL [24] it is concluded that this value was reached by all formulations studied. 

Taking  into consideration that  the typical  time action of an anti-inflammatory drug during one 

day, is 4 - 6 hours [23], then a minimum per day of 4 doses (0.08 to 0.12 mg/mL)  or  6 doses (0.12 

to 0.18 mg/mL) would be necessary to blunt the inflammation. Regarding our results this indicates 

that only IB5 would be uneffective in suppressing the inflammatory process and the IB10 and IB20 

cements clearly achieved the therapeutic concentration required to control inflammation during the 

first week. It is believed that the high concentration reached by IB20 is not harmful since the drug 

is released over time. Moreover it was reported that in a symptom-free adult a level of 704 mg/L is 

tolerated [48, 49]. 
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Table 2: Drug release of cements, based on UV spectroscopy measurements 

First week (mg/mL) Next week (mg/mL) 
Samples Drug        

(mg) Total  Daily  Total  Daily  
IB5 44 0.44 ± 0.02 0.063 0.128 ± 0.03 0.018 

IB10 88 0.88 ± 0.02 0.126 0.322 ± 0.03 0.046 

IB20 176 1.76 ± 0.05 0.251 0.685 ± 0.05 0.098 

 
 

Concerning the second week the results indicate that the delivery rate is much lower and only 4-

5% of ibuprofen is released. Thus, the compositions IB5 and IB10 showed insufficient daily dose 

of release for the treatment of inflammation. Only IB20 retained the drug liberation necessary to 

blunt the inflammatory process. This comparative study clearly evidenced that the performance of 

the cements with 10% and 20% of ibuprofen is quite satisfactory for their application in the control 

of inflammatory situations in bone surgery. 

The extensive in vitro characterization of the developed materials here presented  and the 

interesting capabilities found, encouraged the investigation of additional parameters such as 

mechanical and biological properties, a work that is being carried out in order to characterize the 

overall performance of the cement. 

 

CONCLUSIONS 

 
Bioactive bone cements with different contents of ibuprofen were synthesized. The 

characteristics of the curing process of the bioactive bone cements were improved with the 

increasing amount of ibuprofen leading to a reduction of the peak temperature and an extension of 

the setting time. A slight increase in the percentage of residual monomer in the cement was verified 

with the addition of drug. It was also shown that the presence of ibuprofen does not impede the in 

vitro bioactivity of the drug-containing composites. The growth of spherical calcium phosphate 

aggregates was observed on all composite surfaces.  

The composites loose about 20% of the total incorporated ibuprofen during 30 days test. 

Release of drug is controlled by two different mechanisms: for the initial times the drug liberation 

is predominantly a surface phenomenon and for the longer times the ibuprofen release process is 

mainly controlled by diffusion. The cement formulation IB5 showed insufficient daily dose, i.e. 

lower than the required therapeutic concentration. The IB10 and IB20 cements achieved the 

therapeutic effect sufficient for the treatment of inflammation for one week and two weeks, 

respectively. The results evidenced that the performance of the cements with 10% and 20% of 

ibuprofen is quite appropriate to blunt the inflammatory process associated to orthopedic surgery. 



 111 

Thus, the developed cements appear as interesting alternatives to traditional bone cements, 

allowing the surgeon to choose the most suitable formulation for each specific situation and patient.  
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CHAPTER 5 
 

 

ACRYLIC FORMULATIONS CONTAINING BIOACTIVE AND BIODEGRADABLE FILLERS  TO BE USED 

AS BONE CEMENTS: PROPERTIES AND BIOCOMPATIBILITY ASSESSMENT 

 

 

ABSTRACT 

 

The solid phase of bioactive self-curing acrylic cements was modified by different biodegradable 

fillers such as poly(3-hydroxybutyrate) (PHB) and its copolymer with hydroxyvalerate (PHBV). 

The addition of the biodegradable fillers made the cement partially degradable, which is important 

to allow new bone replacement and ingrowth. The thermal analysis, crystallinity, curing 

parameters, mechanical properties, degradation and cellular tests were studied in order to 

characterize the cement performance. Within this context it was verified that the incorporation of 

the PHBV polymer made the cement more resistant, reaching values in the range reported for 

typical PMMA bone cements. The results also showed that the cement filled with PHBV took up 

more water than the cement with PHB after 60 days, for all studied formulations. Regarding the 

biocompatibility assessment, the inclusion of the PHBV greatly improved the biological response 

in both cements filled with the silicate or the borate glass, compared to the inclusion of the PHB. 

The importance of this approach resides on the combination of the properties of the cements 

components and the possibility of allowing bone regeneration, improving the interfaces with both 

the prosthesis and the bone, and leading to a material with suitable performance for application as 

bone cement. 

   

 

 

 

 

This chapter is based on the following publication: 
Lopes PP, Garcia MP, Fernandes MH, Fernandes MHV. Acrylic formulations containing bioactive 
and biodegradable fillers  to be used as bone cements: properties and biocompatibility assessment. 
Biomedical Materials, submitted.  
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INTRODUCTION 

 

 The basic component of the acrylic bone cement is methyl methacrylate (MMA) which can 

polymerize to form poly(methyl methacrylate) (PMMA) [1]. Thus the cement itself is a typical 

bioinert material, that is, it does not resorb or allow bone replacement, being encapsulated by 

fibrous tissue [2]. The formation of fibrous tissue can be caused by the toxicity of the released 

monomer and the heat production due to polymerization, being a significant factor in the instability 

and movement at the bone-cement-prosthesis interfaces considered the weak-link-zones [3]. These 

micromovements can accelerate aseptic loosening, causing a failure in the cemented total hip 

arthroplasties [4].   

In this context, the development of new formulations namely bioactive bone cements is highly 

desirable, since they can promote bone growth and the formation of a strong chemical bond 

between the implant and bone tissue [5, 6]. The incorporation of a bioactive component in acrylic 

bone cement formulations seems to be the main route  to improve the interfacial strength of cement 

to the bone [7]. However, in most cases a significant part of the bioactive particles is covered with 

PMMA matrix and the contact with physiological solution is absent. Only the particles at the 

cement surface are accessible and react with the surrounding fluid, thus restricting the formation of 

calcium phosphate at the surface [8].  

Certainly a much stronger interaction should be attained if the bone was induced to grow also 

inside the cement. An interesting approach would be to combine bioactive and biodegradable fillers 

within the solid component of the bone cement formulations, which could simultaneously facilitate 

bone replacement, ingrowth and bonding. It is believed that bone could grow around, as well as 

into, the cement in the space left by the degraded material resulting in stronger fixation of the 

prosthesis within the bone cavity [9]. 

Regarding this new class of bioactive bone cements containing degradable polymeric 

constituents, examples in the literature are relatively scarce. They include cements based on corn 

starch/cellulose acetate blends (SCA) filled with hydroxyapatite (HA) [10] or Bioglass [8], cements 

composed of chitosan and natural bone powder (HA obtained from trabecular bone blocks of 

porcine spines) [11] or cements containing microspheres of chitosan/β-TCP [12].  

Polyhydroxyalkanoates (PHAs) are natural polymers produced by many bacteria as a mean to 

store carbon and energy. They are known as biodegradable materials and exhibit a range of 

properties that may permit their use as biomaterials [13]. The most studied member of this family is 

poly(3-hydroxybutyrate) (PHB) which was discovered in 1920. PHB is relatively brittle and stiff, 

however its copolymer with hydroxyvalerate (PHBV) exhibits a less stiff behaviour and is tougher 

[14, 15]. These polymers slowly degrade in vivo by the enzymes present in blood, through 
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hydrolysis, and their degradation products are a common metabolite in human body, hence they are 

not toxic to the cells [13]. Another interesting property is its piezoelectricity which makes these 

polymers potential candidates for orthopedic applications, since electrical stimulation is known to 

promote bone growth and healing [15]. 

In the study presented herein, a new acrylic bone cement combining a biodegradable polymer 

(PHB or PHBV) and a bioactive glass filler (silicate-based glass or borate-based glass) is proposed. 

Experiments to measure mechanical properties, curing parameters and residual monomer were 

carried out as well as degradation and cytocompatibility studies. These results suggested that the 

new formulations may contribute to overcome some of the known drawbacks of acrylic bone 

cements which ultimately contributes to lower the incidence of implant aseptic loosening in 

cemented total joint replacements. 

 

MATERIALS AND METHODS 

 

Materials 

Methyl metacrylate (MMA monomer), PMMA beads (polymer), 4,4-bis(dimethylamino) 

benzydrol (activator), poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3- 

hydroxyvalerate) (PHBV, PHV content 12 wt%) were acquired from Aldrich. PMMA beads, with a 

molecular weight of 120,000, were milled in a rotor mill (Retsch ZM 200) to a mean particle size 

of 100 µm. PHB (particle size of less than 50 µm) and PHBV, with the chemical structure depicted 

in Figure 1, are commonly produced via a controlled fermentation process using microorganisms.  

 

 

Figure 1: Chemical structure of used biodegradable polymers. 
 

Commercial pellets of PHBV were frozen with liquid air and later milled in a rotor mill 

equipped with stainless steel knives to a powder with mean particle size of about 200 µm. PHB, 

Benzoyl peroxide (BPO, Merck) initiator and activator were used as received for the 

polymerization reaction. Two different glass compositions were used in this work. A silicate glass 

composed of (mol%) 24.5% SiO2 ,38% CaO, 12.7% P2O5, 24.8% MgO and a borate glass, which 

consists of a similar composition where SiO2 was entirely replaced by B2O3. The glasses were 
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prepared through the classic melt-quenching method following a procedure described in Lopes PP 

[16, 17]. 

 

Cements preparation  

New formulations of bone cements were prepared from a solid and a liquid phase by free radical 

polymerization. The solid phase was constituted by commercial PMMA, bioactive glass, 

biodegradable polymer and BPO. The activator of reduced toxicity was dissolved in the MMA 

monomer, resulting in the liquid phase. 

All formulations contained a fixed percentage of 40 wt% of glass, referring to the weight of the 

solid component. Two bioactive glass compositions were used, a silicate glass and borate glass. 

The preparation of specimens for subsequent tests was carried out following the traditional method. 

Both phases were manually mixed with a glass bar until the mixture became dough with a high 

viscosity. Then the dough was placed into a poly(tetrafluoroethylene) (PTFE) mould and cured at 

room temperature. After 60 min, the samples were removed from the mould. The formulations 

were prepared by varying the composition of the solid phase, replacing 10 and 20 wt.% of the 

PMMA by the biodegradable polymer (PHB or PHBV). The compositions of all cements 

developed are presented in Table 1. The solid:liquid ratio employed was 1.75:1, with the 

initiator/activator in a molar ratio of 2.6. 

 

Table 1: Chemical composition of all cements developed (wt%). 

Solid Phase Liquid Phase 

Bioactive Glass 
Biodegradable 

Polymer 
Samples 

PMMA 

GSi GB PHB PHBV 

MMA 

PMMA 63.6     36.4 

PHB10Si 32.2 25  6.4  36.4 

PHB20Si 25.9 25  12.7  36.4 

PHB10B 32.2  25 6.4  36.4 

PHB20B 25.9  25 12.7  36.4 

PHBV10Si 32.2 25   6.4 36.4 

PHBV20Si 25.9 25   12.7 36.4 

PHBV10B 32.2  25  6.4 36.4 

PHBV20B 25.9  25  12.7 36.4 
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Thermal behaviour and crystallization  

To observe the effect of biodegradable polymer incorporation on the thermal properties of the 

cements, differential scanning calorimetry (DSC) experiments were performed (Shimadzu DSC-

50). The experiments were carried out at a heating rate of 10 ºC/min from room temperature up to 

200 ºC under constant nitrogen flow. After that the same samples were cooled to room temperature 

at 10 ºC/min). The glass transition temperature (Tg) was taken as the midpoint of the first 

endothermic depression in the DSC plot. The variation in the degree of crystallinity (Xc) of the 

cements as a function of biodegradable polymer and their content in the composite was estimated 

using the transition enthalpies obtained from the DSC thermograms according to the equation: 

100
0 wH

H
Xc

m

m

∆
∆

=     (1) 

where ∆Hm and ∆H0
m are, respectively, the enthalpy of melting of the sample and the enthalpy of 

melting of fully crystalline PHB (146 J/g) or PHBV (109 J/g) and w is the weight fraction of the 

biodegradable polymer [18, 19]. ∆Hm is calculated by integrating the peak corresponding to the 

given transition.  

X-ray diffraction (XRD) was also performed (Rigaku Geigerflex Dmax-C X-ray difractometer 

equipped with a CuKα monochromatic radiation source) revealing information about the crystal 

structure of the cements.  

 

Setting parameters 

The temperature changes, which occurred at the setting reaction, were measured in a cylindrical 

mould at room temperature. Materials under testing were mixed in a small PTFE beaker for 1 min. 

The exothermic polymerization temperature was measured using a digital thermometer inserted in 

the curing mass at approximately 3 mm from the bottom of the tube, and was recorded every 10 

seconds. Time was measured with a chronometer from the onset of mixing the powder with the 

liquid. Setting time (tset) was calculated as the time at which the temperature of the mass 

corresponded to the sum of the ambient temperature (Tamb) and the maximum temperature (Tmax) 

divided by two.  








 +
=→

2
max amb

set
TT

Tt        (2) 

 

The measurements were done in duplicate, recording the temperature–time profiles during the 

polymerization. 
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Residual monomer  

Nuclear magnetic resonance (NMR) spectroscopy was used to quantify the residual monomer 

content. Three samples of each type were dissolved using deuterate chloroform as solvent and 

tetramethylsilane (TMS 1 vol.%) as the internal reference and the H NMR spectrum recorded on a 

300 Bruker Avance  Spectrometer operating at 300 MHz at room temperature. The percentage of 

monomer moles present in the cured cement sample (%Mr) was calculated using the following 

expression: 

1005.1 ×






 ×=
Am

Av
Mr       (3) 

where Av and Am stand for the area of vinyl and methoxyl signals, respectively and 1.5 is a factor 

relating the number of protons in the methoxyl group (three) to those of the vinyl region (two) [20]. 

 

Mechanical behaviour 

The mechanical behaviour of the cured materials was evaluated under three-point bending. 

Samples were prepared in the same way to nullify any influence of the preparation technique upon 

the mechanical properties. The bending tests were carried out at room temperature on a 

Bose/Electro Force 3400 testing machine. Six samples per composition were tested at a crosshead 

speed of 1 mm/min. The bending strength (σB) and modulus (EB) were calculated using the 

standard formulae [21]. The EB data were extracted from the initial linear portion of the load - 

displacement curve. 

22
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where F is the highest load of the load-displacement curve, L is the distance between end supports, 

b is the width, h is the height of the specimen, ∆F and ∆y are the gradient of load and displacement, 

respectively, of the initial straight-line portion of the curve. 

The obtained values were compared with the ones indicated by ISO 5833 standard (strength 

50MPa and modulus 1.8 GPa) [22].  

 

Water uptake, weight loss and surface evaluation 

These parameters of the self-curing materials were evaluated under simulated physiological 

conditions. The specimens were soaked in Phosphate Buffered Saline (PBS) at pH 7.4 and 

maintained at the temperature of 37 ºC. A constant specimen surface area to solution volume ratio 

of 0.1 cm−1 was used. At appropriate times, 3, 7, 14, 21, 28 and 60 days, the samples were blotted 
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on filter paper to remove surface solution/water, and immediately weighed. Water uptake (WU) 

and weight loss (WL) were calculated using the following equations:  

100
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o

ot ×

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 −
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where mt stands for the mass of the sample “wet” after a given immersion time t (days), mf,t  is the 

final mass after drying the sample in the oven until constant weight after t days of immersion in 

PBS and mo is the mass prior to immersion [10]. 

The surface of all the investigated cements was evaluated by SEM-EDS before and after 

degradation test at 28 days of immersion in PBS. The samples were carbon-sputtered before 

observation under a scanning electron microscope (Hitachi S4100 model). 

 

Statistical analysis 

One-way ANOVA and multiple comparisons by the Tukey all pairwise approach were 

performed to determine the statistical significance (p < 0.05) of the differences among the groups. 

The comparisons were made among groups with the same biodegradable polymer and glass filler. 

 

Osteoblastic cytocompatibility 

 
Human bone marrow cell  cultures   

Cytocompatibility studies were performed with human osteoblastic cell cultures. Human bone 

marrow, obtained from orthopaedic surgery procedures, after patient informed consent, was 

cultured in α-Minimal Essential Medium (α -MEM) containing 10% fetal bovine serum, 50 µg/ml 

ascorbic acid, 100 IU/ml penicillin, 2.5 µg/ml streptomycin and 2.5 µg/ml  fungizone, at 37 ºC in a 

humidified atmosphere of 5% CO2 in air. Primary cultures were maintained until near confluence 

(10–15 days) and, at this stage, adherent cells were enzymatically released (trypsin–EDTA 

solution). First-passage cells were seeded at 2x104 cell/cm2 over the surface of the cements. Seeded 

cements were cultured for 21 days in the presence of 50 µg/ml ascorbic acid, 10 mM β-

glycerophosphate and 10 nM dexamethasone. Colonized material samples were evaluated 

throughout the incubation time for cell viability/proliferation, alkaline phosphatase (ALP) activity 

and were observed by confocal laser scanning microscopy (CLSM) and scanning electron 

microscopy (SEM). 

 



 122 

 Cell viability/proliferation 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to 

assess the cell viability/proliferation. At days 4, 7, 14 and 21, colonized materials were incubated 

with MTT, during the last 4 hours of the culture time tested. The samples were placed in a new 

plate, the formazan salts were dissolved with dimethylsulphoxide and the absorbance was 

measured at 492 nm in a ELISA reader (Synergy HT, Biotek). Three replicates were set up at each 

condition. Results were compared in terms of macroscopic surface area and expressed as Acm-2. 

 

Alkaline phosphatase activity  

At days 14 and 21,the colonized materials were treated with 0.1% triton in water (to lyse the cell 

layer) and the cell lysates were evaluated for ALP activity and total protein content. ALP was 

assayed by the hydrolysis of p-nitrophenyl phosphate in alkaline buffer solution, pH 10.3, 30 min at 

37 ºC, and colorimetric determination of the product (p-nitrophenol) at λ=405 nm. Enzyme activity 

was normalized to total protein content (determined by Lowry method). Results are expressed in 

nanomoles of p-nitrophenol produced per min per µg of protein (nmol.min-1 /µg protein). 

 

CLSM and SEM observation 

For CLSM, at days 4 and 14, colonized materials were fixed (4% formaldehyde, methanol free, 

15 min), permeabilized in 0.1% Triton (5 min, RT) and incubated in 10 mg/ml bovine serum 

albumin with 100 µg/ml RNAse (1 h, RT). F-actin filaments were stained using Alexa-Fluor-

conjugated phalloidin (1:100, 1 h, RT) and nuclei were counterstained with 10 µg/mL propidium 

iodide (10 min, RT). Fluorescent stained cultures were examined by CLSM (Leica TCP SP2 AOBS 

confocal microscope).  

SEM was performed at days 7 and 21. Material samples were fixed (1.5% glutaraldehyde in 

0.14M sodium cacodylate buffer, pH 7.3, 10 min), dehydrated in graded alcohols, critical-point 

dried, sputter-coated with gold and analysed in a JEOL JSM 6301F scanning electron microscope 

equipped with a X-ray energy dispersive spectroscopy (EDS) microanalysis capability (voyager 

XRMA System, Noran Instruments). 

 

Statistical analysis 

Data presented in the cytocompatibility studies were obtained from three separate experiments 

using cell cultures from different donors. Analyses were performed with three replicates. Groups of 

data were evaluated using two-way analysis of variance (ANOVA). Statistical differences between 

control PMMA and the prepared cements were determined by Bonferroni’s method. Values of p< 

0.05 were considered significant. 
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RESULTS AND DISCUSSION 

 

Thermal behaviour and crystallization  

The developed cements were characterized in terms of thermal behaviour and crystallinity. DSC 

curves are shown in Figure 2. 

 

 

Figure 2: DSC thermograms of pure biodegradable polymers PHB and PHBV and studied 
cements. 

 

A transition (first inflection point) was observed in all thermograms of the cements. This 

inflection was attributed to the glass transition temperature (Tg) of the amorphous PMMA matrix, 

as seen in the PMMA thermograms, which is around 86.7 ºC (midpoint). The Tg is a physical 

parameter associated with the internal structural rearrangements produced by the softening of the 

material by heating, and represents a transition from a hard and rigid glassy state with a high 

modulus to a soft rubbery state with a low modulus [23]. The PMMA beads (polymer) used in the 

cement preparation have a Tg of the 105 ºC (value obtained from Aldrich and confirmed by DSC). 

The lower Tg value for the PMMA matrix can be attributed to the lower molecular weight of the 

chains resulting from the MMA polymerization, and the presence of the residual monomer. The 

monomer probably acts as a plasticizer which increases the matrix flexibility and therefore 

produces a decrease in Tg [24]. The glass transition temperatures of acrylic bone cements can vary 

in the range 80 °C - 100 °C [25]. For the developed cements, there was a slight variation of Tg. 

Filling the cements with PHB, which is a semicrystalline polymer, produces the appearance of 

endothermic peaks, corresponding to melting temperatures (Tm). It is observed  that the Tm of 

PHB in cements slightly decreased (up to ~7 ºC) when compared with the Tm of pure polymer 

(170.5 ºC). This reflects the interaction of PMMA with the crystalline PHB, which leads to the Tm 

depression [26]. This behaviour may be explained by the low particle size and high surface area of 
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the PHB that can promote the incorporation of a higher amount of monomer. Thus it is believed 

that the presence of MMA can decrease the cohesion between the chains in the PHB crystals 

causing a reduction of the Tm.  

For pure PHBV two melting temperatures are found and both are lower than that of PHB. The 

lower values may be related to a slight reduction in crystal size and lower degree of crystallinity of 

this polymer. For the melting of PHBV the main peak was detected around 155 ºC and  the second 

at approximately 143 ºC. The latter is usually due to melting of crystals with different lamellar 

thickness and/or crystallization that occurs during the heating in the DSC [27]. For cements filled 

with PHBV the melting peaks became narrower and  slightly shifted to higher temperatures, 

although the main peak was not considerably different.  

DSC curves, obtained during the cooling stage (data not shown) indicated that the 

crystallization temperature was also lower for PHBV (109 ºC) than that determined for PHB (120 

ºC). The crystallinity of PHB and PHBV phase can be calculated, according to the heat of fusion 

obtained from the interior areas of the melting peaks being illustrated in Figure 3. The degree of 

crystallinity of the pure PHB is higher than that of PHBV, due to the most irregular and random 

repeat unit arrangements in the copolymer which results in reduced ability of crystallization.   

The results also showed that the crystallinity of PHB is much larger in pure polymer than in the 

cement, while for the PHBV the crystallinity seemed to be unchanged by the presence of PMMA. 

As mentioned before, this behaviour can be associated with the lower average particles size of 

PHB, around 50 µm, compared to the PHBV, 200 µm. A higher surface area as in PHB is 

responsible for a higher reaction between MMA monomer and PHB.  

 

 

Figure 3: Variation in the degree of crystallinity of the PHB and PHBV in the cements. 
 

Figure 4 shows the obtained XRD spectra for PHB, PHBV and developed cements. It can be 

seen that both PHB and PHBV are semicrystalline polymers, and exhibit peaks at almost the same 

locations, indicating that addition of PHV to PHB does not modify the crystal structure of PHB. 
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The main diffraction peaks appear around 2θ = 13.6º, 17.0º, 22.4º, 25.6º, and 30.7º, which 

correspond to (020), (110), (111), (121), and (002) crystallographic planes, respectively [28].  

 

 

Figure 4: XRD patterns of (a) PHB and PHBV, (b) PHB20B and PHBV20Si. 
 
 

It is known that, in the crystalline state, PHB adopts a regular helical conformation with space 

group P212121. The unit cell is orthorhombic with dimensions a = 5.76 Å, b = 13.20 Å, and c = 5.96 

Å [29]. The PHBV polymers display the phenomenon of isodimorphism, i.e. Hydroxybutyrate 

(HB) and hydroxyvalerate (HV) units of the copolymer are incorporated in the same crystal lattice, 

given that the structures of both units and the crystal structures of the PHB and PHV are quite 

similar. Therefore, PHBV copolymers with less than 40 mol% HV units crystallize in the PHB 

crystalline lattice [19]. 

The XRD patterns for the developed cements (Fig. 4b) also exhibit diffraction peaks, 

characteristic of the biodegradable polymers. The introduction of crystalline polymers, such as 

PHB and PHBV, in the acrylic cement (an amorphous polymer where glassy particles are already 

embedded) gives rise to crystalline regions (spherulites) dispersed in an amorphous material. X-ray 

diffraction has additionally shown that the diffraction peaks of PHB were slightly shifted to higher 

2θ angles indicating a slight change in the lattice parameters of the polymer which can be related 
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with the presence of MMA. It was also revealed a decrease in the intensity of these peaks, when 

compared with PHBV20Si, due to the reduction in the crystallinity of PHB. 

 

Setting Parameters and Residual Monomer 

The exothermic character of the polymerization reaction was evaluated by the setting 

parameters. Figure 5 shows the curing curve for each of the developed cements, as well as for 

PMMA reference, whereas Table 2 presents the values for the studied parameters. 

 

 

Figure 5: Curing curves of the developed cements filled with (a) PHB and (b) PHBV. 
  

In terms of the maximum reached temperature, Figure 5 clearly shows that, when compared 

with the formulation based on PMMA, the addition of a biodegradable polymer and a bioactive 

glass, significantly decreases this parameter (p<0.05). In fact for the cements modified with 

biodegradable and bioactive filler the peak of temperature achieved was less than 90 ºC, which is 

the highest value accepted by the ISO 5833 standard for acrylic resin cements [22]. These results 

are indeed beneficial, since they indicate that with the developed cements the necrosis in the tissue 

surrounding the implant might be considerably minimized. The concentration of biodegradable 

filler did not promote greater changes in the peak temperature, except for PHBV10Si and 

PHBV20Si for which compared group means showed significant differences. In general and 

considering the different used biodegradable fillers, PHBV cements demonstrated less intense peak 

temperatures than the PHB cements and PMMA matrix. 

The setting time values were significantly different for cements with several concentrations of 

biodegradable polymer, except between PHB10B and PHB20B. The cement filled with PHB and 

silicate glass reached a tset higher than the cement filled with PHBV and the same glass. For the 

cement with borate glass the change of biodegradable polymer was not significant. The developed 

cements showed a large increase of the setting time which can be due to higher concentration of 
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fillers and the reduced amount of activator, providing a longer time for the preparation and 

application of the bone cement during surgical procedure. When the PMMA beads are substituted 

by filler the polymerization can be retarded, increasing the setting time [30]. Additionally, the 

formation of radicals is dependent on the concentrations of activator and initiator. Faster radical 

formation activates more monomers that act as nucleation sites for polymer chain growth [31]. 

Regarding the kinetics, decreasing the amount of activator decreases the rate of polymerization 

and, consequently, extends the setting process. The reduction of the maximum temperature is also 

expected since the heat of polymerization is released for an extended time [32, 33]. In literature it is 

reported that changing the initiator/activator ratio produces minor effects or conflicting results in 

polymerization temperature [31, 34]. In this work the reduction of activator seems to affect mainly 

the setting time. 

The percentage of residual monomer in the different formulations (Mr%) is summarized in 

Table 2. Comparing with the PMMA matrix, the addition of either PHB or PHBV produces an 

increase of the residual monomer present. 

 

Table 2: Values of setting parameters and Mr for the investigated cements 

Samples Tmax (ºC) tset (min) Mr (%) 

PMMA 97.3 ± 3 5:30 ± 0.18 4.10 

PHB10Si 73.4 ± 2 10:05 ± 0.15 4.74 

PHB20Si 71.6 ± 1 9:05 ± 0.18 4.75 

PHB10B  74.0 ± 2 11:50 ± 0.18 5.40 

PHB20B 75.3 ± 2 12:15 ± 0.14 5.59 

PHBV10Si 75.1  ± 1 9:25 ± 0.18 4.54 

PHBV20Si 68.2  ± 2 8:15  ± 0.18 4.30 

PHBV10B  70.3  ± 1 11:45  ± 0.21 4.14 

PHBV20B 73.3  ± 2 12:40  ± 0.18 4.39 

 

The cements filled with PHB led to larger amounts of residual monomer, that slightly increase 

with the increasing concentration of this biodegradable polymer. The cements filled with PHBV 

showed smaller values but still higher than for the PMMA matrix. The filler can act as an array of 

barriers, thus the overall probability of a monomer molecule to react with an initiator radical or a 

growing radical chain is decreased, resulting in a higher concentration of unreacted monomer. 

Another probable reason to justify this dissimilar behaviour can be the lower particle size of the 

PHB polymer. The superior surface area of the filler may immobilize more monomer on its surface 
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and therefore increase the non-reacted monomer that remains trapped in the cement matrix [30, 35]. 

These values were in the range reported in the literature [36, 37]. 

 

Mechanical Properties 

The evaluation of mechanical properties is essential to determine the viability of self-curing 

acrylic formulations as potential systems for load-bearing applications. The bending test is a 

characterization technique to assess new cements, being a requirement of the standard, because in 

vivo loading invariably involves a combination of shear, tension, and compression forces [22, 38]. 

The representative nominal load – displacement bending curves for the studied cements are 

illustrated in Figure 6.  

 

 

Figure 6: Load-displacement curves for the cements (a) PHB10, (b) PHB20, (c) PHBV10 and (d) 
PHBV20. 

 

It is clear that the partial substitution of the PMMA beads by biodegradable particles retained 

the stiff and brittle behaviour of the material. A notable effect was verified  when comparing the 

mechanical properties of the PHB-filled cements with those of the corresponding cement filled 
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with PHBV. Overall, the cement containing PHBV and silicate glass becomes more resistant since 

a greater load may be sustained by the specimen. The strength at maximum load and the elastic 

modulus for each composition are depicted in Figure 7. 

One way ANOVA analysis indicated that the values obtained for the bending strength of the 

various cements were significantly different (p < 0.05). To explore the differences among the 

means, Tukey’s multiple comparisons were performed. Considering the effect of addition of 

different biodegradable polymers, PHB and PHBV, (maintaining the same concentration and glass 

filler) all group differences were significant. However taking into account the concentration of 

biodegradable filler, 10 wt% and 20 wt%, (keeping the same polymer and glass filler) the result 

showed that there was no statistical difference, except between PHB10Si and PHB20Si. The elastic 

modulus was considered similar, it did not differ significantly, except between PHB10Si and 

PHBV10Si. In addition, the results also showed a slight increase in the bending strength for the 

cement filled with silicate glass and, considering the elastic modulus, the performance was slightly 

superior for the cement with borate glass. Nevertheless, as mentioned above, the statistical analysis 

resulted in not significant differences (p > 0.05). 

 

 

Figure 7: Bending properties of all the prepared formulations. 
 

The observed behaviour seemed quite interesting, particularly in which concerns the 

pronounced effect of the different biodegradable polymers, rather than their concentration, in the 

mechanical properties of the modified cements. In terms of the influence of addition of PHB and 

PHBV, the incorporation of PHBV led to better bending strength but similar elastic modulus, all 

higher than 2.5 GPa. 

It is known that PHB is a semicrystalline polymer with higher degree of cystallinity, being a 

relatively brittle and stiff material [39]. The reason for the brittleness is mainly attributed to the 
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presence of large crystals in the form of spherulites. The PHB is usually crystallized by slow 

cooling from the melt, forming thin lamellar crystals, which are organized in large banded 

spherulites [40]. The large-size spherulites and secondary crystallization promote interspherulitic 

cracking during storage of the polymer at room temperature, which is commonly known to impair 

the mechanical properties of the materials [41, 42]. So the bending strength of the cement is lower 

when PHB is incorporated, a behaviour that can be associated to the high viscosity of these samples 

during preparation which induces an inhomogeneous distribution and agglomeration of particles. 

These aggregates behave like preferential sites of stress concentration in the bone cement, thereby 

weakening it. In the present case we believe that, apart from the referred factors, the alteration 

verified in the thermal analysis of PHB, can also contribute negatively for the mechanical 

performance of the cements. 

The random copolymer (PHBV) shows increased flexibility, since it generally produces a 

greater disorder within the crystalline region due to the ethyl side groups, thus the crystallinity is 

decreased, and the mechanical properties can be increased [43]. The reduced crystal growth of the 

PHBV can also be advantageous for the mechanical properties because smaller crystals are 

produced, which are more flexible than large crystals that are prone to brittle failure at the grain 

boundaries. The results evidence the high performance of the cements filled with PHBV, exhibiting 

mechanical properties that lie within the required range for bone cements use. 

 

Degradation and surface analysis  

Figure 8 shows the evolution of the water uptake (WU) and the loss of weight (WL) with time. 

The uppermost values of WU were obtained after 60 days of immersion in PBS. The WU values 

are influenced by the composition of the glass.  

The cements filled with borate glass expressed a higher value of WU  than the control (PMMA), 

while for the cements filled with silicate glass the WU data were lower/similar up to 28 days, but 

increasing for 60 days of immersion. The results for both types of cements indicated that the 

compositions containing 20% of biodegradable polymer demonstrated a superior WU capability 

compared to the one formulated with 10% of polymer during the same period. Regarding the 

different biodegradable fillers, the cement filled with PHBV took up more water than the PHB 

cement after 60 days, for all studied formulations.  

The WL was also higher for the cement with 20% biodegradable polymer and borate glass, 

being that the PHBV20B showed the highest weight loss. Overall the weight loss of the cements 

reached a maximum value at 21 days of immersion, except for the PHB20B whose maximum WL 

was achieved at 7 days, and then decreased, indicating that the material should be affected by 

another process besides the degradation during immersion. An explanation for the reduction in WL 
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values can be related with the possibility of precipitation of a calcium phosphate layer on the 

material surface, that becomes evident after 21 days immersion [44]. The pH did not show 

substantial changes until the end of the test, ranging from 7.4 to 7.7. 

 

 

Figure 8: Evolution of water uptake (WU) and loss of weight (WL) for the cement filled with PHB 
(a, c) and cement filled with PHBV (b, d). 

 

To verify the leaching process from the cements during soaking in PBS, scanning electron 

microscopy (SEM) micrographs were taken from all investigated formulations before and after 

PBS immersion for 28 days (at different magnifications). The surface of the cements, modified 

with PHB and PHBV, can be seen in Figure 9.  

The micrographs revealed a quite similar behaviour for both cement fillers PHB and PHBV.  

Before immersion all the cements exhibited a PMMA matrix surrounded by the fillers (polymer 

and glass) and few pores. After 28 days in PBS the materials showed increasing porosity pattern, 

i.e. new cavities were formed at their surfaces. For PHB10Si and PHBV10Si these cavities are less 

evident, a result that is consistent with the degradation test where the same cements revealed a less 

weight loss. Concerning the cements filled with the borate glass it seems obvious that the porosity 

substantially increased, thus contributing for a higher loss of weight of these cements. 
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Figure 9: SEM micrographs of cements before and after 28 days of immersion in PBS (a) 
PHB10Si, (b) PHB20Si, (c) PHB10B and (d) PHB20B, (e) PHBV10Si, (f) PHBV20Si, (g) 
PHBV10B and (h) PHBV20B. 

 

In all cements, after 28 days in PBS, it was also detected the presence of another phase covering 

a large surface of the samples. The precipitates, developed on the cement surface, showed a 

spherical morphology, small size and low crystallinity in higher magnification. It is known that 

PBS does not contain calcium in its composition and the absence of this element can delay the 
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crystallization of the formed precipitates [45]. These new layers were analyzed by EDS (data not 

shown). In terms of its composition, at least qualitatively, they were all similar. In all cements the 

developed precipitates were composed only by Ca and P, with residual amounts of Si (present in 

the silicate glass under the layer), Na and Cl (precipitated from the solution).  

The presence of different biodegradable polymers seems not to influence the surface changes of 

the cements, at least for the investigated immersion time. The PHB and PHBV are known to 

degrade very slowly in an aqueous medium because of their degree of crystallinity and 

hydrophobic structure, and thus the superficial degradation of the cement could be mainly 

attributed to the dissolution of the bioactive glass which gave rise to the observed porosity and 

contributed to the formation of the calcium phosphate layers. 

 

Osteoblastic cytocompatibility  

 

Figure 10A shows the cell viability/proliferation (MTT assay) of PHB and PHBV cements 

seeded with human bone marrow cells, and cultured in conditions that favour osteoblastic 

differentiation [46]. At day 4, osteoblastic cells presented similar values on PMMA (control) and 

on the prepared cements. Cell growth increased with culture time in all materials, except in those 

filled with the borate glass and containing the polymer PHB. However, the various formulations 

presented significant differences regarding the cell growth rate and pattern.  

PMMA showed a low growth rate during the culture time. The best performance was observed 

with the cements filled with silicate glass and containing the polymer PHBV. The highest values 

were achieved with the cements PHBV10Si and PHBV20Si, followed by the cements PHB10Si 

and PHB20Si. Regarding the cements filled with borate glass, the samples containing the polymer 

PHBV (PHBV10B and PHBV20B) presented relatively high cell growth, although lower than that 

observed with the cements filled with the silicate glass. The cements with the polymer PHB 

(PHB10B and PHB20B) exhibited the poorest cell response. Cell growth over PHB10B increased 

until days 7 – 14 and decreased in the last week, but cell behaviour was worse over PHB20B, with 

an impaired cell proliferation from day 7 onwards. 



 134 

 

Figure 10: Cell viability/proliferation (a) and ALP activity (b) of human bone marrow osteoblastic 
cells seeded over the cements for 21 days. *Significantly different from PMMA. 

 

A similar pattern was observed for ALP activity, measured at days 14 and 21, Figure 10B. 

PMMA presented low values and, except for PHB10B and PHB20B, enzyme activity increased 

from days 14 to 21, suggesting an osteoblastic differentiation pathway [47]. Also, the highest 

values were observed for the silicate cements and containing the polymer PHBV. 

CLSM observation of colonized materials, at days 4 and 14, were in agreement with the results 

observed in the MTT assay, Figure 11. At day 4, cells were well attached and spread, displaying a 

flat configuration and a typical morphology (central spherical body with the cytoplasm extending 

away from the central area in all directions and adhering to the material surface), and cell-to-cell 

contact through cytoplasmic extensions. The cements showed a similar appearance, but a higher 

cell number appears to be observed in the cement PHBV10Si. At day 14, the cements containing 

the silicate glass and the PHBV polymer presented the most abundant cell layer, whereas the 

cements with the borate glass and the PHB polymer displayed the poor performance. 
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Figure 11: Representative CLSM images of human bone marrow osteoblastic cells seeded over the 
cements for 4 and 14 days; bar = 400 µm.  

 

SEM observation of the material samples also confirmed this behaviour. Figure 12 shows 

representative images of the cements cultured for 21 days. The cements PHBV10Si and PHBV20Si 

presented an organized cell layer with cell-to-cell contact that successfully adapted to the 

underlying surface. Comparatively, the samples PHB10Si and PHB20Si showed a similar 

appearance, although with a less abundant cell layer. The cements PHBV10B and PHBV20B also 

presented spread cells with an elongated morphology, some cell-to-cell contact, but areas of 

continuous growth were rarely seen. PHB10B and PHB20B exhibited few isolated cells scattered 

over the material surface. 
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Figure 12: Representative SEM images of the cements cultured with human bone marrow 
osteoblastic cells, at day 21.  

 

Thus, the present results showed that the best osteoblastic behaviour was achieved with the 

cements filled with the silicate glass. These results might be related with the good cell response to 

the silicate containing materials, as silicon plays an important role in bone physiology, having a 

positive effect on osteoblasts [48]. The silicate glass has also a low dissolution rate, as shown by 

the WU, WL and SEM assays, which creates a stable surface for cell adhesion and proliferation. 

Comparatively, as referred above, the cements filled with borate glass presented a high dissolution 

rate, as evident by the WU and WL values, creating an unstable surface with very dynamic 

dissolution/deposition events that impairs cell growth. The presence of the polymer PHB or PHBV 

also affected significantly the cell response. In this way, the inclusion of the polymer PHBV greatly 

improved the osteoblastic cytocompatibility, both in the cements filled with the silicate or the 

borate glass, compared to the inclusion of the polymer PHB. In the cements filled with PHB and 

borate glass, in addition to their high degradation rate, the higher amount of residual monomer 

found in these cements, released to the culture medium due to the dissolution events, might also 

contribute to the poor biological performance, because of the known toxicity of the monomer [49]. 

However, in vivo, it is believed that the deleterious effect of ion and monomer release might be 

greatly attenuated, due to the continuous circulation of the body fluids and the resulting clearance 

from the regeneration area, improving the cell response. 
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CONCLUSION 

 

The comparative study of PHB and PHBV-containing cements evidenced the high performance 

of PHBV filler regarding mechanical properties and biocompatibility. Considering the setting 

parameters and comparing with the non-filled PMMA matrix, the behaviour was quite similar for 

both cements, namely a lower peak temperature and a longer setting time, which might represent a 

extended time for bone cement preparation/application during surgical procedure.  

The thermal analysis revealed a decrease in the melting temperature and in the degree of 

crystallization when PHB was added to the cements, probably due to a distortion of the lattice 

caused by the presence of MMA.    

In term of mechanical properties, the incorporation of PHBV led to higher bending strength and 

similar elastic modulus, when compared with PHB filler reaching appropriate values to be used as 

bone cements. The most relevant values of bending strength were obtained for the lower 

biodegradable filler concentration (10 wt.%). The cements filled with PHBV also showed the 

highest weight loss at 21 days and water uptake at 60 days. The formation of a calcium phosphate 

layer was verified for all investigated cements, demonstrating that they are potentially bioactive. 

Finally, the results demonstrated that PHBV-containing cements promoted a more developed 

and well-organized osteoblastic cell layer and achieved higher cell proliferation and ALP activity, 

indicating that the inclusion of this polymer resulted in a better biological response compared to 

that observed on the cements containing PHB. 
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CHAPTER 6 
 
 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES 

 

 

CONCLUSIONS 

 

Acrylic bone cement has emerged as one of the most used synthetic biomaterials in 

contemporary orthopaedics being used in the treatment of bone defects and fixation of implants. 

Although universally used for many years acrylic bone cements are beset with a number of 

drawbacks that limit their performance such as non-bone-bonding capability, relatively low 

mechanical strength, release of unreacted monomer and high curing temperatures. These problems 

can cause serious complications in vivo, such as necrosis of the surrounding tissues and even 

loosening of the implant. 

This thesis was conceived to be a contribution for the development of an improved formulation 

of bone cement, aiming at solving some of the known drawbacks of the conventional bone 

cements, as aforementioned. Our approach to achieve such objectives consisted in developing a 

bioactive bone cement varying the composition of its solid phase, in which the PMMA was 

replaced by bioactive glasses.  

The initial strategy was to produce composites filled with a silicate glass (CSi) and a borate 

glass (CB), by thermal route, and to compare their in vitro performance in acellular and cellular 

media. Both bioactive glasses, added to the formulations, allowed the formation of a calcium 

phosphate layer. This layer is a strong indication that, when in vivo the cement is able to bond 

directly to bone. The bioactive fixation would constitute the main mechanism of adhesion to the 

bone avoiding the appearance of the fibrous tissue layer and preventing the occurrence of micro 

movements. The cellular assessment resulted in a dissimilar behaviour of the composites, in which 

only CSi demonstrated an inductive effect on the proliferation of cells. The results showed that the 

high B and Mg ionic concentration in the cell culture medium inhibited cell proliferation on the 

CB.  

Commercial bone cements are prepared in the operating room and the polymerization of MMA 

occurs at room temperature initiated by a redox system consisting of a peroxide (initiator) and 

tertiary aromatic amines (activator). So, most of the experimental part of the work is based on this 

method of polymerization using the chemical route and producing self cured cements. Practically 

all commercially available formulations of cements use N,N dimethyl-p-toluidine (DMT) as 

activator, which is known to be a potential carcinogen, a chromosome-damaging agent and an 
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inhibitor of protein synthesis. Within this context our choice was to introduce an activator of 

reduced toxicity (4,4-bis-dimethylamino benzydrol) in the cement preparation, in order to obtain 

cured materials with improved biocompatibility. 

The effect of glass content (30, 40 and 50%) and composition of filler (silicate glass or borate 

glass) in self cured cements was assessed. The addition of bioactive glass filler exhibited 

significant improvements in the curing parameters and in the mechanical properties of the cements 

(bending and compressive). These properties are more dependent on the filler concentration than on 

the glass composition. The composition of the glasses was relevant for the osteoblastic cell 

response, since the incorporation of the silicate glass significantly improved osteoblastic 

cytocompatibility, whereas the presence of the borate glass resulted in a poor cell response. 

Nevertheless it was demonstrated that the surviving cells on the B-glass cement surface were in a 

more differentiated stage compared to those growing over the non-filled PMMA.  

Loosening of the cemented prostheses results not only from the failure of the implant and/or the 

bone cement, but also from the inflammatory response of the bone tissue against bone cement 

ingredients. Thus, in a part of this work it was explored the possibility of incorporating ibuprofen 

(anti-inflammatory drug) into the cement, aiming to have a material that shows simultaneously 

controlled drug release and bioactive behaviour. Different amounts of ibuprofen (5, 10 and 20 

wt.%) were loaded in the bioactive bone cement (cement filled with silicate glass, 50 wt%). The 

curing parameters of the bioactive bone cements were improved with the increasing amount of 

ibuprofen leading to a reduction of the peak temperature and an extension of the setting time. It was 

also investigated whether the developed cements had the suitable effect to potentiate the required 

therapeutic action in a real situation. The compositions IB5 showed insufficient daily dose of 

release for the treatment of inflammation. The IB10 and IB20 cements achieved the sufficient 

therapeutic effect for the treatment of inflammation for one week and two weeks, respectively. 

Considering the bioactive bone cement, a significant part of the bioactive glass particles are 

covered with the polymeric PMMA matrix and the contact with the physiological solution is 

absent, i.e. only the particles at the cement surface are accessible, restricting the formation of 

calcium phosphates associated to mineralization. Definitely a much stronger interaction should be 

attained if the bone was induced to grow also inside the cement. This strategy can be achieved with 

the introduction of biodegradable polymers in the bioactive cement formulations, suggesting that 

bone could be stimulated to grow around, as well as into the cement inside the space left by the 

degraded material resulting in a stronger fixation of the prosthesis.  

In the final study conducted in this work the possibility of incorporation of 

polyhydroxyalkanoates (PHB and PHBV) and a bioactive glass into the bone cement, combining a 

biodegradable and a bioactive filler was explored. The results evidenced the high performance of 
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PHBV polymer regarding mechanical properties and biocompatibility. Concerning PHB a 

reduction in its degree of crystallization was verified due to the presence of MMA, which can be 

responsible for the lower mechanical properties and impair cell response. The used polymers have 

different sorption abilities of the monomer because of differences in their particle size. 

Accordingly, PHBV-containing cements promoted a more developed and well-organized 

osteoblastic cell layer and achieved higher cell proliferation and ALP activity. The data herein 

presented demonstrates the potential and versatility of the proposed material for improving the 

cement performance. 

 

  

SUGGESTIONS FOR FUTURE WORK 

 

Despite the extensive in vitro characterization addressed in this thesis, a research work is never 

completed. Thus, it would be beneficial, in our opinion, to concentrate on the following issues in 

future research. 

 Several aspects of the fatigue behaviour of developed cement should be investigated, since the 

bone cement is also subjected to cyclic loading in vivo and its fatigue properties are of great 

importance to experimental testing and clinical performance.  

Porosity is the key feature involved in mechanical failure and damage accumulation. Optimized 

mixing methods such as vacuum-mixing and centrifugation should be tested to evaluate its effect 

on the mechanical properties of bone cements.  

The addition of radiopaque agent to the cement and the evaluation of its effect on the curing 

parameters, mechanical properties, in vitro degradation and biocompatibility of the materials 

should be an interesting focus of study as well. 

The study of the cement as a drug delivery system should be extended to the incorporation of 

antibiotics like vancomicin and gentamicin, which can be used to prevent and treat periprosthetic 

joint infections.  

Finally, in a further stage, in vivo experiments should be performed, which would confirm 

whether the cement has adequate properties for the intended applications. 

 

 

 


