
 

 Universidade de 
Aveiro  
2010/2011 

Departamento de Electrónica, Telecomunicações e 
Informática 

Francisco Xavier dos 
Santos Fonseca 
 

Processamento de Imagens Médicas usando GPU  

GPU Power for Medical Imaging 

 

 

 

   



 

 Universidade de 
Aveiro  
2010/2011 

Departamento de Electrónica, Telecomunicações e 
Informática 

Francisco Xavier dos 
Santos Fonseca 
 
 

Processamento de Imagens Médicas usando GPU  

GPU Power for Medical Imaging 

 

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos 
necessários à obtenção do grau de Mestre em Engenharia  de Computadores e 
Telemática (M.I.E.C.T.), realizada sob a orientação  
científica do professor Doutor José Maria Amaral Fernandes, professor Auxiliar do 
Departamento de Eletrónica, Telecomunicações e Informática  
da Universidade de Aveiro e do Mestre Ilídio Castro Oliveira,  
Assistente Convidado do Departamento de Eletrónica, Telecomunicações e  
Informática da Universidade de Aveiro, tendo a colaboração do professor  
Doutor Guilherme Campos, professor Auxiliar do Departamento de Eletrónica, 
Telecomunicações e Informática da Universidade de Aveiro. 

 



 

  

  

 

 

 

Dedico este trabalho à minha família, a todos os meus amigos que me apoiaram no 
meu percurso académico e a todas as pessoas que, de alguma forma, contribuíram 
para o meu sucesso. 

 

 





 

  
 

 
 
 

 
 

o júri   
 

presidente Professor Doutor Tomás Oliveira e Silva 
professor associado do Departamento de Electrónica, Telecomunicações e Informática da Universidade 
de Aveiro 

  

 
 Professor Doutor Alberto José Proença 

professor catedrático do Departamento de Informática da Universidade do Minho 
  

 
 Professor Doutor José Maria Amaral Fernandes 

professor auxiliar do Departamento de Electrónica, Telecomunicações e Informática da Universidade de 
Aveiro 

  

 
 Mestre Ilídio Castro Oliveira 

assistente convidado do Departamento de Electrónica, Telecomunicações e Informática da Universidade 
de Aveiro 

  
 

  
  
  
  
  

  

 

  

 





 

  

  

 

Agradecimentos / 

Acknowledgements 

 

Professor Doutor José Maria Fernandes, Mestre Ilídio Oliveira, Professor Doutor 

Guilherme Campos, Eduardo Dias. 





 

  
 
 
 
 
 
 
 
 
 
 

  

palavras-chave 

 
Imagem Médica, Paralelismo, GPU, CUDA, SVM, CapView 

 

resumo 
 

 

A aplicação CapView utiliza um algoritmo de classificação baseado em SVM 
(Support Vector Machines) para automatizar a segmentação topográfica de vídeos 
do trato intestinal obtidos por cápsula endoscópica. Este trabalho explora a 
aplicação de processadores gráficos (GPU) para execução paralela desse 
algoritmo. Após uma etapa de otimização da versão sequencial, comparou-se o 
desempenho obtido por duas abordagens: (1) desenvolvimento apenas do código 
do lado do host, com suporte em bibliotecas especializadas para a GPU, e (2) 
desenvolvimento de todo o código, incluindo o que é executado no GPU. Ambas 
permitiram ganhos (speedups) significativos, entre 1,4 e 7 em testes efetuados 
com GPUs individuais de vários modelos. Usando um cluster de 4 GPU do modelo 
de maior capacidade, conseguiu-se, em todos os casos testados, ganhos entre 
26,2 e 27,2 em relação à versão sequencial otimizada. Os métodos desenvolvidos 
foram integrados na aplicação CapView, utilizada em rotina em ambientes 
hospitalares. 
 



 

 
 
 

 
 
 
 
 

  

keywords 

 
Medical Imaging, Parallelism, GPU, CUDA, CapView 

 

abstract 

 
The CapView application uses a classification algorithm based on SVMs (Support 
Vector Machines) for automatic topographic segmentation of gastrointestinal tract 
videos obtained through capsule endoscopy. This work explores the use graphic 
processors (GPUs) to parallelize the segmentation algorithm. After an optimization 
phase of the sequential version, two new approaches were analyzed: (1) 
development of the host code only, with support of specialized libraries for the GPU, 
and (2) development of the host and the device’s code. The two approaches 
caused substantial gains, with speedups between 1.4 and 7 times in tests made 
with several different individual GPUs. In a cluster of 4 GPUs of the most capable 
model, speedups between 26.2 and 27.2 times were achieved, compared to the 
optimized sequential version. The methods developed were integrated in the 
CapView application, used in routine in medical environments. 
 



 i   

Contents

1. Introduction .................................................................................................................. 1 

1.1. Motivation and context ............................................................................................ 2 

1.2. Objectives ................................................................................................................ 2 

1.3. Dissertation structure ............................................................................................... 3 

2. Background ................................................................................................................... 5 

2.1. Medical Imaging: endoscopy .................................................................................. 5 

2.1.1. Conventional Endoscopy .................................................................................. 6 
2.1.2. Endoscopic Capsule ......................................................................................... 6 

2.2. Topographic segmentation of digestive tract ........................................................... 8 

2.2.1. Segmentation methods ..................................................................................... 9 
2.2.2. CapView and the endoscopic capsule ............................................................ 10 

2.3. Graphical Processing Units ....................................................................................11 

2.3.1. Relevance and usage of GPUs ........................................................................11 
2.3.2. GPUs in medical imaging .............................................................................. 12 

2.4. The CUDA architecture ......................................................................................... 13 

3. CapView’s Topographic Segmentation Algorithm ................................................. 17 

3.1. Video Processing ................................................................................................... 18 

3.2. Support Vector Machines in CapView .................................................................. 19 

3.3. CapView SVM classifier ....................................................................................... 22 

3.4. Classification’s Aggregation and Topographic Markers ....................................... 24 

3.4.1. From topographic locations to segmentation ................................................. 24 
3.4.2. Aggregation example ..................................................................................... 25 

3.5. Example of the Execution Flow ............................................................................ 26 

4. Parallelization of the Segmentation Algorithm ....................................................... 29 

4.1. Data Alignment in Memory ................................................................................... 30 

4.2. Amdahl’s Law ....................................................................................................... 31 

4.3. Parallel Code Implementation and Evaluation ...................................................... 34 

4.3.1. CUBLAS Approach ........................................................................................ 35 
4.3.2. Initial Approach .............................................................................................. 37 

4.3.3. Independent Thread Approach ....................................................................... 40 

4.4. Parallelization’s profiling ...................................................................................... 43 

4.5. Multi GPU usage ................................................................................................... 45 

4.6. Comparison with Other Parallel Approaches ........................................................ 48 



 ii 

5. Integration of GPUs in CapView .............................................................................. 51 

5.1. The GUI interaction............................................................................................... 51 

5.2. Evaluation .............................................................................................................. 53 

5.3. Integration issues ................................................................................................... 53 

5.3.1. Multithreaded GPU ........................................................................................ 53 
5.3.2. FFmpeg: the video .......................................................................................... 54 

5.4. Integration Considerations .................................................................................... 54 

6. Conclusions and Future Work .................................................................................. 57 

6.1. Assessment of purposed objectives ....................................................................... 57 

6.2. Future work ........................................................................................................... 59 

7. References ................................................................................................................... 61 

8. Appendix ..................................................................................................................... 67 

 



 iii 

 

 

 

List of Figures

FIGURE 1 BASIC DESIGN - CONTROL HEAD AND BENDING SECTION [23] ............................................................................. 6 
FIGURE 2 WIRELESS ENDOSCOPIC CAPSULE [27] .......................................................................................................... 7 
FIGURE 3 EXAMPLES OF ENDOSCOPIC CAPSULE IMAGES [9] FOR THE FOUR DIFFERENT TOPOGRAPHIC ZONES: (A) ESOPHAGUS, (B) 

STOMACH, (C) SMALL INTESTINE AND (D) LARGE INTESTINE. ................................................................................... 8 
FIGURE 4 IDENTIFICATION OF THE THREE TOPOGRAPHIC BARRIERS [32] ............................................................................. 9 
FIGURE 5 CAPVIEW'S LAYOUT ................................................................................................................................. 10 
FIGURE 6 EXECUTION OF A PROGRAM THAT USES THE HOST AND DEVICE [72] ................................................................... 14 
FIGURE 7 LOGICAL SCHEMA OF A GPU FOLLOWING A CUDA ARCHITECTURE [72] ............................................................. 15 
FIGURE 8 STREAMMING PROCESSOR TOPOLOGY [72] .................................................................................................. 15 
FIGURE 9 ACTIVITIES DIAGRAM OF THE SEQUENTIAL CODE ........................................................................................... 17 
FIGURE 10 VIDEO PROCESSING FLOW CHART ............................................................................................................. 19 
FIGURE 11 SVM CLASSIFICATION – REPRESENTED GRAPHICALLY AS THE BOUNDARY OF SQUARES CLASS. (ADAPTED FROM [83]) . 21 
FIGURE 12 LINEAR SEPARATING HYPERPLANES (ADAPTED FROM [12]) FOR: ..................................................................... 21 
FIGURE 13 TRAINING STAGE OF CAPVIEW'S APPLICATION ............................................................................................. 22 
FIGURE 14 CLASSIFICATION SCHEME ......................................................................................................................... 23 
FIGURE 15 VIDEO EXAMPLE CLASSIFICATIONS ............................................................................................................ 25 
FIGURE 16 TOPOGRAPHIC BARRIERS ESTIMATION ....................................................................................................... 26 
FIGURE 17  DECODED VIDEO FRAME EXAMPLE ........................................................................................................... 27 
FIGURE 18  HISTOGRAM OF VIDEO FRAME EXAMPLE ................................................................................................... 27 
FIGURE 19  NORMALIZED HISTOGRAM ...................................................................................................................... 28 
FIGURE 20 MODEL FILE ......................................................................................................................................... 30 
FIGURE 21 SUPPORT VECTORS STORED IN MEMORY (PER MODEL FILE) ............................................................................. 31 
FIGURE 22 GENERIC PROGRAM'S EXECUTION ............................................................................................................. 32 
FIGURE 23 PROFILING OF CAPVIEW'S SEQUENTIAL CODE ............................................................................................. 33 
FIGURE 24 AMDAHL'S THEORETICAL  LIMITS............................................................................................................... 34 
FIGURE 25  CUBLAS SCALAR VECTOR CALCULATION ..................................................................................................... 36 
FIGURE 26 INITIAL CLASSIFICATION APPROACH SCHEME................................................................................................ 38 
FIGURE 27 INDEPENDENT THREAD APPROACH ............................................................................................................ 40 
FIGURE 28 MEMORY ACCESS BEFORE EFFICIENCY MAXIMIZATION ................................................................................... 41 
FIGURE 29 SUPPORT VECTORS IN A COLUMN MAJOR DISPOSAL ...................................................................................... 42 
FIGURE 30 COALESCED MEMORY ACCESS .................................................................................................................. 42 
FIGURE 31 PROFILING OF CAPVIEW AFTER GPU OPTIMIZATIONS ON THE CLASSIFICATION ................................................... 44 
FIGURE 32 VIDEO SEGMENTS AND N.º GPUS ............................................................................................................ 45 
FIGURE 33  EXECUTION FLOW OF THE PARALLEL CODE IN MULTI-GPU APPROACH ............................................................. 46 
FIGURE 34 PARALLEL CODE'S EXECUTION IN MULTI-GPU MODE ..................................................................................... 47 
FIGURE 35 AVERAGE EXECUTION TIMES PER 100 MB .................................................................................................. 50 
FIGURE 36 INTEGRATION OF PARALLEL IMPLEMENTATION IN CAPVIEW'S APPLICATION ........................................................ 52 
FIGURE 37 TOPOGRAPHIC EVENTS MARKED IN THE MAIN APPLICATION. ........................................................................... 52 

 



 iv 

List of Tables

TABLE 2-1 EXAMPLES OF GPU APPLICATION IN MEDICAL IMAGING ................................................................................ 12 
TABLE 4-1 TEST VIDEOS ......................................................................................................................................... 29 
TABLE 4-2 LM VALUES FOR ALL MODEL FILES .............................................................................................................. 30 
TABLE 4-3 OVERALL SPEEDUP ................................................................................................................................. 31 
TABLE 4-4 MAJOR ACTIVITIES OF CAPVIEW'S EXECUTION............................................................................................. 32 
TABLE 4-5 MAXIMUM THEORETICAL SPEEDUPS FOR MACHINES 1 AND 2 .......................................................................... 34 
TABLE 4-6 SEQUENTIAL REFERENCE VS. CUBLAS APPROACH ....................................................................................... 36 
TABLE 4-7 CUBLAS APPROACH'S OVERALL SPEEDUPS ................................................................................................. 37 
TABLE 4-8 SEQUENTIAL CLASSIFICATION VS. INITIAL APPROACH ..................................................................................... 39 
TABLE 4-9 OVERALL SPEEDUPS, IN THE INITIAL APPROACH ............................................................................................ 39 
TABLE 4-10 SEQUENTIAL CLASSIFICATION VS. INDEPENDENT THREAD APPROACH ............................................................... 42 
TABLE 4-11 OVERALL SPEEDUPS OF THE INDEPENDENT THREAD APPROACH ...................................................................... 43 
TABLE 4-12 PROFILING VALUES AFTER PARALLELIZATION ............................................................................................... 43 
TABLE 4-13 THEORETICAL VALUES FOR MACHINES 1 AND 2 ........................................................................................... 44 
TABLE 4-14 OVERALL EXECUTION TIMES COMPARISON OF HISTOGRAM OPS ..................................................................... 44 
TABLE 4-15 EXECUTION TIMES FOR MULTIPLE GPU USAGE ........................................................................................... 48 
TABLE 4-16 SEQUENTIAL EXECUTION TIMES IN BOTH MACHINES ..................................................................................... 48 
TABLE 4-17 EXECUTION VALUES WITH 1 GPU ........................................................................................................... 48 
TABLE 4-18 EXECUTION VALUES WITH VARIOUS GPUS ................................................................................................ 49 
TABLE 4-19 EXECUTION VALUES IN GRID INFRAESTRUCTURE ......................................................................................... 49 
TABLE 4-20 EXECUTION VALUES IN CLUSTER COMPUTING............................................................................................. 50 
TABLE 5-1 INTEGRATION EVALUATION IN MACHINE 3 ................................................................................................... 53 
TABLE 8-1 SPECIFICATIONS ..................................................................................................................................... 67 



 v  

List of Acronyms 

API Application Programming Interface 

CPU  Central Processing Unit 

GI Gastro Intestinal 

GPU Graphic Processing Unit 

GRID Global Resource Information Database 

HSV Hue, Saturation and Value color system 

MB Mega Byte 

MJPEG Motion JPEG video codec 

PC Personal Computer 

SC Scalable Color 

SM Streaming Multiprocessors 

SP Streaming Processors 

SPMD Single Program Multiple Data 

SVM Support Vector Machine 

WEC Wireless Endoscopic Capsule 

 
  



 vi 

 

 



Gpu Power for Medical Imaging 

 

 1 

1. Introduction 

Medical imaging has become gradually relevant, both in research and in clinic 

applications [1]. Image acquisition, processing and visualization depends on great 

computational resources  [2], but human interaction is still needed most of the times, either for 

data validation [3], interactive tuning [4] or making decisions regarding the presented data [5] 

(either raw or as a result of post processing). The data to treat can be overwhelming, given 

their complexity (e.g. multidimensional data) or volume (long monitoring). One good example 

is capsule-based endoscopy. 

Traditional endoscopy allows gastrointestinal tract observation [6], performed by 

specialized and experienced clinicians. Though, with this method, it is not possible to reach 

certain zones (especially in the small intestine [3]), which are relevant in clinical diagnosis. 

Recently, a video-based system supported by an automated endoscopic capsule enabled the 

visualization of such areas without resort to more invasive methods [7]. The main problem of 

this method it still demands both time and concentration for the clinician to analyze the 

resulting videos (typically more than 6 hours of video). In the analysis clinicians must segment 

the gastrointestinal tract in anatomic zones, in order to look of specific pathologies (like ulcers 

or bleedings) on pathology related zones. For that reason, applications like CapView [8] were 

developed to support a more efficient analysis of the endoscopic capsule data. CapView 

presents an interactive interface that allows the review and classification of the video data. It 

also provides an automated segmentation method for the digestive tract [9]. This segmentation 

provides a quick way for clinicians to navigate directly to areas of interest improving the 



Gpu Power for Medical Imaging 

 2 

clinician’s analysis process [8]. However,  automated segmentation still can take over 1 hour 

[10]. In this context, accelerating the analysis can be an added value in the clinical 

environment as it can reduce the overall endoscopic capsule data analysis time. 

1.1. Motivation and context 

Recently GPUs (Graphical Processing Units) appeared as a solution to support medical 

imaging analysis, an analysis that can deeply profit from graphical card power [11]. GPUs are 

used to perform parallel operations on graphics data (with games and movies as first targets), 

and as a pack of processors, able to execute parallel computations on sets of data 

simultaneously, they are increasingly being adapted to general purpose applications [12]. As 

almost every computer has at least one GPU, it seems natural to explore GPUs as an option to 

improve the efficiency of the automated segmentation in CapView application. 

However, to be able to extract the most of GPU architectures, different problems may 

imply different algorithmic approaches [13]. From the start, it may not be clear which GPUs 

related customizations should be used and be able to predict the overall impact of them in 

terms of specific runtime requirements (on the clarity or obfuscation of original algorithms) 

that may be crucial when having portability and extendibility in mind.  

1.2. Objectives 

The objective of this dissertation is to assess the applicability of GPUs to a specific 

medical imaging problem: automated segmentation of the digestive track in CapView. Our 

main purpose is to optimize the segmentation algorithm in CapView through the use of GPUs. 

We investigated in detail the contributions that GPUs of different models (specifications in 

appendix 0) can offer in terms of computational speedup. The results of that analysis were 

measured in several equipments, with different costs.  

To fulfill our objectives we addressed three concrete questions: 

 Is it worth applying the GPUs parallelization to this algorithm?  

o For answering this, we will analyze the sequential algorithm, in order to 

see where relevant speedups can be achieved. 

 How can the algorithm optimization occur while preserving the algorithm 



Gpu Power for Medical Imaging 

 3  

integrity?  

o We will analyze the sequential algorithm for the purpose of assessing the 

best way to take advantage of GPUs without compromising the 

algorithm’s correctness.  

 How does the GPU implementation compare with other advanced computing 

solutions?  

o We will present a comparison between the GPU based solution and 

previously developed algorithms (for cluster and Grid computing). 

1.3. Dissertation structure 

Here is a summary of the following chapters:  

 Chapter 2 - Background: gives a quick overview of medical imaging in 

endoscopic applications, and briefly presents CapView’s automatic 

segmentation tool. A review on GPUs and their achievements in medical 

imaging is also presented. 

 Chapter 3 – CapView’s Topographical Segmentation Code: discusses the 

pre-existing sequential segmentation code of CapView’s application, the basis 

of the optimization and parallelization work. The methods for image 

classification and topographic barrier definition are described. Examples of 

execution behaviors are also given. 

 Chapter 4 - Parallelization: presents different parallelization approaches for 

CapView’s automatic segmentation tool and describes the optimization work 

carried out prior to parallelization. The maximum theoretical speedup is 

estimated based on Amdahl’s law. The application of multiple GPUs is explored 

and the various solutions are compared in terms of computation time.  

 Chapter 5 - Integration of GPUs in CapView: describes the process of 

integration of the CapView GPU parallel version into CapView’s initial 

application. The integration process is described, and commented on. 

 Chapter 6 - Conclusions and Future Work: summarizes and compares the 



Gpu Power for Medical Imaging 

 4 

outcome of the various parallelization approaches, and discusses the viability of 

some ideas.  

 



Gpu Power for Medical Imaging 

 5  

2. Background 

2.1. Medical Imaging: endoscopy 

Digital medical imaging is a challenging area, requiring constant development and 

innovation in computational techniques [2]. Numerous examples are available, such as 

sophisticated algorithms for image registration [14], image segmentation [5] (for automatic 

identification of regions or objects) or simply image enhancement [15] for noise reduction 

(very important in medical imaging). Visualization of medical data is a field that grew rapidly, 

with the appearance of new display devices [16] (capable of showing 3D data) and the drive to 

represent increasingly complex data [17]. For instance, segmentation has tremendous 

importance in the medical field, since it can be used, among other things, to automatically 

identify desired objects in a given image (for instance the segmentation of the heart’s chambers 

in echocardiography [18] or abdominal CT segmentation [19]). 

A good case study in medical imaging is the Gastroenterology field, a medical field that 

diagnoses and treats gastric diseases. Endoscopy is now the standard method for diagnostics 

and therapeutic treatment in this field since the early trials in the late fifties [20]. Currently the 

traditional tool is the fiberoptic gastroscope [6] that is capable of examine inner  organs and 

hidden cavities [21], a procedure that was not possible through using older rigid endoscopes. 

The main drawback is that is not possible to track the actual position of the camera, or field of 

view, during the exam[22] and, by consequence, is difficult to map observed images to the 

location in GI tract.  



Gpu Power for Medical Imaging 

 6 

2.1.1. Conventional Endoscopy 

Despite the variety of endoscopes available most follow a basic design, as illustrated in 

Figure 1. The endoscope tube is conducted through the GI (Gastro Intestinal) tract and bends 

the tip of the tube for a better perception of hidden cavities (such as duodenum). The light in 

the extremity and the imaging system (that displays the images in an external monitor) makes 

it possible to see, in real time and with precision, the conditions of inner organs.  

 

Figure 1 Basic design - control head and bending section [23] 

Furthermore, it has suction capabilities that may be used in localized treatment of 

pathologies (such as bleedings), which makes it a preferred method for direct intervention, 

compared to more invasive methods like surgery [24]. Endoscopy can be used in the detection 

of gastric ulcers, detection of cancer (that can be located from the esophagus to the duodenum, 

as well as colon cancer) or even performing biopsies. Unfortunately, endoscopy is still 

considered an invasive technique, so it suffers of  all risks associated with invasive procedures  

namely complications related to sedation [25].  

2.1.2. Endoscopic Capsule 

The endoscopic capsule is the first solution to film the full human gastrointestinal tract in 

an autonomous way [26]. Endoscopic capsule enabled the production of images in all of the 

small intestine’s length (around  6 meters long), being able to reach places that traditional 



Gpu Power for Medical Imaging 

 7  

endoscopy can’t [3] with the added value of being painless and with reduced complications 

[21].  

 

Figure 2 Wireless Endoscopic Capsule [27] 

The endoscopy through a wireless capsule consists in [9]: 

 The capsule itself (Figure 2): Plastic capsule with a weight of 3.7 g and 11 mm in 

diameter x 26 mm in length. Contains a chip responsible for producing images, a 

focal lens, lights for illumination, a radio transmitter antenna and a battery; 

 Antenna: An external antenna, responsible for receiving the images produced by 

the capsule; 

 Hard Drive: A portable hard drive for video storage, placed in the patient’s belt; 

 Power supply: Located in the belt of the patient and used to power the hard drive 

and the antenna; 

After the exam is completed [28], the hard drive is connected to the workstation (a 

computer capable of analyzing the video, with proprietary software) and the produced video is 

uploaded and analyzed by the medical specialist. 

In the specific WEC (Wireless Endoscopic Capsule) used, the resulting video contains 

color images of 256 x 256 pixels, recorded at 2 frames per second. Since the capsule is not 

self-propelled or controlled externally, it moves along the GI tract through peristalsis (natural 

movements of the digestive tract organs) [3]. This results in video lengths typically between 6 

and 8 hours [29]  (assuming enough capsule battery charge). The images annotated during the 

exams are similar to those presented in Figure 3, taken in each of the four topographic zones 

(a: esophagus; b: stomach; c: small intestine; d: large intestine).  



Gpu Power for Medical Imaging 

 8 

One of the most inconvenient aspects of this technology is the video length. That takes 

medical specialists at least 1 hour in the video analysis [30] to search for unusual situations. In 

average there are over 50 000 video frames (similar to those illustrated in Figure 3) per exam. 

The clinical analysis consists in searching of known pathologies like gastric ulcers, bleedings 

or even masses that may be cancers related.  

 

Figure 3 Examples of endoscopic capsule images [9] for the four different topographic zones: (a) esophagus, (b) 

stomach, (c) small intestine and (d) large intestine. 

This analysis is the most time consuming and expensive part of clinical process given the 

large amount of time spent in a single exam, (which must, of course, be multiplied by the total 

number of exams reviewed by an expert and expert cost per hour fee). 

2.2. Topographic segmentation of digestive tract  

As an important and complex structure composed by a set of organs, the human digestive 

system can be segmented in different parts or areas [31], depending on the purpose of 

segmentation (e.g. target pathologies).  



Gpu Power for Medical Imaging 

 9  

2.2.1. Segmentation methods 

The most relevant topographic segmentation for endoscopy is performed by dividing the 

digestive tract by zones, commonly separated by entrances or valves that distinctly divide the 

purpose or function of each zone [31]:  

 

Figure 4 Identification of the three topographic barriers [32] 

It focuses on the path taken by the food and disregards the surrounding organs, dividing 

the digestive tract into four major distinct and relevant zones to endoscopy exams: 

 Zone 1, Esophagus: Between the entrance (mouth) and the Eso-gastric junction. 

The number 1 mark the transition from the esophagus to the stomach; 

 Zone 2, Stomach: Between the Eso gastric junction and the pylorus. The number 2 

mark the transition from the stomach to the small intestine; 

 Zone 3, Small Intestine: Between the pylorus and the Ileocecal valve. The number 

3 mark the transition from the small intestine to the large intestine; 

 Zone 4, Large Intestine: Between the Ileocecal valve and the anus; 

By segmenting in this way, if a certain zone is required for further analysis, the others will 

be withdrawn. 



Gpu Power for Medical Imaging 

 10 

2.2.2. CapView and the endoscopic capsule  

The CapView application [8] objective was to support medical specialists in the analysis 

of endoscopic capsule exams to reduce the long annotation times. There are some tools 

available for endoscopic capsule data analysis such as CapView or Rapid Software [33], but 

since CapView is a product developed in the University of Aveiro, it was the elected tool. 

CapView’s major contribution was  a multi-functional software also named CapView (from 

now on CapView will refer to this software when not explicit stated otherwise) capable of 

reviewing and creating reports about endoscopic capsule exams is the management facilities of 

capsule exams that were made through the years [9]. With CapView, medical specialists are 

now able to label video frames with specific comments which, in case of being marked as 

important, are added to a final report, as well as small videos related to those stored comments. 

The layout of CapView’s tool is shown in Figure 5, where the video is displayed in a sequence 

of images, and a global search can be conducted. 

 

Figure 5 CapView's Layout 

Another interesting contribution of CapView is the imposition of a controlled vocabulary 

system that is placed in the reports, which is a plus, given the different annotation 

nomenclatures that can be used by different medical specialists. Those annotations made by 

CapView are performed by automatic algorithms, created to detect specific pathologies.  

CapView is also used to automatically annotate the video for the medical specialist, being 

capable of estimating the total transit time of the capsule and marking the detected events with 

the respective topographic zones. 



Gpu Power for Medical Imaging 

 11  

Many other features are supported by CapView [8], such as global search, backup of the 

exam into server and segmentation tools [34]. In CapView is also possible to add detection 

algorithms capable of identifying other pathologies, which makes it an extensible tool. 

One of the most important features of CapView is the topographic segmentation of the 

gastrointestinal tract (given the need to assign the detected events to a topographic zone), a 

process that takes about 15 minutes to the medical specialist if performed manually [9]. Given 

its importance in CapView, and for this work, further details about its implementation will be 

given in chapter 0.  

2.3. Graphical Processing Units 

Almost every computer has at least one GPU (Graphical Processing Unit), a specialized 

processor capable of manipulating three dimensional scenes. A scene is partitioned into 

triangles and a pack of images, which provides the texture (surface) for each triangle (made 

with specialized hardware [35]). GPUs were initially thought mainly to support graphics 

operations in computers namely in graphics and multimedia display (e.g. games and movies) 

but are starting to be more popular in performing more specific computing intensive parallel 

operations on data as they have the capability of being used for general computations [36] 

(other computations than those with multimedia or gamming purposes) as a parallel co-

processor. 

2.3.1. Relevance and usage of GPUs 

By design, GPUs are well suited to apply the same algorithm to several datasets at the 

same time [37] – the SPMD (Single Program Multiple Data) parallel paradigm [38]. Image 

processing is a good example that is well illustrated by the computer intensive graphics present 

in games or multimedia applications. 

Despite that fact, GPUs have been used mainly for graphical processing. Step by step, 

high skilled programmers matured the usage of a new parallel programming to support SPMD 

applications in GPUs, thus being able to scale the parallel execution code to as many 

processors as needed. As a result of that process, new programming languages (e.g. OpenCL 

[39] or CUDA Fortran [40]), APIs (e.g. Direct Compute or NVAPI [40]), standards (e.g. 

OpenGL [41]), tools (e.g. CG toolkit [40]) and architectures (e.g. AMD Stream [42] or 



Gpu Power for Medical Imaging 

 12 

NVIDIA CUDA [43]) started to make the parallel programming and usage of GPUs more 

accessible to all programmers. This proliferation of GPU’s usage was most welcome especially 

inside scientific community, which has a tremendous scope of generic and heavy processing 

problems to solve in an achievable time. A great number of such processing problems presents 

rich amount of data parallelism, which is a property that allows the performance of many 

arithmetic operations on data structures at the same time (some scopes may be atmospheric 

science [44], networking [45] or molecular modeling [46]). The medical imaging, and 

CapView in particular case, also fit the SPMD scenario as it involves applying the same 

processing algorithm in different frames in video. 

2.3.2. GPUs in medical imaging  

Medical imaging is one of the earliest applications for GPUs and where their impact was 

most felt namely in their adoption in commercial medical imaging equipment [47]. The GPUs 

seem to fit well the medical imaging requirements namely in data acquisition, image 

processing or visualization [48]). 

First, a great number of algorithms in medical imaging have fewer or no dependencies 

between operations or between the datasets to treat, thus being easily executed by GPUs (such 

common operations may be filtering [49], projection [50], interpolation [51] or blending [52]). 

There are several applications of GPUs in medical imaging, from rendering shaders (the first 

flexible shader [53], volume reconstruction [54] or Programmable shader introduced [55]) to 

volume rendering (tomographic reconstruction [56]). This is clear when observing the 

substantial number of new developments every year in the field illustrated by some examples 

described in Table 2-1 (and available for consult in the following web site: 

http://www.gpucomputing.net/?q=node/55). 

Workflow stage Applications 

Data Acquisition CT [57] MRI [58] PET [59] 

Image Processing Segmentation [60] CT Registration [61] Data assessm. [62] 

Visualization Enhanced Visualization [63] Simulation [64] Augmented Reality [65] 

Table 2-1 Examples of GPU application in Medical Imaging 

http://www.gpucomputing.net/?q=node/55


Gpu Power for Medical Imaging 

 13  

The endoscopy field is no exception and it has been reported new findings regarding GPU 

application (such as virtual endoscopy system algorithms [66] or volume rendering in sinus 

endoscopy [67]).  

2.4. The CUDA architecture 

The chosen GPU architecture for this work was the CUDA architecture (Compute Unified 

Device Architecture) from NVIDIA. Three reasons for such choice are: 

 There is already a great amount of scientific work for CUDA (that can be 

consulted in http://www.gpucomputing.net/?q=og), as a result of an architecture 

(and free tools to use it [40]) that is available for anyone; 

 CUDA-enabled computing resources were already available and at hand in our lab 

(appendix 0); 

 CUDA API provides the required abstractions to pursue the objective of assess the 

use of GPU in endoscopic video analysis; 

As the CUDA architecture is not universal, NVIDIA maintains a list of all GPUs CUDA 

enabled online [68]. For development, besides the NVIDIA toolkits installed, the CUDA 

software development kit (SDK) is also recommendable as it has has considerable number of 

useful examples.  

The CUDA basic system architecture is composed by two parts, which are the host and the 

device. The host is the CPU (such as the microprocessors from Intel or AMD vendors) or the 

system that holds the GPU device composed by one or more GPUs processors. CUDA 

architecture follows the SPMD parallel paradigm [69]. For benefiting the most from the GPUs, 

the data parallel should be mainly executed using the GPUs, delegating the sequential phases 

of a given program to be executed in the host.  

The NVIDIA CUDA solution uses the NVCC compiler [70]. As a programming language, 

CUDA C is an option where two different flavors exist for the host (ANSI C [71]) and for the 

code executed in the GPUs defined as ANSI C functions (called kernel functions) that using 

extends specific CUDA extensions and keywords [40]. The kernel functions (or simply 

kernels) can generate thousands of threads in each execution, and rely on GPUs hardware for 

optimized execution namely in the thread generation in few clock cycles, in contrast with CPU 

threads that requires thousands of clock cycles to generate and schedule them [72]. The typical 

http://www.gpucomputing.net/?q=og


Gpu Power for Medical Imaging 

 14 

execution of a CUDA program starts with the execution of one thread in the host. At the 

beginning of the execution of a kernel function, a specific number of blocks and threads are 

defined (respectively nBlk and nTid in Figure 6). nTid means the number of threads forming 

each block (represented by the small boxes depicted in the Figure 6), and nBlk is the number 

of blocks per grid (represented by the large box), with each grid being composed by blocks of 

threads. At the end of kernel execution, program execution returns to the host. 

 

Figure 6 Execution of a program that uses the host and device [72] 

A possible CUDA GPU architecture is organized into SMs (streaming multiprocessors), 

and each SM contains SPs (streaming processors) (as shown in Figure 7). These numbers of 

SMs and SPs are not fixed and will most likely vary from a generation of GPUs to another. 

The threads running inside the grid are launched in the execution of a kernel and are 

assigned to the SMs. In the GPU example presented in Figure 7, up to eight blocks of threads 

can be assigned to a SM [13] (16 SMs in Figure 7, each SM with 8 SPs). When a SM finishes 

the execution of a block, the GPU architecture assigns a new block to be processed, thus 

enabling a GPU to process any number of blocks. This, along with the transparent scalability 

of CUDA architecture for the programmer, allows the execution of the same program in 

different GPUs (with different resource implementations).  

Each SM as a limited number of threads that is able to run at once. For instance, NVIDIA 

“G80” GPU series (which is one of the lowest series of GPUs, in terms of hardware resources) 

supports the simultaneous execution of up to 768 threads per SM. With this limit per SM, the 

total number of threads that the architecture presented in Figure 7 is able to run can be found: 

              threads (with 16 as the number of SMs). This means that kernel function 

can be executed by over 12 000 threads.  



Gpu Power for Medical Imaging 

 15  

 

Figure 7 Logical schema of a GPU following a CUDA architecture [72] 

The memory model in CUDA (depicted in Figure 8)  assumes that both host and device 

have distinct memory spaces, which means that a manipulation of memory is mandatory 

(allocation and transition of data to/from device memory), prior and after to the kernel 

execution. This host to GPU data exchange is supported through the global memory of the 

GPU. The host interacts with the global memory of GPU, which is a memory that the GPU has 

available for interaction with CPU. Global memory is used to put values for processing, and it 

is used to retrieve the calculated values to the host, once computed by the GPU. Figure 8 

illustrates, not only the communication relationship between host and device, but also the 

different types of memories that a GPU possesses. 

 

Figure 8 Streamming Processor topology [72]  



Gpu Power for Medical Imaging 

 16 

As global memory is much slower, the shared memory, registers, constant memory inside 

the GPUs should be used in the calculations for a higher efficiency in the kernel’s computation. 

If this is not taken into account by the programmer, the resultant application will not have an 

efficient execution under the GPUs and it can even have degradation in the overall execution 

times compared to the sequential version [73]. 

A more complete detailed description of the CUDA architecture can be found [13] and 

practical examples are available online [40]. 



Gpu Power for Medical Imaging 

 17  

3. CapView’s Topographic 

Segmentation Algorithm 

The implementation of CapView’s topographic segmentation algorithm can be split into 

several phases depicted as activities in the diagram of Figure 9: 

 

Figure 9 Activities Diagram of the Sequential Code 



Gpu Power for Medical Imaging 

 18 

The algorithm is divided into pre-processing and processing phases. The classification 

results are stored in a file for further processing (aggregation of classification results and 

attribution of topographic markers). 

3.1. Video Processing 

Prior to any video processing and classification tasks, at the beginning of the execution it 

is necessary to load into memory some pre-existing data, namely the classification models and 

some video information. 

The video preprocessing consists in opening the video of the endoscopic exams and 

setting up the necessary data structures for handling decoded frames. To accomplish those 

activities, the pre-existing CapView sequential code (or simply, CapView) uses a few libraries 

from the FFmpeg project[74]. These libraries are capable of recording, converting (between 

formats or color spaces) and streaming, as well as encoding / decoding data under many media 

formats (both in audio and video).  

All the video processing stages are performed for each individual frame (Figure 9). For an 

exam of 6 hours, more than 43 000 frames would be processed. The video processing phase 

consists in decoding the video frame, getting the SC (Scalable Color) descriptors for the 

decoded image according to the MPEG-7 Scalable Color standard [75], and performing the 

classification. To obtain scalable color descriptors from the image to be tested, intermediary 

steps must be performed: 

 The image color space must be converted to the HSV (Hue, Saturation and Value) 

color space. MPEG-7 SC standard states that the color histogram is extracted in 

HSV color space (H quantized to 16 bins, S and V quantized to 4 bins).  

  Normalization of the SC histogram; 

To improve performance, CapView skips the encoding part of the SC histogram with Haar 

transformation [9], as it is not mandatory. The video processing phase is described in Figure 

10. At step 1, the video frame is decoded, i.e. converted from MJPEG-encoded video frame to 

a raw image in the YCbCr color space. In step 2, to ease the conversion process from YCbCr to 

HSV color space, a conversion from YCbCr to RGB is carried out. 



Gpu Power for Medical Imaging 

 19  

 

Figure 10 Video Processing Flow chart 

It is in step 3 that the SC histogram is calculated. After the conversion from the RGB color 

space to HSV color space, for each HSV value of the image (which is a 256 x 256 pixel 

image), the following formula is applied: 

  
 

  
   

 

 
                                                                   

The image histogram is the histogram of the L values obtained by the equation above. A 

normalization [76] of the histogram is performed, greatly reducing the amplitude values in the 

histogram bins  and thus obtaining a SC histogram that represents the color pixels distribution 

of the [H S V] values, which will be a 256 bin histogram. The classification process is 

performed with SVM’s over L, a method that will be described. 

3.2. Support Vector Machines in CapView  

CapView’s segmentation algorithm is supported on a classification stage that is 

implemented using SVMs (Support Vector Machines). Thus, in order to be able to understand 

the algorithm we must understand the basic concepts of SVMs and their implementation. 



Gpu Power for Medical Imaging 

 20 

SVMs [77] are commonly applied on instantiations of generic classes of problems, namely 

pattern recognition, regression estimation or linear operator inversion. Good examples are 

handwritten digit recognition [77], object recognition [78], speaker identification [79], face 

detection in images [80] or text categorization [81], among many others [82]. 

The traditional classification solution with SVMs implies a two-stage approach: a training 

stage to model the classification based on already classified input data and a test stage where 

the models are applied to classify given inputs.  

At the training stage, the data already classified will be used to train the SVM models that 

describe the different types of possible groups that new incoming images may fit. The test 

stage will evaluate unknown data (new images) against those models created in the previous 

stage, and it will assign a classification to the tested data, deciding to which model it belongs 

to. 

In SVM, the training stage consists in trying to find a n-dimensional space where it is 

possible to split the different groups represented on the data by hyperplanes. When the best 

hyperplane is found, it is possible to quickly map any input data into a given category (to either 

side of the hyperplane) through the respective mathematical expression that encodes the n-

dimensional transformation and the position in relation to the plane. Such mapping occurs by 

calculating the distance between the input data and the created hyperplane, and it is typically 

the signal of that distance that dictates the classification (as illustrated in Figure 11). 

Depending on the methods used and on the used SVM model, this model can be linear or non-

linear. The optimal hyperplane (that better splits the two classes) is found when the margin 

distance (between the two classes) is maximized (thus maximizing the accuracy of the 

classification). The process of finding the optimal hyperplane is iterative. 



Gpu Power for Medical Imaging 

 21  

 

Figure 11 SVM classification – represented graphically as the boundary of squares class. (adapted from [83]) 

Figure 11 shows the original data (A) that is projected into a higher dimension where is 

possible to find a plane that splits both classes (B); Having found this plane (B) it is possible to 

project back this plane into lower dimension and classify the data in the original dimension 

(C). The mechanism that guides the parameterization for each iteration (e.g. margin, window, 

dimension, error tolerance), and the establishment of the stop conditions for the process (i.e. a 

optimal solution found or max number of iterations reached), are outside the scope of this 

dissertation and details can be found elsewhere [84].  

 

Figure 12 Linear separating Hyperplanes (adapted from [12]) for:  

A) separable clase and B) non-separable case. 

H1 and H2 (Figure 12) are two parallel hyperplanes that divide the two classes, without 

either one of the training points being between them. H1 and H2 are defined in each iteration, 

with each one representing the shortest distance between a hyperplane and each one of the 



Gpu Power for Medical Imaging 

 22 

classes. The most likely candidate to be the optimal hyperplane is gradually placed between 

them (being equally parallel and at the same distance from both hyperplanes). The training 

points pictured with a circle around them are the support vectors that define the computed 

hyperplane. If any of them got removed, the candidate hyperplane could not be equal to the 

previously defined. Given such property, such training points constitute the support vectors for 

that hyperplane. 

3.3. CapView SVM classifier  

CapView’s SVM models [9]  are supported on a polynomial inhomogeneous kernel [85] 

(which was applied in both training and test phases), since its ratio of classification errors and 

performance is better, compared to other evaluated kernels. For performing the topographic 

segmentation, CapView considers four classes, each one describing a distinct topographic 

zone. Analogously to the cases where only two classes are considered, a specific SVM model 

was obtained for each of the 4 distinct areas: 

 

Figure 13 Training stage of CapView's Application 

The immediate implication of that is the mandatory consideration of all 4 models for the 

classification computation. When the calculated descriptor is positive, the image to be 

classified is considered to be in the zone associated with the respective SVM model, or not, in 

case its value is negative. To obtain the final classification we must evaluate each of these four 

descriptor values (     ,      ,       and       as in Figure 14). This combination is 

obtained by selecting the model that presents the highest descriptor value that will attribute the 



Gpu Power for Medical Imaging 

 23  

final classification to the test subject. That, in turn, will be the final classification 

corresponding to the test subject’s topographic zone. Normally, only one of the descriptors is 

positive, because the test subject can only belong to one class (representing a zone). 

 

Figure 14 Classification scheme 

 In fact, the descriptors mentioned earlier are calculated based on the distance between the 

test subject (z) and each zone statistic descriptors (file models). This distance is calculated by 

finding the signal of             equation [86], or simply, finding in which side of the 

hyperplane the test subject belongs to. 

 Due to the use of the polynomial inhomogeneous kernel in the training process, the 

distance calculation is then calculated for each model file with: 

                               

  

   

  (3.2) 

Where                is the Kernel responsible for the inner product calculation 

(between test subject and every training point inside model files),       are the weights (or the 

relevance) of the training points       and    the threshold. 

Such calculation produces four values (     ,      ,       and      , in Figure 14), 

which represents the four intermediary classifications for each class referred earlier (one class 

for each zone description). 



Gpu Power for Medical Imaging 

 24 

3.4. Classification’s Aggregation and Topographic Markers 

The classification algorithm is applied in each individual frame, more precisely to the 

video frame SC histogram that, in the process,  is mapped to a specific  topographical location 

(  ), using a numerical code described in [9]: 

       

 
 
 

 
                                               

                                                 

                                            

                                           

  

3.4.1. From topographic locations to segmentation 

To obtain a segmentation of the digestive tract, from the individual frame topographic 

location, a further step consisting in an aggregation must be done. This aggregation estimates 

the location of all barriers that divides the four topographic zones: 

 Barrier    : Divide zone 1 (Esophagus) and zone 2 (Stomach); 

 Barrier     Divide zone 2 (Stomach) and zone 3 (Small Intestine); 

 Barrier    : Divide zone 3 (Small Intestine) and zone 4 (Large Intestine); 

The aggregation process estimates the barrier positions based on both the individual frame 

classifications and on temporal distributions of each zone, based on the analysis of several 

exams as described in [9]. In this paper produced by J.P. Cunha, et al., charts with temporal 

positions (regarding the classifications distribution probability through time) for each 

topographic zone are presented. Besides the characterization of the temporal distribution, those 

charts allow the establishment of maximum ranges, which dictate where the transition from a 

zone   to a zone   has to occur. 

As a result, for every barrier that needs to be found, the search scope for that barrier is 

limited (i.e. it must occur between a concise range of frames). After that delimitation, the 

barrier     (marking the transition between zone   and zone  ) is found in the index where the 

   value is the lowest. In that process, formula (3.3) is used:  

                         

 

   

                                                   

For every    ,        and        are: 



Gpu Power for Medical Imaging 

 25  

    
                    

                               
      

                    
                              

  

Being       , the topographical classification of the frame   .  

The    value varies with the consideration of errors        and        for each frame   , 

being the lowest value of TE that marks the position of the barrier    . The initialization of    

is relevant, and an example will be provided in the following section to better explain the 

overall process of finding the topographic barriers.   

3.4.2. Aggregation example 

To demonstrate how the topographic barriers are found, the following example will be 

given. In spite of being a simple example, it is closely similar to what actually happens in 

CapView’s application. Figure 15 illustrates possible classifications of a 25 frames video, 

represented as a row major array: 

 

Figure 15 Video Example Classifications 

After calculating the frame’s classification of the video example (performed by CapView 

and presented in A of Figure 15), the maximum ranges to be considered, were illustrated with 

different colors in picture B) of the same figure. Those maximum ranges are merely 

illustrative, but the maximum ranges that CapView’s sequential code uses are based on the 

probabilities discussed in the paper mentioned above. Such ranges mean that: 

 Zone 2 have to begin between the first frame and frame 10; 

 Zone 3 have to begin between frame 11 and frame 15; 

 Zone 4 have to begin between frame 16 and the end; 



Gpu Power for Medical Imaging 

 26 

Before the computation of the barriers using the equation (3.3), the initial value of    

(representing the initial error) must be set up. This initialization is done by counting, in each 

maximum range (where the barrier     needs to occur), the number of classifications different 

from y: 

 

Figure 16 Topographic Barriers Estimation 

Figure 16 shows the variations that    receives after the evaluation of the errors 1 and 2 

for each maximum range (column two and three of each table, respectively), as well as TE 

initial value for each barrier.  Therefore, the minimum values that    ever had (for each case), 

which are marked with a different color, dictates the position where each barrier will be placed 

(     in frame 5,     in frame 12 and     in frame 19). 

3.5. Example of the Execution Flow 

In this section we will illustrate the steps of CapView’s segmentation algorithm over a 

frame example (Figure 17). The video processing stage represents the core of CapView’s 

algorithm (as depicted in Figure 10), and so, this example will emphasize its stages. Like in 

the following example, the process starts with individual decoded video frame, obtained from a 

capsule endoscopy exam: 



Gpu Power for Medical Imaging 

 27  

 

Figure 17  Decoded Video Frame example 

Figure 17 is a decoded frame in the YCbCr color space, and the image conversion 

between color spaces (from YCbCr to RGB) is the next step. As the decoding and color space 

conversion are steps made at the data representation level, the resulting frame is not visually 

different from Figure 17. After that, the calculation of the Scalable Color histogram needs to 

be done. This requires the calculation of the histogram of the L values obtained by the equation 

3.1, with the result being shown in Figure 18 for the given image: 

 

Figure 18  Histogram of Video Frame example 

As can be observed in the histogram above, the image has a great amount of black color, 

along with other sparse values that represent the distribution of specific colors. As can be 

observed, this histogram is sparse and presents values with disparate values (e.g. high values 

and values that can barely be seen in the histogram). Using a normalization process, this fact 

can be corrected (small values enhancement and high values reduction, as illustrated in Figure 

19). The following histogram corresponds to the SC histogram, or color descriptor of the given 

image (according to MPEG-7 Scalable Color standard): 



Gpu Power for Medical Imaging 

 28 

 

Figure 19  Normalized histogram 

At this point, the classification of the given image can be performed by using the 

calculated SC histogram and the model files. Performing the classification illustrated in Figure 

14, the values obtained for the letters      ,      ,       and        of the given image are: 

                

                   

                 

                 

These values represent an SVM classification for each model file. In this example, the 

letter      , calculated by the model file number 2, presents the higher value, which means the 

model file number 2 is the one describing the zone belonging to the given image (i.e. the 

stomach).  

According to the values representing the topographic locations (defined at the beginning 

of the previous section, as      ), the classification of the given image will be    , because 

            . 



Gpu Power for Medical Imaging 

 29  

4. Parallelization of the Segmentation 

Algorithm 

In this chapter, different GPU parallelization approaches of CapView’s segmentation 

algorithm will be explored. Some pre-parallel optimizations were carried out, thus enhancing 

the code’s efficiency and avoiding unnecessary parallelization efforts. In addition to those 

parallelization approaches, the usage of multiple GPUs will be explored for the best algorithm 

developed. At the end, the results of these experiences will be confronted with other existing 

advanced computing solutions, such as Grid computing [87] and cluster computing [88]. 

From this point onwards when performing execution time measurements, we will use 

three examples of WEC videos produced in clinical routine, as presented in Table 4-1 (values 

in hh:mm:ss: hours, minutes and seconds respectively): 

Video  Length Size (MB) Number of Frames Size per image Codec Frequency 

1 02:56:00 205 21204 

256 x 256 pixels MJPEG 2 fps 2 06:30:00 409 46913 

3 08:07:00 610 58467 

Table 4-1 Test Videos 

We selected 3 videos with different lengths to investigate the effect of size in overall 

execution times. Video 1 in the shortest; Video 2 is of normal length (between 41000 and 

55000 frames); Video 3 is the longest. All times from now on is the average of 5 runs (except 

when stated otherwise). 



Gpu Power for Medical Imaging 

 30 

4.1. Data Alignment in Memory 

Before attempting to parallelize a given algorithm, it is good practice to try and optimize 

its sequential implementation, as any inefficiency would be magnified as a parallel 

operation[89]. To observe this rule, the initial task consisted in a detailed analysis of the 

sequential CapView segmentation code (or simply, CapView, for now on) currently in use 

(described in the previous chapter). 

The main outcome was a more efficient memory access: 

 Data storage structures were re-organized so that operations could involve only the 

data strictly necessary for classification; 

 This data was stored in contiguous memory locations; 

Each model file is represented by an    amount of     256-element vectors, as illustrated 

in Figure 20. Each    has a coefficient    (explained in equation 3.2). 

 

Figure 20 Model File 

The    values are defined in Table 4-2: 

Model Files    

1 830 

2 8441 

3 17481 

4 13816 

Table 4-2 Lm values for all model files 

This mandatory information, presented in each model file, was being stored in several data 

structures. Those data structures were stored non-contiguously in memory, which reduced 

access efficiency. There was a substantial latency in the memory accesses, since 256 memory 

accesses were needed for complete retrieval of each    vector.  



Gpu Power for Medical Imaging 

 31  

One way of avoiding this amount of memory access latency was to rearrange the data in a 

contiguous way, thus retrieving every needed     vector with only one memory access. For 

example, the Figure 21 shows how the support vectors for a single model file became stored, 

with this new data alignment: 

 

Figure 21 Support vectors stored in memory (per model file) 

This kind of organization directly affects the execution times for the “Load SVM Models 

into Memory” and “Classify image” activities (see Figure 9). The overall execution times of 

CapView were measured for the test videos (Table 4-1), before and after this data alignment 

without GPU usage. The machines used for the tests are specified in appendix 0: 

 

Machine 1  Machine 2 

Videos 
Non-

Optimized 
Optimized 

Performance 

gain (%) 

 Non-

Optimized 
Optimized 

Performance 

gain (%) 

1 00:40:32 00:30:42 24,27  00:20:14 00:17:30 13,33 

2 01:29:00 01:08:00 23,86  00:44:42 00:38:33 13,64 

3 01:52:00 01:25:00 23,93  00:55:51 00:47:51 14,31 

Table 4-3 Overall Speedup 

Table 4-3 shows the mean execution times of CapView for a number of runs, before and 

after the data alignment consideration, as well as the obtained speedups. The speedups were 

calculated by applying the following relation:                  
     

 
 (with   (after) and 

  (before) as the execution times of different versions).  

By considering the performance gains, it can be concluded that the overall execution was 

improved (almost 25% and 15% for, respectively, machines 1 and 2). The discrepancy of 

speedups between the two machines can be explained by different memory access latencies.  

4.2. Amdahl’s Law 

Amdahl’s law [90] is important in this context because it quantifies the maximum 

theoretical overall speedup that can be achieved in one application, by parallelizing a fraction 

of the program’s execution.  

Let’s consider Figure 22 as the execution of a generic program, where    is the total 

execution time for a single processor (with     ): 



Gpu Power for Medical Imaging 

 32 

 

Figure 22 Generic program's execution 

From the execution identified as   ,   identifies the part that is exclusively sequential, 

while P identifies the part that can be executed in parallel by more than one processor. 

Knowing that  

            (4.2) 

For n processors, equation (4.2) now becomes: 

       
 

 
 

     (4.3) 

Amdahl’s law then becomes: 

    
  

  

  
 

   
 
 

  
 

      
 
 

 

    (4.4) 

   is the theoretical overall speedup that the application experiences, by executing the   

part with n processors. The equation (4.4) also implies two things: 

 If P is small, overall speedup may not worth the parallelization effort; 

 No matter how large n is, overall speedup can never exceed 
 

   
; 

CapView was tested to determine the execution time of each segment.  

Videos Decode YcbCr->RGB Hist. Ops Classifications Others 

1 0,0051% 0,0001% 6,0766% 93,6438% 0,29% 

2 0,0051% 0,0001% 6,0896% 93,8448% 0,14% 

3 0,0051% 0,0001% 6,0908% 93,8625% 0,12% 

Table 4-4 Major Activities of CapView's Execution 



Gpu Power for Medical Imaging 

 33  

 

Figure 23 Profiling of CapView's Sequential Code 

The resulting profile is presented in Table 4-4 and depicted in Figure 23 (one chart per 

video). “Others” integrates all the activities considered as strictly sequential (i.e. that can’t be 

parallelized); these do not reach even 0.5% of the overall execution time. The remaining 

activities are parallelizable. However, both “Decode” and “YCbCr to RGB” take a negligible 

amount of the overall execution time. SC Histogram calculation takes longer, but it is in 

“classifications” that CapView spends over than 93% of its computation time, which makes it 

the best candidate for parallelization according to Amdahl’s law (see Figure 24, which shows 

the result of applying Amdahl’s law, considering only one of the activities parallelized). 

Figure 24 is obtained by varying the number of cores (processors) in formula (4.4). There 

would be almost no gain in the parallelization of the first three fractions. There is, however, a 

huge potential speedup in the classification, with a maximum gain of a just over 15 in the 

classification’s performance. With a closer look at the table presented in appendix 0, the 

maximum number of cores used in both GPU’s (one for each machine) can be identified: 

Machine 1 uses 8 cores and machine 2 uses 240 cores. 

Video 1

Video 2
Video 3

0%
20%
40%
60%
80%

100%

O
cc

u
p

an
cy

 in
 o

ve
ra

ll 
Ex

e
cu

ti
o

n

Major Activities in CapView's Project

Profiling

Video 1

Video 2

Video 3



Gpu Power for Medical Imaging 

 34 

 

Figure 24 Amdahl's theoretical  limits 

With these particular values, the overall speedup formula was applied, in order to find the 

exact maximum theoretical values for this amount of processors. The results are specified in 

Table 4-5: 

Machine n (cores) Decode YCbCr->RGB Histogram Ops Classifications 

1 8 1,000044662 1,000001 1,05615574 5,53658 

2 240 1,00005 1,000001328 1,0644101 14,8227478 

Table 4-5 Maximum theoretical speedups for machines 1 and 2 

Parallelization’s effort may only be justifiable in classification, reaching, theoretically, 

almost 15 times in overall speedup for the second machine (240 cores), and over 5.5 times in 

overall speedup for the first machine (8 cores). 

Next, we will present three different approaches we used for parallelizing the 

classification: using CUBLAS, our initial approach and the independent thread approach.  

4.3. Parallel Code Implementation and Evaluation 

Three different approaches were made, as attempts to evaluate the best outcome for 

parallelization: CUBLAS approach, initial approach and independent thread approach. For 

each approach, methodologies are discussed, as well as the respective performances and 

limitations.  A second profiling will be performed to assess if further parallelizations or 

0

2

4

6

8

10

12

14

16

1 101 201 301 401

M
ax

im
u

m
 S

p
e

e
d

u
p

 

Number of Processors

Amdahl's Theoretical Limits

Decode

YCbCr->RGB

Histogram ops

Classification



Gpu Power for Medical Imaging 

 35  

optimizations may be profitable. Apart from implementations, for the best approach, it is 

evaluated the overall impact of multi-GPUs utilization, instead of a single GPU usage.  

As last consideration, it is compared the CapView’s application execution in a CUDA 

parallel architecture with other existent parallel environments, such as Grid and cluster 

computing. By doing so, a better perception of the GPU’s suitability in this specific problem is 

given, as well as the best parallel solution that CapView’s application can benefit. 

4.3.1. CUBLAS Approach 

This approach explores the CUBLAS library [91], which is a library that implements 

BLAS subroutines (Basic Linear Algebra Subprograms) on top of CUDA architecture, taking 

advantage of its power implementation. BLAS [92] is a standard with the purpose of executing 

basic linear algebra operations, such as multiplications of vectors or matrices. These kinds of 

operations are broadly used in high-performance computing, as they are extremely efficient 

and have a general purpose. There is no need to interact directly with CUDA’s API, because 

CUBLAS routines do it for the user. 

CUBLAS was used to calculate the dot product between each frame SC histogram and the 

support vectors. By doing so, this calculation is performed inside GPUs, instead of doing it 

sequentially inside the host (GPU’s host). Every time a classification is needed, a dot product is 

performed between the frame SC histogram and every support vector in a model file (for all 

the model files). The best way to delegate this work to CUBLAS is to make a dot product in a 

matrix   vector way, with the result being a vector full of scalars. The CUBLAS method, 

allowing such matrix   vector operation, is the cublasSgemv [91], which is able to calculate 

the inner product between the vector and each row of the matrix, according to the function: 

                                                 

After this major dot product, the rest of the equation (3.2) will be computed in the host for 

each element of the resultant vector (computed in the GPU), as illustrated in Figure 25: 



Gpu Power for Medical Imaging 

 36 

 

Figure 25  Cublas Scalar Vector Calculation 

The execution time means for the classification activity for each frame in both versions 

(sequential version as VS and CUBLAS approach as A1) were measured for a substantial 

number of runs (over 20 000). All the values in the Table 4-6 are from both machines and are 

presented in milliseconds: 

 Machine 1 Machine 2 

Per frame classification (ms) Classifications Classifications 

SV 81,50842 46,37788 

A1 57,28418 4,610936 

Table 4-6 Sequential Reference Vs. CUBLAS Approach 

To quantify the improvement (or degradation) shown, the speedup for the classification 

fraction in both machines was measured: 

Machine 1: 

                 
  

  
 

        

        
           

Machine 2: 

                 
  

  
 

        

        
            

The overall speedup can be measured in the following way: 

                
 

 
  
  

          

   

                                                        



Gpu Power for Medical Imaging 

 37  

In formula (4.5),    is the speedup that the fraction    received, and    is the time of the 

fraction   in percentage, with     
  

   

          
   

 (   as the time of the fraction   in units of time). 

Table 4-7 shows the overall speedup for each one of the considered videos, after the 

application of equation (4.5), as well as the global execution times of the topographic 

segmentation algorithm: 

 

Machine 1  Machine 2 

Videos 
Non-

Parallelized 

Parallelization 

approach 
Overall Speedup 

 Non-

Parallelized 

Parallelization 

approach 

Overall 

Speedup 

1 00:30:42 00:22:36 1,385369778  00:17:30 00:02:42 6,377499552 

2 01:08:00 00:49:58 1,385252189  00:38:33 00:05:57 6,424672593 

3 01:25:00 01:02:21 1,385375320  00:47:51 00:07:24 6,431736741 

Table 4-7 CUBLAS approach's Overall Speedups 

The overall speedup indicates that this approach makes the CapView’s application 

execution run over six times faster in machine 2, and about 1.38 times in machine 1. This 

means that the CUBLAS attempt to parallelize CapView’s sequential code has proved 

successful with an overall improvement in relation to the sequential version of the 

segmentation algorithm. However, CUBLAS model implies that some operations must be 

performed in the host and not in GPUs, as its API only provides limited management of kernel 

functions. As illustrated in Figure 25 the right side of the scalars vector has to be performed in 

the host instead of being performed inside the GPU. The computation of the sum on formula 

3.2 that combines parcels of vector has to be performed in the host for each scalar produced by 

CUBLAS, which implies a slightly degradation of the overall classification speedup. 

4.3.2. Initial Approach  

The 2nd approach concentrates in placing most of the classification effort (formula 3.2) in 

the GPU side, by creating a custom kernel for the GPU. To maximize the contribution of the 

GPU power (in the classification image process), the next steps were performed: 

 In the beginning of CapView’s execution, all support vectors from all model files 

are copied to GPU memory. By doing so, every time that a support vector is 

needed for a calculation, it can be retrieved directly from GPU’s global memory; 

 After this step, every time a classification is performed, the following is done: 

o   (frame SC histogram from formula 3.2) is copied into the GPU memory; 



Gpu Power for Medical Imaging 

 38 

o The classification is performed in a parallel way, by using   and every 

support vector (  , from formula 3.2) from model files; 

o Results are copied back to host; 

o The values produced in the GPU are summed and the threshold amount ( , 

from formula 3.2) is subtracted in the sum result; 

For a better understanding of the process, Figure 26 schematizes classification’s 

parallelization: 

 

Figure 26 Initial Classification approach scheme  

Figure 26 shows that the model files are divided in a way that each block (launched in 

GPU for the kernel execution) becomes responsible for a small amount of support vectors, with 

each block being composed by 256 threads. As illustrated in the Figure 26, each thread will be 

responsible for computing a part of the dot product between   (the SC histogram of the image 

to be classified) and each    (support vector), delegated to that block. When each thread 

finishes the dot product, a vector reduction is done, in order to form the final scalar of the dot 

product. This vector reduction is performed accordingly to the most optimized parallel 

reduction created by NVIDIA [89]. When the scalar is found, a partial classification (between 

  and a single   ) is calculated and added to a partial sum variable (    ). After the repetition 

of this process for all the delegated support vectors in a block, the block saves the sum variable 

in global memory and returns. The final classification value for the specific model file is found 

after: 

 Fetching these partial sums (created from each block) from GPU memory; 

 Adding all partial sums:                 
    in host; 



Gpu Power for Medical Imaging 

 39  

 Subtracting threshold value from the classification formula (3.2) in the host; 

In order to observe real impact of this approach, the execution time means for the 

classification activity only of each frame in both versions (sequential code as SV and Custom 

approach as A2) are shown. All the values in the Table 4-8 are from both machines and are 

presented in milliseconds: 

 Machine 1 Machine 2 

Per frame classification(ms) Classifications Classifications 

SV 81,50842 46,37788 

A2 272,2713 57,09392 

Table 4-8 Sequential Classification vs. Initial approach 

To quantify the degradation, the speedup for the classification fraction is measured: 

Machine 1: 

                 
  

  
 

        

        
              

Machine 2: 

                 
  

  
 

        

        
              

As done in the 1st approach, the overall speedup was measured with the equation (4.5). 

The result is the following table, which shows the impact of this approach in CapView’s 

application, as well as the global execution times of the topographic segmentation algorithm: 

 

Machine 1  Machine 2 

Videos 
Non-

Parallelized 

Parallelization 

approach 
Overall Speedup 

 Non-

Parallelized 

Parallelization 

approach 

Overall 

 Speedup 

1 00:30:42 01:38:38 0,313304451  00:17:30 00:21:34 0,822023462 

2 01:08:00 03:37:56 0,312779007  00:38:33 00:47:38 0,8212654 

3 01:25:00 04:31:29 0,312739618  00:47:51 00:59:27 0,821245614 

Table 4-9 Overall Speedups, in the Initial approach 

This means that the impact on the performance of the 2nd attempt to parallelize CapView 

has slightly degraded in machine 2 and highly degraded in machine 1, compared to the 

sequential execution. However, this attempt identifies some issues preventing a good 

performance in the GPU classification, like a huge amount of dependencies between threads. 

In each partial classification (between   and a single   ), each thread contributes to the dot 

product, however, it has to wait for the other threads to accomplish the same; after that, the 

vector reduction is made and, once again, while some threads are doing some work, others 



Gpu Power for Medical Imaging 

 40 

have to wait. Even the final calculation (                    ) is done by only one thread 

(for consistency issues), out of the 256 threads available in each block. 

Without such dependencies between threads, this 2nd attempt could have a positive impact 

over the overall sequential execution time.  

4.3.3. Independent Thread Approach 

The objective of the last approach is to parallelize the classification fraction, in a way that 

dependencies among threads (per block) are minimized. 

Figure 27 gives an overview on how parallelization based on threads was done of the 

overall process of classification. Each model file will be partitioned and delegated to blocks of 

256 threads, in order to delegate an entire support vector per thread. By doing so, each thread 

is now able to perform an entire dot product between the frame SC histogram and its own 

support vector, and proceed to the partial classification, without a single dependency.  

 

 

Figure 27 Independent Thread approach 



Gpu Power for Medical Imaging 

 41  

After this step, there is a thread synchronization that guarantees that each of the 256 

threads of a block calculated a partial classification. The next step consisted in data gathering 

(reduction) of the resultant partial classifications vector, where results were added 

incrementally along each calculation in the GPU values: 

                      

     

   

 

The reduction was similar to the one used in the previous approach, but instead of 

reducing each dot product to find the scalar value (as done in the previous approach), in this 

approach, the reduction will drastically diminish the amount of partial classifications that the 

host will have to sum (a reduction from thousands of values to one value per block launched): 

         

       

   

 

To maximize this solution we also optimized the memory access. The original memory 

access pattern from the threads is not efficient because it is not coalesced [13], that is, the 

memory accesses are not contiguous, in the GPU: 

 

Figure 28 Memory access before efficiency maximization 

Figure 28 shows the memory accesses pattern. Each thread, in the process of acquiring the 

respective support vector, accesses the memory in a way that it is not possible to retrieve all the 

data from the memory at once (each thread requests a value 256 positions away from the 

previous memory request). The immediate consequence of this is that multiple memory 

accesses are required (one access per thread request), in order to fetch all the needed support 

vectors. If the memory data requests were contiguous, the memory accesses would be 

combined to a single memory request (and the requested data would be delivered at a rate close 

to the peak of the global memory bandwidth).  



Gpu Power for Medical Imaging 

 42 

To solve this issue, the support vectors were rearranged in memory, in a column major 

way (for every model files): 

 

Figure 29 Support vectors in a column major disposal 

With the support vectors displayed in a column major way, every time that a value is 

requested from the GPU memory, the result will be a single combined memory request, for all 

the consecutive locations: 

 

Figure 30 Coalesced memory access 

Figure 30 illustrate the GPU memory access patterns. Every time a value is needed from 

GPU memory, the accesses will be coalesced. With this approach, model files will be 

partitioned in amounts of 256 support vectors. Naturally when the number of support vectors in 

a model file is not a multiple of 256, the last block launched will have threads with no work to 

do. The mean execution times of the classification activity only for each frame were calculated 

for both versions (sequential version as SV and independent thread approach as A3) as 

presented in Table 4-10 for both machines (times are presented in milliseconds): 

 Machine 1 Machine 2 

Per frame classification(ms) Classifications Classifications 

SV 81,50842 46,37788 

A3 55,23863 4,027326 

Table 4-10 Sequential Classification vs. independent thread approach 

To quantify the improvement (or degradation), the speedup for the classification fraction 

was calculated using the equation (4.5): 



Gpu Power for Medical Imaging 

 43  

Machine 1: 

                 
  

  
 

        

        
             

Machine 2: 

                 
  

  
 

        

        
             

The global execution times of topographic segmentation algorithm were also collected as 

presented in Table 4-11: 

 

Machine 1  Machine 2 

Videos 
Non-

Parallelized 

Parallelization 

approach 

Overall  

Speedup 

 Non-

Parallelized 

Parallelization 

approach 

Overall 

 Speedup 

1 00:30:42 00:21:53 1,431991877  00:17:30 00:02:29 6,89572819 

2 01:08:00 00:48:23 1,431969651  00:38:33 00:05:30 6,952134404 

3 01:25:00 01:00:22 1,432110338  00:47:51 00:06:52 6,960514743 

Table 4-11 Overall Speedups of the independent thread approach 

The overall speedup in the execution using this independent thread approach is almost 7 

times in machine 2 and over 1.4 times in machine 1, compared to the sequential code of 

CapView. With fewer dependencies between threads, as well as with the data arranged 

differently in memory, this approach explored the GPU power and took advantage of its 

architectural aspects in this context. 

4.4. Parallelization’s profiling 

At this point, and after analysis of several parallel solutions, it is important to understand 

the impact of the optimizations we introduced in the CapView algorithm. A new profiling was 

necessary and performed as described in both Figure 31 and Table 4-12.  

Videos Decode YcbCr->RGB Hist. Ops Classifications Others 

1 0,0443% 0,0099% 42,6935% 57,1331% 0,1192% 

2 0,0442% 0,0099% 42,6656% 57,0959% 0,1844% 

3 0,0442% 0,0099% 42,6440% 57,0670% 0,2349% 

Table 4-12 Profiling values after parallelization 

From the presented results, it can be observed the relative impact of the classification after 

the parallelization efforts. Its execution time has decreased to 57% from the initial ~93%. A 

relative impact is also shown in the new profile, which regards to the histogram operations (a 



Gpu Power for Medical Imaging 

 44 

raise from ~6 to ~42%). This suggests that the overall execution times can be further 

diminished in the parallelization of histogram operations. 

 

Figure 31 Profiling of CapView after GPU optimizations on the classification 

As previously done, Amdahl’s law was applied to find the maximum theoretical speedups 

on both machine 1 and 2 as the maximum theoretical speedups: 

Machines cores Histogram Ops 

1 8 1,595240236 

2 240 1,738112837 

Table 4-13 Theoretical values for machines 1 and 2 

Although the maximum theoretical speedup values presented by Amdahl’s law do not 

indicate a substantial speedup, the 42% of the overall execution time dedicated to histogram 

operations may imply sufficient gain in its parallelization. NVIDIA has a reference 

implementation code to perform simple histogram calculation[93], prepared for 64 bins or 256 

bins. That code was adapted to be included in the CapView’s normalization as well. The global 

execution times using the NVIDIA’s adapted histogram code are presented in Table 4-14 for 

both machines, where the thread independent approach is presented as reference (times are in 

the format (hh:mm:ss)). 

 

Machine 1  Machine 2 

Videos 

Independent 

Thread 

Approach 

Histogram 

Parallelization 
Overall Speedup 

 Independent 

Thread 

Approach 

Histogram 

Parallelization 

Overall 

 Speedup 

1 00:21:53 00:26:11 0,92286967  00:02:29 00:02:30 0,99956986 

2 00:48:23 00:57:54 0,92215684  00:05:30 00:05:31 0,99891169 

3 01:00:22 01:12:12 0,92215326  00:06:52 00:06:53 0,99892317 

Table 4-14 Overall execution times comparison of Histogram Ops 

0%

20%

40%

60%

O
cc

u
p

an
cy

 in
 o

ve
ra

ll 
Ex

e
cu

ti
o

n

Major Activities in CapView's Project

Video 1

Video 2

Video 3



Gpu Power for Medical Imaging 

 45  

Overall degradation on performance was observed as shown in overall speedups. The 

parallelization of the histogram operations does not benefit from the histogram optimization as 

initially expected. In both machines there is a degradation of the execution time (especially in 

machine 1). These prospective results led to exclusion of the GPU based histogram solution 

from our GPU optimized version of the CapView. 

4.5. Multi GPU usage 

So far, only one GPU has been used in all the approaches. Beyond the potential of a single 

CUDA-enabled GPU, it is possible to combine as many CUDA-enabled GPUs as desired, thus 

allowing further scaling of the existing parallel solution.  

 

Figure 32 Video Segments and n.º GPUs 

To do so, and in order to guarantee that every GPU contributes to the final solution of the 

CapView application, the video to be classified can be partitioned into smaller segments. As 

depicted in Figure 32, each one of those parts will be delegated to a single GPU, with the 

number of segments being equal to the number of GPUs to be used. 

To handle multiple GPUs and multiple video segments, the GPU-based solution developed 

(under Linux OS) uses a multi-threading system where the several GPUs that are available are 

managed by individual threads. Although this is no longer explicitly needed in the newest 

toolkit from NVIDIA [40], for compatibility reasons with the computational capability of all 

CUDA devices  (and toolkits as well [40]), this management was performed explicitly.  



Gpu Power for Medical Imaging 

 46 

 

Figure 33  Execution flow of the Parallel Code in multi-GPU approach 

In order to use multi-GPUs (combine many GPUs in a parallel solution), it is necessary to 

transform the existing parallel solution into a multi-threading solution, instead of a single 

threading solution [94] (here, the Independent Thread approach will be considered as the 

parallel solution, as it is the one that presents higher speedups). Thus, the CapView’s parallel 

code is now translated into the activities diagram of Figure 33. The presented activities 

diagram is very similar to the flowchart of the sequential code (Figure 9); nevertheless, it has 

some differences, in order to support the multi-GPU feature. Those differences are mainly due 

to:  

 The fact that a fast forward is required (performed by each thread), in order to be 

able to classify a single and distinct segment of the video; 

 The redundancy of model files (every GPU must have all model files), thus 

allowing full independence between the host and the GPUs themselves; 

 A mandatory join operation, in order to guarantee coherence in the overall 

execution and consistency in the last activity to be made (write all the 

classifications performed in an output file); 

The “Processing of the segment [x] in the GPU[x]” is equivalent to the “Video 

Processing” activity in the sequential code; however, the classification is performed in a 

parallel way.  



Gpu Power for Medical Imaging 

 47  

 

Figure 34 Parallel code's execution in multi-GPU mode 

The execution times of the parallel solution are illustrated in the chart of Figure 34, as a 

relation between each one of the four GPUs that machine 2 offers and the time needed to 

classify the specific video. The maximum speedups (Table 4-15) seem above the maximum 

theoretical gain stated by Amdahl’s law (Table 4-5). This is due to the fact that the multi-

threading approach in the host parallelized other activities (decode, color-space conversions, 

histogram operations and classification), as opposed to the single classification’s parallelization 

approach. The number of threads launched in the host was one per GPU (used in machine 2), 

which could be well supported by the i7 processor used in the same machine (quad-core, 

supporting easily 8 threads in simultaneous execution [95]). That factor contributed to a 

substantial increase performance of this approach. As it was observed in the chart above, 

raising the number of GPUs used caused a sub non-linear reduction in the execution times. A 

thorough evaluation of the fact was not conducted, although we hypothesize that the need of a 

fast forward before the classification of each video’s segment (a sequential process with 

execution time proportional to the initial frame position of the video segment) contributed to 

that fact. Amdahl’s law also foresees a non-linear evolution when raising of number of 

processors, as an higher number of processors leads to an higher overhead in the parallelism 

management [96].  

Table 4-15 (and Figure 34) proves a drastic reduction in the execution times of the 

CapView’s parallel code, by using this scheme. We executed the processing for each video in a 

0

60

120

180

240

300

360

420

480

1 2 3 4

Ti
m

e
 in

 S
e

co
n

d
s

Number of GPUs used

CapView's execution in multiple GPU's

Video 1

Video 2

Video 3



Gpu Power for Medical Imaging 

 48 

total of 5 runs and extracted the average execution times of the global execution times of the 

topographic execution times expressed in hh:mm:ss (hours, minutes and seconds): 

Videos 

Sequential 

Reference 

Optimized 

1 GPU SP 2 GPU SP 3 GPU SP 4 GPU SP 

1 00:17:30 00:02:29 7,05 00:01:17 13,64 00:00:53 19,81 00:00:40 26,25 

2 00:38:33 00:05:30 7,01 00:02:50 13,61 00:01:59 19,44 00:01:25 27,21 

3 00:47:51 00:06:52 6,97 00:03:33 13,48 00:02:22 20,22 00:01:48 26,58 

Table 4-15 Execution times for multiple GPU usage 

Maximum overall speedup (SP) was measured for all the GPU application, compared to 

the sequential reference. In this approach, even the longest video can be completely classified 

in less than two minutes, with overall speedups between 26.2 and 27.2 times with 4 GPUs. 

4.6. Comparison with Other Parallel Approaches 

CapView sequential topographic segmentation algorithm was also deployed and tested in 

both Grid and cluster computing [97]. In this section we present a comparison between our 

GPU-based solution and the existing Grid and cluster computing. For this analysis the videos 

used in [97] were tested in both our configurations for the sequential versions and our GPU-

based solutions. Results can be seen in Table 4-16 for sequential implementation, in Table 

4-17 for single GPU and in Table 4-18 for the multi-GPU (machine 2 only). 

We executed the processing in both machines for each video in a total of 5 runs and 

extracted both the minimum, maximum and average execution times expressed in hh:mm:ss 

(hours, minutes and seconds):  

NO GPU Machine 1 Machine 2 

Videos Min Max Avg Std Dev Min Max Avg Std Dev 

1 00:30:41 00:30:43 00:30:42 00:00:01 00:17:20 00:17:49 00:17:30 00:00:12 

2 01:08:13 01:08:54 01:08:28 00:00:19 00:38:20 00:39:18 00:38:33 00:00:25 

3 01:24:41 01:25:53 01:25:14 00:00:35 00:47:50 00:47:54 00:47:51 00:00:04 

Table 4-16 Sequential execution times in both machines 

WITH GPU Machine 1 Machine 2 

Videos Min Max Avg Std Dev Min Max Avg Std Dev 

1 00:25:00 00:25:00 00:25:00 00:00:00 00:02:28 00:02:29 00:02:29 00:00:00 

2 00:53:40 00:54:18 00:53:55 00:00:15 00:05:30 00:05:31 00:05:31 00:00:00 

3 01:06:58 01:09:53 01:07:38 00:01:15 00:06:49 00:06:53 00:06:53 00:00:02 

Table 4-17 Execution Values with 1 GPU 



Gpu Power for Medical Imaging 

 49  

N.º GPUs Videos Min Max Avg Std Dev 

1 GPU 

1 00:02:28 00:02:29 00:02:29 00:00:00 

2 00:05:30 00:05:31 00:05:31 00:00:00 

3 00:06:49 00:06:53 00:06:53 00:00:02 

2 GPUs 

1 00:01:16 00:01:18 00:01:17 00:00:01 

2 00:02:50 00:02:51 00:02:51 00:00:01 

3 00:03:33 00:03:35 00:03:33 00:00:01 

3 GPUs 

1 00:00:52 00:00:58 00:00:53 00:00:03 

2 00:01:53 00:02:08 00:01:59 00:00:06 

3 00:02:22 00:02:23 00:02:22 00:00:01 

4 GPUs 

1 00:00:39 00:00:43 00:00:40 00:00:02 

2 00:01:25 00:01:25 00:01:25 00:00:00 

3 00:01:46 00:01:54 00:01:49 00:00:03 

Table 4-18 Execution Values with various GPUs 

To compare the execution times with Grid and cluster, we used the timings presented in 

[97] with the same datasets.  

As described, the video analysis in such parallel environments was made accordingly to 

three data partitioning strategies: 4, 8 and 16 parts. The video was divided into smaller parts 

and every part is executed in different processors (e.g., in data partition with 4 parts, each part 

will be processed in one different node).  

In the Grid, Oliveira, et al. measured the times between CapView sending the data to Grid 

or cluster until the moment that the results are received (network latencies included). It is 

important to note that in the cluster and Grid study no optimizations were done on the  

classification algorithm other than minor adaptations to handle video segments, instead of full 

video as in the original CapView implementation. If such optimizations were made, execution 

times could be improved as illustrated in our memory related optimization over the original 

sequential version.  

N.º Parts Videos Min Max Avg Std Dev 

1/16 

1 00:07:05 00:10:38 00:08:54 00:00:59 

2 00:08:34 00:14:36 00:11:24 00:01:52 

3 00:09:35 00:13:36 00:10:59 00:01:19 

1/8 

1 00:08:39 00:12:37 00:10:23 00:01:12 

2 00:11:36 00:13:38 00:12:33 00:00:35 

3 00:12:35 00:22:43 00:15:46 00:02:59 

¼ 

1 00:11:39 00:19:11 00:16:03 00:03:35 

2 00:18:38 00:22:09 00:20:40 00:01:35 

3 00:20:13 00:24:39 00:22:02 00:02:03 

Table 4-19 Execution Values in Grid infraestructure 



Gpu Power for Medical Imaging 

 50 

N.º Parts Videos Min Max Avg Std Dev 

1/16 

1 00:02:24 00:02:31 00:02:28 00:00:03 

2 00:04:33 00:04:45 00:04:38 00:00:06 

3 00:06:06 00:06:21 00:06:12 00:00:08 

1/8 

1 00:03:11 00:03:19 00:03:14 00:00:04 

2 00:06:20 00:06:29 00:06:25 00:00:04 

3 00:08:23 00:08:40 00:08:31 00:00:08 

1/4 

1 00:04:44 00:04:56 00:04:52 00:00:07 

2 00:09:55 00:10:13 00:10:04 00:00:09 

3 00:12:35 00:12:51 00:12:40 00:00:09 

Table 4-20 Execution Values in Cluster computing 

The GPU-based solution obtained comparable results compared to existent Grid and 

cluster solutions. Even with the usage of a modest model in single GPU (comparing to existent 

models [68]), the overall execution times easily surpassed the values produced in the Grid, 

being as well too close to the most promissory values produced in cluster (16 parts). The 

execution times gap between Grid and cluster solutions when compared with the multi-GPU 

approach is very substantial, being even less than one third in the longest video on cluster. It is 

worth to mention that in Grid the overall execution times were less homogeneous (high 

standard deviation) in contrast with both cluster and GPU solution. 

We can also observe the same results in terms of throughput (average time spent per 

100 MB) for the several solutions that are presented in Figure 35 (the best configuration for 

sequential, Grid and cluster were selected). Using this “normalized” measure, the comparison 

between different implementations becomes more intuitive; as expected, the GPU solutions can 

deliver better execution times per data chunk. 

 

Figure 35 Average execution times per 100 MB 

00:00:00

00:01:26

00:02:53

00:04:19

00:05:46

00:07:12

00:08:38 00:08:36

00:02:26

00:01:05 00:01:14
00:00:38 00:00:26 00:00:20

Average/100MB



Gpu Power for Medical Imaging 

 51  

5. Integration of GPUs in CapView  

Considering the improvements obtained using GPUs in the topographic segmentation 

based on CapView algorithm, it was logic to study the integration of this new solution in the 

current CapView application. The parallel solutions of CapView application were developed in 

Linux environment using a command line interface for the topographic segmentation algorithm 

interaction. The CapView version with a graphical user interface (GUI) was originally 

developed for Windows OS - the operating system in medical facilities [98]. The CapView 

GUI uses the same command line solution to interact with the parallel topographic 

segmentation algorithm.  

5.1. The GUI interaction  

To integrate the GUI with the topographic segmentation application an extra option was 

added to the menu that allows the execution of the topographic segmentation in the CUDA 

enabled GPU (Figure 36).  

When that option is selected, the segmentation process starts to run in background of 

CapView’s main application. While waiting for the end of segmentation the main CapView 

GUI shows an incremental bar with the progress of the segmentation.  



Gpu Power for Medical Imaging 

 52 

 

Figure 36 Integration of parallel implementation in CapView's application 

After the topographic segmentation is performed, the GUI receives the topographical 

markers/barriers, and presents them as events in the correspondent place of the bar that is 

located under the set of images. Likewise, the topographic barriers that mark the transition 

from one zone to another are equally put on top of the correspondent image as a red circle, to 

provide a more intuitive navigation throughout the video analysis.  

 

Figure 37 Topographic events marked in the main application. 



Gpu Power for Medical Imaging 

 53  

5.2. Evaluation  

We executed the GPU solution integrated in CapView in a third machine, an up-to-date 

desktop PC running windows OS and with a CUDA enabled GPU similar to those available in 

the current clinical environments (specifications are in Table 8-1, appendix 0).  

A total of 5 runs was performed for each video and the minimum, maximum and average 

execution times where extracted (presented in Table 5-1). All the execution times were 

measured between the beginning of CapView’s execution and the returning of topographic 

markers. Values are expressed in hh:mm:ss (hours, minutes and seconds): 

Videos 
Sequential 

Execution 
Min Max Average Std Dev 

Overall 

speedups 

1 00:18:41 00:01:53 00:01:55 00:01:53 00:00:01 9,92 

2 00:49:12 00:03:53 00:03:54 00:03:54 00:00:01 12,62 

3 00:51:34 00:04:51 00:04:52 00:04:51 00:00:01 10,63 

Table 5-1 Integration Evaluation in machine 3 

Table 5-1 shows that with the machine 3 we obtained smaller execution times when 

compared with the other configuration (Table 4-11). 

5.3. Integration issues 

The integration in Windows environment caused some adaptation considerations, given 

the appearance of some issues. Such substantial incompatibility (multithreading system and 

libraries for video handling), capable of compromising the whole adaptation, arose from the 

explicit differences of both operating systems. The relevant adaptations made are concerning to 

the multithreading system and the FFmpeg libraries, and despite the fact that only one of the 

two is sufficiently strong to prohibit the adaptation, the other highly limits future 

computational scalabilities. 

5.3.1. Multithreaded GPU 

The first one to be pointed out is the limitation that states its execution in only one GPU. 

There are large differences between Windows and Linux thread implementations and usages. 

Even in Windows only, from preemptive approaches to different thread implementations from 

one Windows version to another [99], there are many aspects regarding multithreading in 



Gpu Power for Medical Imaging 

 54 

Windows. Relevant to this dissertation is the fact that a windows application must use a 

specific application programming interface (API) [100] to interact and manage threads. The 

original multithreaded Linux solution uses the POSIX thread standard [101], a completely 

different standard API from the Win32 threads API.  

Since the thread implementation differences are substantial (not only because of the API 

issue pointed out, but also for other equally important issues like multithreading models [102] 

or threading system implementations [103]), a single GPU solution in Windows OS was 

chosen (avoiding in this way threads handling). It was also opted this way to be able to provide 

a validated and operational solution in time that could be used in clinical environments within 

the temporal scope of this dissertation. A fully working multi-GPU approach in Windows is 

achievable but seemed not possible within this time constraints, namely to the extra learning 

curve needed to address the specificities of the thread programming models in comparison to 

the Linux based solution. 

5.3.2. FFmpeg: the video  

The most crucial problem when porting the original solution from Linux to Windows was 

the dependency on the FFmpeg libraries needed to access and process the videos. Originally, 

FFmpeg project was developed in Linux, using, in most of the code, the C99 standard [104]. 

This standard is not used in Windows OS, which implies using external tools capable of 

creating a favorable environment to compile those libraries in Windows OS namely MSYS or 

MinGW [105]. However, the task of compiling and building windows compatible FFmpeg 

libraries is not straight forward implying patches and tweaks. In this context we opted to rely 

on existing pre-compile FFmpeg. The version selected is a 32 bits architecture version and 

supporting the basic functionalities needed for running the CapView Segmentation. The main 

drawback of the current solution is that with changes in Windows OS, it is possible that those 

builds will no longer function properly. 

5.4. Integration Considerations 

A detailed comparison between the tested GPU solutions PC / host versus PC only in this 

dissertation would imply not only considering the algorithm implementation but also machine 

configurations namely CPU and GPU specification. Such comparison was considered to be out 



Gpu Power for Medical Imaging 

 55  

of scope of these dissertation objectives, as the number of variables involved would be very 

high and with complex interactions (e.g. CPU, GPU and the GPU use strategy in the algorithm 

implementation). However, supported on our results, it is reasonable to conclude that it is clear 

that memory is not a major factor in the CapView executions times, as despite the fact that 

machine 3 GPU had four times less memory in comparison with machine 2 GPU, it had a 

superior performance (single GPU, Table 5-1 and Table 4-11).  

  



Gpu Power for Medical Imaging 

 56 

 

 



Gpu Power for Medical Imaging 

 57  

6. Conclusions and Future Work 

6.1. Assessment of purposed objectives  

One of the objectives of the present dissertation was to assess the feasibility of applying 

GPUs in a concrete medical imaging problem: the topographical segmentation of endoscopic 

capsule video. After studying several approaches, it was clear that the GPU can be applied to 

this field, contributing to attain relevant gains in the processing times. This was observed in all 

the hardware configurations we used. In the two reference machines used, with a single GPU, 

we could observe the following speedups: 

 ~1.38 and ~6.4 for machine 1 and 2 respectively (using the CUBLAS library, a 

GPU enabled implementation of the BLAS library [91]).  This can be translated in 

a reduction (worst case scenario) from 1 hour and 25 minutes to 1 hour and 2 

minutes (machine 1), and from 47 minutes and 51 seconds to 7 minutes and 24 

seconds (machine 2). 

  ~1.43 and ~6.9 for machine 1 and 2 respectively (using a personalized kernel, to 

take advantage of the CUDA architecture specificities).  This can be translated 

(worst case scenario) in a reduction from 1 hour and 22 minutes to 1 hour and 22 

seconds (machine 1), and from 47 minutes and 51 seconds to 6 minutes and 52 

seconds (machine 2). 



Gpu Power for Medical Imaging 

 58 

In a multi-GPU approach (4 GPU), the observed speedups were between 26.2 and 27.2, 

when compared to the optimized sequential version. In such approach, the speedups caused a 

reduction of almost 50 minutes to less than 2 minutes in the execution time of the worst case 

scenario.  

All the produced results for the topographic segmentation were validated, being exactly 

the same as the ones produced in the sequential algorithm. 

With a careful analysis, the number of cores and frequency presented in a GPU card can 

be considered the relevant factor for performance variation in CapView’s algorithm, along with 

the bandwidth between computer’s RAM and GPU’s global memory. Likewise, a small 

number of cores (as present in machine 1) caused a reduction of almost 25 minutes in the 

classification of the longest video. The performance gap between both machines is very 

substantial, reflecting and sound relation between performance gains and GPU cards: a bigger 

number of cores and frequency used will generate a better overall speedup in the application, 

given that the heavy processing is (re)designed to take advantage of the GPU. 

The optimizations in CapView’s segmentation algorithm respected the logical modular 

structure of the original algorithm. Although this option did not allow more in depth 

integration/optimization, it enabled easier and orthogonal evolutions of each individual logical 

module. With a more depth integration, through merging of logical modules in one 

implementation block, it would be possible, for instance, to avoid extra memory operations 

when sharing context between functional parts – not possible when enforcing the original 

modular design. 

Our results, when compared to previous work using other advanced computing solutions, 

namely  Grid and cluster infrastructures, show that the performance of Grid and cluster can be 

surpassed by a GPU based solution in terms of overall processing times. As the prices of GPUs 

are extremely competitive compared to Grid [106] and cluster [107] solutions, and as they also 

offer a tremendous transparency namely in the usage of different configurations (e.g. number 

of GPUs or number of cores), GPUs present an affordable option to increase the processing 

resources for personal and professional applications in desktop-based applications. Cluster and 

Grid, imposing high operational costs, have shown to be suitable for science (supporting e-

science infrastructures). One should note that the use of GPU as explored in this work requires 

the redesign of algorithms. 



Gpu Power for Medical Imaging 

 59  

The current GPU solution was integrated in the CapView application already in use in 

clinic environment. This integration was not trivial and was constrained by several platform 

specific details (e.g. FFmpeg implementations compatibility with windows OS, or different 

multi-threading implementation on Windows and Linux OS) and time constraints. Despite all 

problems, the application is running and, as shown, provides a significant improvement when 

compared to the original sequential implementation in terms of execution time. 

6.2. Future work 

It may be interesting to add remote on-demand analysis in the CapView’s application, 

submitting the work in a shared, high-end CUDA-enabled GPUs resource. This feature would 

allow using CUDA-enabled GPUs in a computer without such hardware (with the cost of data 

transfers).  

Another possible addition to CapView is the implementation of the GPU-based solution in 

a language that is supported by many GPU vendors (beyond NVIDIA), with OpenCL [39] as a 

possible candidate for that purpose. This would allow a more extensive application of 

CapView’s parallel algorithm (by allowing its execution by any GPU under the OpenCL 

standard).  

Since the endoscopic techniques used in this kind of exams are in a constant evolution 

(e.g.: new capsules with new features), it would be helpful to rely on an international standard 

capable of ruling those evolutions. This is relevant because a single modification in the video 

acquisition process can easily lead to incorrectness of the SVM model files already created, 

either in topographic segmentation or in the hypothetical model files for event detection. 

 

  



Gpu Power for Medical Imaging 

 60 

 



Gpu Power for Medical Imaging 

 61  

7. References 

[1] M. W. Vannier and R. A. Robb, "Medical imaging research and development groups," 

Medical Imaging, IEEE Transactions on vol. 20, p. 853 2001. 

[2] I. N. Bankman, Handbook of Medical Imaging: Processing and Analysis. San Diego: 

Academic Press, 2000. 

[3] M. Delvaux and G. Gay, "Capsule endoscopy in 2005: Facts and perspectives," Best 

Practice & Research Clinical Gastroenterology, vol. 20, pp. 23–39, 2006. 

[4] M. Liévin, et al., "Interactive 3D Segmentation and Inspection of Volumetric Medical 

Datasets," Biomedizinische Technik/Biomedical Engineering, vol. 47, pp. 75–78, 2009. 

[5] D. L. Pham, et al., "Current Methods In Medical Image Segmentation," Annual Review 

of Biomedical Engineering, vol. 2, pp. 315-337, 2000. 

[6] K. Mönkemüller, et al., Interventional and Therapeutic Gastrointestinal Endoscopy 

vol. 27: Karger, 2010. 

[7] P. L. Dwyer, Atlas of Urogynecological Endoscopy. United Kingdom: Informa UK Ltd, 

2007. 

[8] IEETA. CapView. Accessed 14 May 2011. Available: http://www.capview.org/ 
[9] J. P. S. Cunha, et al., "Automated Topographic Segmentation and Transit Time 

Estimation in Endoscopic Capsule Exams," IEEE Transactions On Medical Imaging, 

vol. 27, p. 1, 2008. 

[10] M. Mackiewicz, et al., "Wireless Capsule Endoscopy Color Video Segmentation," 

IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 27, 2008. 

[11] J. Y. Chen, "GPU Technology Trends and Future Requirements," Electron Devices 

Meeting (IEDM), 2009 IEEE International p. 1, 2010  

[12] Ricardo Marroquim and A. Maximo, "Introduction to GPU Programming with GLSL," 

Tutorials of the XXII Brazilian Symposium on Computer Graphics and Image 

Processing, 2009  

[13] D. B. Kirk and W. m. Hwu, Programming Massively Parallel Processors: A Hands-on 

Approach, 1 ed. USA: Morgan Kaufmann, 2010. 

[14] J. B. A. Maintz and M. A. Viergever, "A survey of medical image registration," Oxford 

University Press, vol. 2, pp. 1–36, 1998. 

http://www.capview.org/


Gpu Power for Medical Imaging 

 62 

[15] T.-L. Ji, et al., "Adaptive Image Contrast Enhancement Based on Human Visual 

Properties," Medical Imaging, IEEE Transactions on vol. 13, pp. 573 - 586 1994. 

[16] Z. Soferman, et al., "Advanced Graphics Behind Medical Virtual Reality: Evolution of 

Algorithms, Hardware, and Software Interfaces," 1997. 

[17] C. Pope and S. Ziebland, "Analysing qualitative data," BMJ, vol. 114, 2000. 

[18] M. Marsousi, et al., "Segmenting Echocardiography Images using B-Spline Snake and 

Active Ellipse Model," Engineering in Medicine and Biology Society (EMBC), 2010 

Annual International Conference of the IEEE, p. 3125 2010. 

[19] B. Menze, et al., Medical Computer Vision. USA: Springer, 2010. 

[20] M. I. Kuz'min-Krutetskii, et al., "Video Systems for Endoscopy," Biomedical 

Engineering, vol. 37, pp. 212-216, 2003. 

[21] G. Triadafilopoulos, "Endoscopy by nonphysicians," American Society for 

Gastrointestinal Endoscopy, vol. 69, 2009. 

[22] S. Gross and M. Kollenbrandt, "Technical Evolution of Medical Endoscopy," Acta 

Polytechnica, vol. 49, pp. 1-5, 2009. 

[23] P. B. Cotton, et al., Practical Gastrointestinal Endoscopy: The Fundamentals, 2008. 

[24] Peter Cotton and J. Leung, Advanced Digestive Endoscopy: ERCP. Massachusetts: 

Blackwell Publishing, 2005. 

[25] D. J. Green, "Complications of Gastrointestinal Endoscopy," BSG Guidelines in 

Gastroenterology, 2006. 

[26] N. J. Greenberger, et al., Current Diagnosis & Treatment: Gastroenterology, 

Hepatology, & Endoscopy. New York: Mc Graw Hill Lange, 2009. 

[27] G. Imaging. PillCam SB. Accessed 17 July 2011. Available: 

http://www.givenimaging.com/en-

us/healthcareprofessionals/Products/Pages/PillCamSB.aspx 

[28] M. Delvaux and G. Gay, "Capsule endoscopy: Technique and indications," Best 

Practice & Research Clinical Gastroenterology, vol. 22, pp. 813–837, 2008. 

[29] A. Karargyris and N. Bourbakis, "Wireless Capsule Endoscopy and Endoscopic 

Imaging: A Survey on Various Methodologies Presented," Engineering in Medicine 

and Biology Magazine, IEEE vol. 29, 2010. 

[30] F. Vilariño, et al., "Intestinal Motility Assessment With Video Capsule Endoscopy: 

Automatic Annotation of Phasic Intestinal Contractions," Medical Imaging, IEEE 

Transactions on vol. 29, 2010. 

[31] K. Rogers, The digestive System vol. 1. New York: Britannica, in association with 

Rosen, 2011. 

[32] H. Junction. Inflammatory Bowel – A disease getting common among youngsters. 

Accessed 22 June 2011. Available: http://healthjunction.org/?tag=system 

[33] G. Imaging. RAPID Software. Accessed 17 July 2011. Available: 

http://www.givenimaging.com/en-

us/healthcareprofessionals/Products/Pages/Software.aspx 

[34] J. P. S. Cunha and M. C. a. J. Soares, "capview: computer-aided diagnosis for 

endoscopic capsule," Revista do DETUA, vol. 4, pp. 1-4, 2007. 

[35] E. Kilgariff and R. Fernando, "The GeForce 6 Series GPU Architecture," Proceeding 

SIGGRAPH '05 ACM SIGGRAPH 2005 Courses 2005. 

[36] M. Harris. GPGPU: General General-Purpose Computation on GPUs. Accessed 22 

June 2011. Available: 

http://http.download.nvidia.com/developer/presentations/2005/GDC/OpenGL_Day/

OpenGL_GPGPU.pdf 

http://www.givenimaging.com/en-us/healthcareprofessionals/Products/Pages/PillCamSB.aspx
http://www.givenimaging.com/en-us/healthcareprofessionals/Products/Pages/PillCamSB.aspx
http://healthjunction.org/?tag=system
http://www.givenimaging.com/en-us/healthcareprofessionals/Products/Pages/Software.aspx
http://www.givenimaging.com/en-us/healthcareprofessionals/Products/Pages/Software.aspx
http://http.download.nvidia.com/developer/presentations/2005/GDC/OpenGL_Day/OpenGL_GPGPU.pdf
http://http.download.nvidia.com/developer/presentations/2005/GDC/OpenGL_Day/OpenGL_GPGPU.pdf


Gpu Power for Medical Imaging 

 63  

[37] D. M. Chitty, "A Data Parallel Approach to Genetic Programming Using 

Programmable Graphics Hardware," Proceeding GECCO '07 Proceedings of the 9th 

annual conference on Genetic and evolutionary computation 2007. 

[38] R. Buyya, High Performance Cluster Computing: Programming and Applications Vol 

2. NJ, USA: Prentice Hall PTR, 1999. 

[39] Khronos. OpenCL Overview: The open standard for parallel programming of 

heterogeneous systems. Accessed 02 May 2011. Available: 

http://www.khronos.org/opencl/ 
[40] NVIDIA. Developer Zone. Accessed 17 July 2011. Available: 

http://developer.nvidia.com/ 
[41] Khronos. The Industry's Foundation for High Performance Graphics. Accessed 24 

June 2011. Available: http://www.opengl.org/ 
[42] A. M. Devices. ATI Stream Technology Accessed 02 May 2011. Available: 

http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-

TECHNOLOGY/Pages/stream-technology.aspx 

[43] NVIDIA. NVIDIA CUDA Architecture: Introduction and Overview. Accessed 06 June 

2011. Available: 

http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Ov

erview.pdf 
[44] Shujia Zhou, et al., "Accelerating Climate and Weather Simulations Through Hybrid 

Computing," Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM 

International Conference on 2010. 

[45] N. Hinitt and T. Kocak, "GPU-based FFT computation for multi-gigabit wirelessHD 

baseband processing," EURASIP Journal onWireless Communications and Networking, 

2010. 

[46] Tobias Preis, et al., "GPU accelerated Monte Carlo simulation of the 2D and 3D Ising 

model," Journal of Computational Physics, vol. 228, pp. 4468–4477, 2009. 

[47] N. Neophytou, et al., "Hardware acceleration vs. algorithmic acceleration: Can GPU-

based processing beat complexity optimization for CT?," SPIE Medical Imaging, 2007. 

[48] S. N. University. GPU based Medical Imaging. Accessed 05 May 2011. Available: 

http://www.nvidia.co.kr/content/cudazone/download/showcase/kr/Seoul-univ-GPU-

based-Medical-Imaging.pdf 
[49] Shuqian Luo and J. Han, "Filtering Medical Image Using Adaptive Filter," Engineering 

in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International 

Conference of the IEEE vol. 3, pp. 2727 - 2729, 2002. 

[50] J.-P. Guédon and Y. Bizais, "Bandlimited and Haar filtered back-projection 

reconstructions," Medical Imaging, IEEE Transactions on vol. 13, p. 1, 1994. 

[51] Philippe Thévenaz, et al., "Interpolation Revisited," IEEE TRANSACTIONS ON 

MEDICAL IMAGING, vol. 19, p. 1, 2002. 

[52] A. Kumar, et al., "Automatic Image Alignment and Stitching of Medical Images with 

Seam Blending," World Academy of Science, p. 1, 2010. 

[53] R. L. Cook, "Shade Trees," Computer Graphics, vol. 18, pp. 1-9, 1984. 

[54] Timothy J. Cullip and U. Neumann, "Accelerating Volume Reconstruction with 3D 

Texture Hardware," World Academy of Science, pp. 1-6, 1993. 

[55] P. Taylor. Programmable Shaders for DirectX 8.0. Accessed 05 May 2011. Available: 

http://msdn.microsoft.com/en-us/library/ms810459.aspx 

[56] B. Cabral, et al., "Accelerated Volume Rendering and Tomographic Reconstruction 

Using Texture Mapping Hardware," Proceeding VVS 94 Proceedings of the 1994 

http://www.khronos.org/opencl/
http://developer.nvidia.com/
http://www.opengl.org/
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
http://www.nvidia.co.kr/content/cudazone/download/showcase/kr/Seoul-univ-GPU-based-Medical-Imaging.pdf
http://www.nvidia.co.kr/content/cudazone/download/showcase/kr/Seoul-univ-GPU-based-Medical-Imaging.pdf
http://msdn.microsoft.com/en-us/library/ms810459.aspx


Gpu Power for Medical Imaging 

 64 

symposium on Volume visualization, pp. 1-9, 1994. 

[57] P. B. Noël, et al., "Clinical Evaluation of GPU-Based Cone Beam Computed 

Tomography," Computer Methods and Programs in Biomedicine (2010), pp. 1-12, 

2011. 

[58] X.-L. Wu, et al., "Advanced MRI Reconstruction Toolbox with Accelerating on GPU," 

Proceedings of the IS&T/SPIE Electronic Imaging 2011 Conference on "Parallel 

Processing for Imaging Applications", pp. 1-10, 2011. 

[59] B. Bai and A. M. Smith, "Fast 3D Iterative Reconstruction of PET Images Using PC 

Graphics Hardware," Nuclear Science Symposium Conference Record, 2006. IEEE, pp. 

2787 - 2790 2007. 

[60] C. Han-Yong, et al., "Application of Segmentation and Measurement in the Treatment 

of Developmental Dysplasia of the Hip," Bioinformatics and Biomedical Engineering, 

2007. ICBBE 2007. The 1st International Conference on pp. 989 - 991 2007. 

[61] W. Wein, et al., "Automatic CT-ultrasound registration for diagnostic imaging and 

image-guided intervention," Medical Image Analysis, 2008. 

[62] Suren Chilingaryan, et al., "A GPU-based Architecture for Real-Time Data Assessment 

at Synchrotron Experiments," Real Time Conference (RT), 2010 17th IEEE-NPSS 

2010. 

[63] E. Vuçini, et al., "Enhancing Visualization with Real-Time Frequency-based Transfer 

Functions," Proceedings of IS&T/SPIE Conference on Visualization and Data Analysis, 

2001. 

[64] Santhanam, et al., "Real-Time Simulation and Visualization of Subject-Specific 3D 

Lung Dynamics," Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE 

International Symposium on pp. 629 - 634 2006. 

[65] Takehiro Tawara and K. Ono, "A framework for volume segmentation and 

visualization using Augmented Reality," 3D User Interfaces (3DUI), 2010 IEEE 

Symposium on 2010. 

[66] F. Yuan, "An interactive virtual endoscopy system based on consumer level GPUs," 

Digital Media and its Application in Museum & Heritages, Second Workshop on 2007. 

[67] A. Krüger, et al., "Sinus Endoscopy - Application of Advanced GPU Volume 

Rendering for Virtual Endoscopy," IEEE Transactions on Visualization and Computer 

Graphics, vol. 14, 2008. 

[68] NVIDIA. CUDA GPUs. Accessed 03 May 2011. Available: 

http://www.nvidia.com/object/cuda_gpus.html 
[69] S. Tomov. Discussion on NVIDIA's Compute Unified Device Architecture ( CUDA ). 

Accessed 23 June 2011. Available: http://web.eecs.utk.edu/~dongarra/WEB-

PAGES/SPRING-2011/Lect13_CUDA_Discussion.pdf 
[70] NVIDIA. The CUDA Compiler Driver NVCC. Accessed 06 June 2011. Available: 

http://sbel.wisc.edu/Courses/ME964/2008/Documents/nvccCompilerInfo.pdf 
[71] E. Balagurusamy, Programming in ANSI C 4E: McGraw-Hill, 2007. 

[72] D. Kirk and W. Hwu. ECE 498 AL : Applied Parallel Programming. Accessed 17 July 

2011. Available: http://courses.engr.illinois.edu/ece498/al/ 
[73] S. Ryoo, et al., "Optimization Principles and Application Performance Evaluation of a 

Multithreaded GPU Using CUDA," 13th ACM SIGPLAN Symposium on Principles 

and practice of parallel programming 2008. 

[74] F. Bellard. FFmpeg  [GNU Lesser General Public License (LGPL) version 2.1]. 

Accessed 30 March 2011. Available: http://www.ffmpeg.org/ 
[75] J. M. Martínez. MPEG-7 Overview. Accessed 30 March 2011. Available: 

http://www.nvidia.com/object/cuda_gpus.html
http://web.eecs.utk.edu/~dongarra/WEB-PAGES/SPRING-2011/Lect13_CUDA_Discussion.pdf
http://web.eecs.utk.edu/~dongarra/WEB-PAGES/SPRING-2011/Lect13_CUDA_Discussion.pdf
http://sbel.wisc.edu/Courses/ME964/2008/Documents/nvccCompilerInfo.pdf
http://courses.engr.illinois.edu/ece498/al/
http://www.ffmpeg.org/


Gpu Power for Medical Imaging 

 65  

http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm#E12E23 

[76] N. Sematech. Engineering Statistics Handbook (6/01/2003 ed.). Accessed 03 May 

2011. Available: http://itl.nist.gov/div898/handbook/eda/section3/histogra.htm 

[77] V. N. Vapnik, The Nature of Statistical Learning Theory, Second Edition ed. USA: 

Springer, 1995. 

[78] K.-R. Müller, et al., "An Introduction to Kernel-Based Learning Algorithms," Neural 

Networks, IEEE Transactions on vol. 12, p. 21, 2001. 

[79] M. Schmidt and H. Gish, "Speaker identification via support vector classifiers," 

Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 

1996 IEEE International Conference on p. 4, 2002. 

[80] Y. Li, et al., "Support Vector Regression and Classification Based Multi-view Face 

Detection and Recognition," Automatic Face and Gesture Recognition, 2000. 

Proceedings. Fourth IEEE International Conference on p. 6, 2000. 

[81] T. Joachims, "Text Categorization with Support Vector Machines: Learning with Many 

Relevant Features," vol. 1398/1998, pp. 137-142, 1998. 

[82] ClopiNet. SVM Application List. Accessed 07 April 2011. Available: 

http://clopinet.com/isabelle/Projects/SVM/applist.html 
[83] DTREG. Introduction to Support Vector Machine (SVM) Models. Available: 

http://www.dtreg.com/svm.htm 

[84] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and 

Other Kernel-based Learning Methods. United Kingdom: Cambridge University Press, 

2000. 

[85] B. Schölkopf, et al., "Input Space Versus Feature Space in Kernel-Based Methods," 

IEEE Transactions on Neural Networks, vol. 10, pp. 1000 - 1017 1999. 

[86] C. J. C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition," 

Data Mining and Knowledge Discovery, vol. 2, pp. 121–167, 1998. 

[87] I. Foster, et al., "The Anatomy of the Grid," International Journal of High 

Performance Computing Applications, vol. 15, 2001. 

[88] M. Baker, et al., "Cluster Computing and Applications," 2000. 

[89] M. Harris. Optimizing Parallel Reduction in CUDA  [NVIDIA Developer Technology]. 

Accessed 24 June 2011. Available: 

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reductio

n/doc/reduction.pdf 
[90] M. D. Hill and M. R. Marty, "Amdahl’s Law in the Multicore Era," IEEE Computer 

Society, 2008. 

[91] NVIDIA. CUDA CUBLAS Library. Accessed 16 July 2011. Available: 

http://developer.download.nvidia.com/compute/cuda/2_0/docs/CUBLAS_Library_

2.0.pdf 
[92] netlib_maintainers. BLAS (Basic Linear Algebra Subprograms). 2005, Accessed 21 

March 2011. Available: http://www.netlib.org/blas/ 
[93] V. Podlozhnyuk, "Histogram calculation in CUDA," November 2007. 

[94] Kashyap. CUDA multi-gpu textures [Blogue]. Accessed 22 April 2011. Available: 

http://gpuray.blogspot.com/2010/01/cuda-multi-gpu-textures.html 
[95] Intel. Intel Core i7-950 Processor. Accessed 24 June 2011. Available: 

http://ark.intel.com/Product.aspx?id=37150 

[96] J. Wang, et al., "Architectural Support for Reducing Parallel Processing Overhead in an 

Embedded Multiprocessor," IEEE/IFIP International Conference on Embedded and 

Ubiquitous Computing, 2010. 

http://mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm#E12E23
http://itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://clopinet.com/isabelle/Projects/SVM/applist.html
http://www.dtreg.com/svm.htm
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/CUBLAS_Library_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/CUBLAS_Library_2.0.pdf
http://www.netlib.org/blas/
http://gpuray.blogspot.com/2010/01/cuda-multi-gpu-textures.html
http://ark.intel.com/Product.aspx?id=37150


Gpu Power for Medical Imaging 

 66 

[97] I. C. Oliveira, et al., "Extending a desktop endoscopic capsule video analysis tool used 

by doctors with advanced computing resources," presented at the IberGrid, Santander, 

Spain, 2011. 

[98] J. Brodkin. 100 iPads Set for Deployment at Californian Hospital. Accessed 10 May 

2011. Available: 

http://www.pcworld.com/article/194655/100_ipads_set_for_deployment_at_califor

nian_hospital.html 
[99] C. L. Incorporated. Multithreading in Windows NT. Accessed 07 June 2011. Available: 

http://www.calsoftlabs.com/whitepapers/multithreading.html 
[100] Intel. Programming with Windows Threads. Accessed 07 June 2011. Available: 

http://zeus.lci.ulsa.mx/divulgacion/Material/pdf/Windows%20Threads.pdf 
[101] B. Barney. POSIX Threads Programming. Accessed 07 June 2011. Available: 

https://computing.llnl.gov/tutorials/pthreads/ 

[102] Silberschatz. Chapter 4: Multithreaded Programming. Accessed 08 June 2011. 

Available: http://www.inf.uni-konstanz.de/dbis/teaching/ss06/os/ch4.pdf 
[103] M. E. Russinovich, et al., Windows Internals 5th Edition. Washington: Microsoft Press, 

2009. 

[104] FFmpeg. Main Page FFmpeg on Windows Accessed 19 May 2011. Available: 

http://ffmpeg.arrozcru.org/wiki/index.php?title=Main_Page 

[105] FFmpeg. FFmpeg on Windows. Accessed 19 May 2011. Available: 

http://www.ffmpegwindows.org/ 
[106] e-Eighteen.com. Power Grid Corporation of India. Accessed 24 May 2011. Available: 

http://www.moneycontrol.com/stocks/company_info/pricechart.php?sc_did=PGC 

[107] i. Technologies. Web Cluster. Accessed 24 May 2011. Available: 

http://iweb.com/managed-hosting/web-cluster 
 

   

http://www.pcworld.com/article/194655/100_ipads_set_for_deployment_at_californian_hospital.html
http://www.pcworld.com/article/194655/100_ipads_set_for_deployment_at_californian_hospital.html
http://www.calsoftlabs.com/whitepapers/multithreading.html
http://zeus.lci.ulsa.mx/divulgacion/Material/pdf/Windows%20Threads.pdf
http://www.inf.uni-konstanz.de/dbis/teaching/ss06/os/ch4.pdf
http://ffmpeg.arrozcru.org/wiki/index.php?title=Main_Page
http://www.ffmpegwindows.org/
http://www.moneycontrol.com/stocks/company_info/pricechart.php?sc_did=PGC
http://iweb.com/managed-hosting/web-cluster


Gpu Power for Medical Imaging 

 67  

8. Appendix 

The topographic segmentation algorithm execution times were measured in two different 

computers. Machine 1 is a common laptop used for development. Machine 2 is a remote, high-

end computer available in the lab, dedicated to GPU programming exercises. Both computers 

run Linux. For the integration with CapView application, a third computer was need, a desktop 

running Windows. The specifications of all three machines are summarized in Table 8-1. 

 Machine 1 Machine 2 Machine 3 

Architecture 32 bit 64 bit 32 bit 

CPU (Intel) Core 2 Duo T6400 i7 CPU 950 Dual-Core E5200 

RAM 4 GB 12 GB 4 GB 

Frequency 2.00 GHz 3.07 GHz 

 

2.50 GHz 

 

GPUs    

N.º GPU's 1 4 1 

Model GeForce 9300M GS Tesla T10 Processor GeForce GTX 275 

Driver ver. 3.20 3.20 4.0 

Capability 1.1 1.3 1.3 

Cores 8 240 240 

Memory 251.06 MB 4.29 GB 848 MB 

Clock Rate 1.45 GHz 1.44 GHz 1.46 GHz 

Table 8-1 Specifications 

 


