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resumo 
 

 

A fosforilação reversível de proteínas é um importante mecanismo de controlo 
em eucariotas. A fosfoproteína fosfatase 1 (PPP1) é uma fosfatase de 
serina/treonina envolvida em vários processos celulares. Existem três 
isoformas da subunidade catalítica (α/CA, δ/β/CB e γ/CC) com pequenas 
diferenças nos terminais amino e carboxílico. O gene PPP1CC sofre ainda 
splicing alternativo para produzir duas isoformas, a PPP1CC1 ubíqua e a 
PPP1CC2 enriquecida em testículo e específica de esperma. A localização e 
especificidade de substratos da PPP1 está dependente da formação de 
complexos oligoméricos com proteínas que interagem com a PPP1 (PIPs). 
O objetivo principal desta tese foi estudar novas PIPs, específicas de testículo 
e esperma, a fim de melhor caracterizar o papel desta fosfatase e dos 
respetivos complexos na reprodução em mamíferos. Com este fim, estudou-se 
a presença, localização e possíveis funções de uma PIP previamente 
conhecida, PPP1R2, e de duas novas PIPs, PPP1R2P3 e Tctex1d4. 
PPP1R2 e PPP1R2P3 estão presentes em esperma humano colocalizando 
com a PPP1CC2, na cabeça e na cauda. A hipótese é que as holoenzimas 
localizadas na cabeça terão um papel na reação acrossómica, enquanto que 
as holoenzimas presentes no axonema são relevantes para o controlo da 
motilidade flagelar. De seguida foram estudados os pseudogenes  da PPP1R2, 
em termos de história evolutiva e de possíveis funções. Na espécie humana, a 
PPP1R2 tem 10 pseudogenes, 7 deles específicos de primatas. Estudos de 
bioinformática e dados de expressão mostram que os PPP1R2P1/P3/P9 são 
os pseudogenes com maior probabilidade de serem transcritos e traduzidos. 
Também identificámos o PPP1R2P9 em esperma humano e mostrámos que 
alguns pseudogenes poderão estar associados a estados fisiopatológicos. Isto 
indica que o processo de evolução poderá estar ligado á formação de novos 
genes ou ao controlo do mRNA da PPP1R2. A sobre-expressão da PPP1R2 
ou PPP1R2P3 em testículo de ratinho também foi realizada, para caracterizar 
os mecanismos envolvidas na função dos complexos PPP1R2/PPP1R2P3-
PPP1CC2 na espermatogénese e fisiologia dos espermatozoides. 
A dineína de cadeia leve, Tctex1d4, foi encontrada como interagindo com a 
PPP1C e como estando presente em testículo de ratinho e em esperma 
humano. Demonstrámos que a Tctex1d4 e a PPP1 colocalizam no centro 
organizador de microtúbulos e nos microtúbulos e que o motivo de ligação à 
PPP1 presente na Tctex1d4 parece ser importante para manter a PPP1 no 
centro organizador de microtúbulos e/ou para disromper ou atrasar o seu 
movimento ao longo dos microtúbulos emergentes. Estes resultados abrem 
novos caminhos para os possíveis papéis do complexo Tctex1d4-PPP1 na 
dinâmica dos microtúbulos, motilidade do esperma, reação acrossómica e na 
regulação da barreira hemato-testicular, provavelmente, através da via de 
sinalização do TGFß. A análise do motivo de ligação à PPP1 mostra que este 
é altamente conservado entre os mamíferos, com exceção das Pikas, 
sugerindo que esta perda aconteceu antes da radiação das Pikas, há 6-20 
milhões de anos atrás. Através de um rastreio por mutações demonstrámos 
que a capacidade da Tctex1d4 se ligar à PPP1 é mantida nas Pikas, embora o 
motivo de ligação à PPP1 esteja disrompido. 
Este estudo abre portas para novas descobertas na área da reprodução 
mostrando o papel da PPP1CC2 na espermatogénese e fisiologia do esperma. 
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abstract 

 
Reversible phosphorylation of proteins is an important intracellular control 
mechanism in eukaryotes. Phosphoprotein Phosphatase 1 (PPP1) is a major 
serine/threonine protein phosphatase involved in a wide range of cellular 

processes. Three closely related catalytic subunit isoforms (/CA, δ//CB and 

/CC) exist with only minor differences at their N- and C-terminus. PPP1CC 
gene can also undergo tissue-specific processing to yield a ubiquitously 
expressed PPP1CC1 and the testis-enriched and sperm-specific PPP1CC2 
isoforms. PPP1C exists in the cell as an oligomeric complex binding to a 
spectrum of PPP1 interacting proteins (PIPs), which modulate both its 
intracellular localization and substrate specificity.  
The main goal of this thesis was to study novel PIPs in testis and sperm, in 
order to further characterize the role of PPP1CC2 and the respective complexes 
in mammalian reproduction. To this end we addressed the presence, localization 
and putative roles of a previously known PIP, PPP1R2, in testis and sperm, and 
two novel PPP1CC2 testis/sperm specific PIPs, PPP1R2P3 and Tctex1d4. 
PPP1R2/PPP1R2P3 were shown to be present in human sperm co-localizing 
with PPP1CC2, in the head and tail. It was shown that PPP1R2P3 is a heat 
stable inhibitor of PPP1CC that cannot be phosphorylated by GSK3. We 
hypothesize that the holoenzymes localized in the head may have a role in the 
acrosome reaction while the axoneme bound holoenzymes are relevant for the 
control of flagellar motility. To further address the PPP1R2 significance, its 
pseudogenes were described in terms of evolutionary history and putative 
functions. In human specie, PPP1R2 has ten pseudogenes most of them 
primate-specific. Besides PPP1R2P3, bioinformatic studies and expression data 
show that PPP1R2P1, PPP1R2P2 and PPP1R2P9 are the pseudogenes with 
more probability of being transcribed and eventually translated. Moreover, we 
identified PPP1R2P9 in human sperm and showed that several pseudogenes 
appear to be associated with physiological and pathological states. This 
indicates that evolution processes might be in part related with the formation of 
new genes or in the control of the parental PPP1R2 message. Overexpression 
of human PPP1R2 or PPP1R2P3 in mouse testis was also pursued to provide 
the molecular tools to initiate the characterization of the mechanisms behind 
PPP1R2/PPP1CC2 and PPP1R2P3/PPP1CC2 role in spermatogenesis and 
sperm physiology. 
Dynein light chain, Tctex1d4, was found to bind to PPP1C and to be present in 
mouse testis and human sperm. Tctex1d4-PPP1CC complex was shown to co-
localize in the microtubule organizing centre and in microtubules. Moreover, the 
Tctex1d4 PPP1 binding motif seems to be important to retain PPP1CC in the 
microtubule organizing centre, and also to disrupt or delay its movement along 
microtubules. These results open new avenues to the possible roles of 
Tctex1d4-PPP1 complex in microtubule dynamics, sperm motility, acrosome 
reaction and in regulation of the blood testis barrier possibly via TGFß signaling. 
Moreover, PPP1 binding motif is highly conserved among mammals, except in 
Pikas, suggesting that this event happened before the Pikas radiation, 6-20 
Million years ago. Mutational screening shows that the ability of Tctex1d4 to bind 
to PPP1 is maintained in Pikas, although the PPP1 binding motif is disrupted. 
This work opens doors to new discoveries in male reproduction and unravels the 
roles of PPP1CC2 and its PIPs in spermatogenesis and sperm physiology. 
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ACN acetonitrile 

AKAP A-kinase-anchoring protein 

APC/C anaphase-promoting complex 

Arg arginine 

ASPP1/2 apoptosis-stimulating of p53 protein 1 and 2, also known as 
PPP1R13B and PPP1R13A respectively 

ATP adenosine triphosphate 

Bad Bcl2-associated agonist of cell death 

BCA bicinchoninic acid assay 

Bcl-2 B-cell CLL/lymphoma 2 

BEB bayes empirical bayes 

BLAST basic local alignment search tool 

bp base pair 

BRCA1 breast cancer 1 

BSA bovine serum albumin 

BTB blood testis barrier 

Ca2+ calcium 

cAMP cyclic adenosine monophosphate 

CASA computer assisted sperm analyser 

CASK calcium/calmodulin-dependent serine protein kinase 

CDC25C cell division cycle 25 homolog C 

CDH cadherin 

CDK cyclin-dependent kinase 

cDNA complementary DNA 

CDS coding sequence 
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CHAPS 3[(3-Cholamidopropyl)dimethylammonio]-propanesulfonic acid 

CID collision-induced dissociation 

CKII casein kinase II 

CMV-IE cytomegalovirus immediate early 

COS-7 monkey kidney fibroblast cell line 

CPI-17 protein kinase C potentiated inhibitor 17, also known as PPP1R14A 

CT C-terminal 

CTD carboxy-terminal domain  

Cre causes recombination 

CReP constitutive repressor of eIF2alpha phosphorylation, also known as 
PPP1R15B 

DAPI 4,6-diamidino-2-phenylindole 

DARPP32 dopamine and cAMP regulated phosphoprotein, also known as 
PPP1R1B 

ddH2O double distilled water 

DIC differential interference contrast 

DMEM Dulbecco’s Modified Eagle medium 

dN non- synonymous substitutions per site 

DNA deoxyribonucleic acid 

dS synonymous substitutions per site 

DTA diphtheria toxin A 

ECL enhanced chemiluminescence 

EDTA ethylenediaminetetraacetic acid 

EF1α elongation factor 1α 

EGTA ethylene glycol tetraacetic acid 

ELM eucaryotic linear motif 

ERK extracellular signal-regulated kinase 

ES embryonic stem 
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EST expressed sequence tags 

FA formic acid 

FAK focal adhesion kinase 

FCP TFIIF-associating CTD phosphatase 

FDR false discovery rate 

FEL fixed-effect likelihood 

FITC fluorescein isothiocyanate 

FLP yeast-derived Flip 

FRT flipase recognition target 

FSIP fibrous sheath interacting protein 

FSP95 fibrous sheath protein of 95 kDa 

GADD34 growth arrest and DNA damage-inducible protein 34, also known as 
PPP1R15A 

gDNA genomic DNA 

GBPI1 gastrointestinal and brain-specific PP1-inhibitory protein 1,  also known 
as PPP1R14D 

GC guanine-cytosine 

GC2 germ cells  

GEO gene expression omnibus 

GL hepatic glycogen-targeting protein phosphatase 1 regulatory subunit 
GL also known PPP1R3B 

Glu glutamic acid 

GM protein phosphatase 1 regulatory subunit GM, also known PPP1R3A 

GSK3 glycogen synthase kinase 3 

hAAT human α1-antitrypsin 

Hb2E protein phosphatase 1 regulatory subunit 3F, also known as PPP1R3F 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HLA human leukocyte antigen 
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hsp90 heat shock protein 90 

I1 inhibitor 1, also known as PPP1R1A   

I2 inhibitor 2, also known as PPP1R2 

I2-L inhibitor 2-like, also known as PPP1R2P3 

IACUC institutional animal care and use committee 

ICs intermediate chains 

IFT intraflagellar transport 

IHC immunohistochemistry 

IPP5 inhibitor-5 of protein phosphatase 1, also known as PPP1R1C 

IPTG isopropyl-β-D-thio-galactopyranoside 

IUP intrinsically unstructured protein 

JHDM1D jumonji C domain containing histone demethylase 1 homolog D 

KEPI kinase-enhanced PP1 inhibitor, also known as PPP1R14C 

KIAA1443 protein phosphatase 1, regulatory subunit 3E, also known as 
PPP1R3E 

LB loading buffer 

LCs light chains 

Leu leucine 

LICs light intermediate chains 

LINE long interspersed nuclear elements 

LRT likelihood ratio test 

LTQ linear ion trap 

LTR long terminal repeat 

MAOA monoamine oxidase A 

MAPK mitogen activated protein kinase 

Mg2+ magnesium 

MHC major histocompatibility complex 
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ML maximum-likelihood 

Mn2+ manganese 

MoMLV moloney murine leukemia virus 

mPrm mouse protamine promoter 

mRNA messenger RNA 

MTOC microtubule organizing center 

MYPTs myosin phosphatase targeting subunit, also known as PPP1R12A/B. 
MYPT3 is known as PPP1R16B 

NCBI National Center for Biotechnology Information 

Nek2 nimA-related protein kinase 2 

Neurabins I/II neuronal binding proteins, also known as PPP1R9A/B 

NIPP1 nuclear inhibitor of protein phosphatase 1, also known as PPP1R8 

NJ neighbor-joining 

NOM1 nucleolar protein with MIF4G domain 1 

NT N-terminal 

ORF open reading frame 

p85 protein phosphatase 1 myosin-binding subunit of 85 kDa, also known 
as PPP1R12C 

PBS phosphate buffered saline 

PBS-T phosphate buffered saline with Tween 

PCDH protocadherin 

PCR polymerase chain reaction 

PDHA2 pyruvate dehydrogenase (lipoamide) alpha 2 

PGK1 phosphoglycerate kinase 1 

PH phase contrast 

PHACTR phosphatase and actin regulator 

PHI1 phospholipase C beta-3 neighboring gene protein, also known as 
PPP1R14B 



Abbreviations Characterization PP1 interacting proteins in male reproduction 
 

vi  Centre for Cell Biology 
  University of Aveiro 

PIP phosphatase interacting protein 

PKA cAMP-dependent protein kinase 
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PP protein phosphatase 

PPM protein phosphatase Mg2+ or Mn2+ dependent 

PPP phosphoprotein phosphatase 

PPP1BM PPP1 binding motif 

PPP1C PPP1 catalytic subunit 

PPP1CA/B/C PPP1 catalytic subunit alpha/beta/gamma isoform 

PPP1R PPP1 regulatory subunit 

Pro proline 

PTG protein targeting to glycogen, also known as PPP1R3C 

RAP-1 ras related protein 1 

RAP1GDS1 GTP-GDP dissociation stimulator 1 

REL random effect likelihood 

RIPA radio-immunoprecipitation assay 

RIPP1 ribosomal inhibitor of PP1 

RNA ribonucleic acid 
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RT room temperature 
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SDS-PAGE SDS polyacrylamide gel electrophoresis 

Ser serine 

SETD4 SET domain containing 4 

SGCD sarcoglycan delta 

SI spectral index 

SINE Short interspersed nuclear elements 

SLAC single likelihood ancestor counting 

SLC5A7 solute carrier family 5 choline transporter, member 7 

SLC37A3 solute carrier family 37 (glycerol-3-phosphate transporter), member 3 

ST6GAL2 ST6 beta-galactosamide alpha-2,6-sialyltranferase 2 

STPP serine-threonine protein phosphatase 

SV-40 simian virus 40 

Szp1 spermatogenic zip protein 1 

TAKAP-80 testis-specific A-kinase-anchoring-protein 

TAP transporter , ATP-binding cassette, sub-family B 

TAT-1 transactivating regulatory protein 1 

TAU microtubule-associated protein tau 

TBS tris buffered saline 

TBS-T tris buffered saline with tween 

Tctex5 t-complex-associated-testis-expressed 5, also known as PPP1R11 

TFIIF transcription factor IIF 

TGFβ transforming growth factor beta 

Thr threonine 

TIMAP  transforming growth factor β inhibited membrane-associated protein, 
also known as PPP1R16B 
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TIMD4 T-cell immunoglobulin and mucin domain containing 4 

tk thymidine kinase 

TLRR testis leucine-rich repeat 

TPCK tosyl phenylalanyl chloromethyl ketone 

Tsga2 testis specific gene A2 

Tyr tyrosine 

URI unconventional prefoldin RPB5 interactor 

UTR untranslated region 

WAVE 1 Wiskott-Aldrich syndrome protein family member 1 
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Introduction 

 

Protein phosphorylation - kinases and phosphatases 

 

Reversible phosphorylation of structural and regulatory proteins is an important 

intracellular control mechanism in eukaryotes affecting up to 30% of the proteome. It plays 

a central role in the control of almost all cellular functions including metabolism, signal 

transduction, cell division and memory [1-3]. Intracellularly, protein phosphorylation 

regulates a variety of important functions, including subcellular localization, protein 

degradation and stabilization, as well as biochemical activities [4]. 

The phosphorylation state of a protein is a dynamic reversible process involving 

both protein kinases (add the phosphate), and protein phosphatases (PPs, remove the 

phosphate). Unlike protein kinases, that all belong to a single gene family, PPs are divided 

into several distinct and unrelated protein/gene families. The Tyr-specific PP family, as 

well as including the Tyr-specific PPs, also comprises the so-called dual specificity PPs 

(capable of dephosphorylating Ser, Thr and Tyr residues). Within the Ser/Thr-specific 

protein phosphatases (STPPs) three distinct gene families have been described: the 

PPMs (Mg2+ or Mn2+ dependent protein phosphatases), the FCPs (TFIIF-associating 

CTD phosphatases) and the PPPs (phosphoprotein phosphatases). The PPM family 

comprises the Mg2+-dependent PPs, such as pyruvate dehydrogenase, PP2C, and 

relatives [5]. The FCP family comprises FCP1 and SCPs 1-3 PPs [6, 7]. Sequence 

analysis using three well characterized genomes, allowed the construction of a 

phylogenetic tree and the division of PPP family in four subfamilies: PPP1 (Fig I.1A right 

branch), PPP2 (PPP2/PP2A, PPP4 and PPP6, Fig I.1A upper branch), 

PPP3/PP2B/Calcineurin (Fig I.1A, left branch) and PPP7 (PPP5 and PPP7, Fig I.1A, 

lower branch). These gene subfamilies share high homology in the catalytic domains (Fig 

I.1B, dark blue bars) but differ in the N- and C-terminal domains (Fig I.1B) [5, 8, 9]. 

Besides these intracellular PPs involved in signal transduction, there are also unrelated 

non-specific alkaline and acidic PPs that are usually found either in specialized 

intracellular compartments or in the extracellular milieu [10]. 
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Figure I. 1: Evolutionary and structural relationship between the different PPP families. A. 
Phylogenetic tree, depicting the relationships between Homo sapiens (Hs, red), Drosophila 
melanogaster (Dm, blue) and budding yeast Saccharomyces cerevisiae (Sc, brown) protein 

serine/threonine phosphatases of the PPP family (figure taken from [4]). B. Domain organization of 

PPP family members. The size in amino acids is shown on the right (adapted from [11]). 
 

The sequencing of entire genomes has revealed that approximately 3% of all 

eukaryotic genes encode protein kinases or PPs [12]. Surprisingly, there appear to be 2-5 

times fewer PPs than protein kinases. This imbalance is even more pronounced when the 

analysis is limited to STPPs and Ser/Thr-kinases, particularly in vertebrates. The human 

A 

B 



Introduction Chapter I 
 

Centre for Cell Biology  3 
University of Aveiro   

genome, for instance, encodes approximately 20 times fewer STPPs than Ser/Thr-

kinases. Thus, it is often concluded that, whereas, the diversity of the Ser/Thr-protein 

kinases has kept pace with the increasing complexity of evolving organisms, the STPPs 

apparently have not. However, in the past two decades it has become evident that the 

diversity of STPPs is achieved not only by the evolution of new catalytic subunits, but also 

by the ability of a single catalytic subunit to interact with multiple regulatory subunits [1, 

13]. 

 

Phosphoprotein Phosphatase 1 (PPP1) 

 

Phosphoprotein Phosphatase 1 (PPP1) is a major STPP involved in a wide range of 

cellular processes such as cell cycle progression, protein synthesis, muscle contraction, 

glycogen metabolism, cytokinesis, and neuronal signaling [1, 3 ]. 

The PPP1 catalytic subunit (PPP1C) is expressed from one (Saccharomyces 

cerevisiae) to eight (Arabidopsis thaliana) different isoforms in the eukaryotic genomes. In 

mammalian genomes three separate genes encode for three closely related isoforms 

(/A, δ//B and /C). These isoforms are > 90% identical in amino acid sequence, with 

minor differences, primarily at their N- and C-terminus [1]. PPP1CC gene also undergoes 

tissue-specific alternative splicing to yield a ubiquitously expressed PPP1CC1 (1) isoform 

and the testis-enriched and sperm-specific PPP1CC2 (2) isoform. [14-18] (Fig I.2). 

 

Figure I. 2: Schematic representation of PPP1CC gene exon-intron organization. Exons are 
shown in blue boxes with numbers. Alternative splicing of exon 7 originates the testis-enriched and 
sperm-specific PPP1CC2 isoform. Amino acids corresponding to the exon 7 specific C-terminal are 
shown. * denotes the termination codon. 
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It has already been shown that PPP1 isoforms are expressed in a variety of mammalian 

cells, although they localize intracellularly in a distinct and characteristic manner. PPP1CA 

was found to be ubiquitous in all mouse tissues except in skeletal and heart muscles. 

PPP1CB is also ubiquitous in all mouse tissues except in skeletal muscle and PPP1CC1 

has higher levels in brain, small intestine and lung compared to other tissues and not 

detectable in heart and spleen. PPP1C2 is the isoform in higher quantity in testis and 

virtually the only one expressed in spermatozoa but with low amounts in brain, lung, 

spleen and thymus [19]. Specifically in brain, the different PPP1 isoforms were shown to 

be present in different regions and revealed also specific subcellular localization [18, 20]. 

While PPP1CB is the predominant isoform associated with microtubules in the neuronal 

cell body, PPP1CC1 and PPP1CA are preferentially concentrated in the dendritic spines 

[20, 21]. Tissue expression of PPP family members is shown in Table 1. 

 

Table I. 1: Tissue expression of the main PPP family members. 

Protein Phosphatase Tissues 

PPP1CA Ubiquitous; more predominantly in brain [19] 

PPP1CB 
Ubiquitous; more predominantly in liver and kidney 

[19] 

PPP1CC1 
Ubiquitous; more predominantly in brain, small 

intestine and lung [19] 

PPP1CC2 Yes, low abundance [20] 

PPP2 Ubiquitous; more predominantly in brain [22] 

PPP3 Ubiquitous; more predominantly in brain [23] 

PPP4 
Ubiquitous; more predominantly lung, liver and 

kidney [24] 

PPP5 Ubiquitous; more predominantly in brain [25, 26] 

PPP6 
Ubiquitous; more predominantly in heart and 

skeletal muscle [27] 

PPP7 
Ubiquitous; more predominantly in sensory organs 

[28] 
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During the cell cycle, phosphorylation status, activity, and subcellular localization of 

PPP1 changes. Studying PPP1 localization during the cell cycle, Andreassen et al. 

demonstrated that the distribution of PPP1 isoforms in cells was highly dynamic. 

PPP1CA/B/C1 localize to distinct subcellular compartments during both interphase and 

mitosis [29]. PPP1 is expressed in various cellular compartments, but it is most abundant 

in the nucleus. Within the nucleus, PPP1CA associates with the nuclear matrix, PPP1CC1 

localizes to the nucleolus, and PPP1CB is associated with whole chromatin. During 

mitosis, PPP1CA localizes to centrosomes, while PPP1CC1 is associated with 

microtubules of the mitotic spindle. In contrast, PPP1CB is strongly localized to 

chromosomes [30-32]. 

Although most biochemical studies have not directly addressed the significance of 

the different isoforms, it is now well established that these distinct subcellular 

localizations, activity and phosphorylation status are due in part to the interacting proteins 

[17, 29, 31]. Moreover PPP1C tissue specificity could be a determinant of which subset of 

different regulators are available to. Also, during evolution, other proteins present in the 

same tissues, and/or with the same subcellular localization, might have gained the ability 

to bind to a specific isoform, giving rise to new functions, and extending the repertoire of 

known regulators [33]. 

 

Phosphoprotein phosphatase 1 – Phosphatase Interacting Proteins (PIPs) 

 

PPP1C exists in the cell as an oligomeric complex. The PPP1C binds a spectrum of 

interacting proteins, PPP1 interacting proteins (PIPs), also known as PPP1 regulatory 

subunits (PPP1R), which modulate both PPP1C intracellular localization and substrate 

specificity, and may also function as target subunits [1, 3, 34]. This implies differences in 

the specificity of interaction of a particular PPP1 isoform with a particular PIP, which may 

in turn exhibit subcellular compartmentalization or tissue specific enrichment. For 

example, PPP1R9A/neurabin I, targets PPP1C to the actin-rich post-synaptic density, 

where the complex regulates the dendritic spine morphogenesis and maturation. In 

contrast PPP1R9B/neurabin II preferentially binds to the PPP1CC1 isoform over the other 

two isoforms, PPP1CA and PPP1CB [35-38]. 

During the past two decades, a variety of approaches have identified more than two 

hundred PIPs. However, considering the number of phosphatases and phosphoprotein 

substrates encoded for by the human genome many more remain unknown [2, 5, 29, 31, 
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38, 39]. PIPs are divided in four major categories: substrates, substrate specifiers, 

targeting subunits or inhibitors of the catalytic activity [39]. 

Some PIPs, like BRCA1 [40], the protein phosphatase CDC25C [41], the apoptotic 

protein Bad [42], caspase 2 [43] and protein kinase Nek2 [44] are PPP1 substrates. In 

contrast to the others, the last two are maintained in an inactive state by PPP1. While 

PPP1R2 [45] and PPP1R14A [46] are both substrates and inhibitors of PPP1, Nek2 [47] 

and PPP1R16B [48] are dephosphorylated by PPP1 but also target other proteins to 

PPP1 mediating their dephosphorylation. PIPs can also target PPP1 to specific structures, 

such as the nucleus (PPP1R10) [49], nuclear membrane (AKAP149) [50], nucleoli 

(NOM1) [51], chromatin (Repo-man) [52], centrosome (Nek2) [44], plasma membrane 

(integrin αIIB) [53], actin cytoskeleton (PPP1R9 subfamily) [54], microtubules (TAU), 

myosin (PPP1R12 subfamily and PPP1R16A) [55], glycogen particles (PPP1R3 

subfamily) [56], endoplasmic reticulum (PPP1R15A) [57], mitochondria (URI, Bcl2) [58, 

59]. 

Finally, some PIPs are true PPP1 inhibitors, as they block the access to the active 

site and inhibit the dephosphorylation of all substrates, for instance PPP1R2 and 

PPP1R11 [45]. Additionally, several regulators can show preferential binding to a specific 

PPP1 isoform. Some examples are given in Table I.2. 

 

Table I. 2: PPP1 regulatory subunits. Regulatory subunit genes nomenclature and the function of 
the proteins coded by these genes are given. Also, the specific PPP1C isoform that was found to 
bind to these regulatory subunits is shown (adapted from [2]). 

Regulatory Subunit 
PPP1C 
isoform 

Family Holoenzyme function 
References 
supporting 

function Gene 
Alternatives 

names 

PPP1R1A 
Inhibitor 1, 

I1 
  

PPP1 inhibitor, glycogen 
metabolism, synaptic plasticity 

and muscle 
[60, 61] 

PPP1R1B DARPP32 PPP1CA  Neurotransmission [62, 63] 

PPP1R1C IPP5 PPP1CA  Apoptosis [64] 

PPP1R2 
Inhibitor 2, 

I2 

PPP1CA 
PPP1CB 
PPP1CC 

 
PPP1 inhibition, phosphorylated 

by Pro-directed kinases 
[65, 66] 

PPP1R3A 
GM, RGL, 
PPP1R3, 

PP1G 

  Glycogen metabolism [56, 67, 68] 

PPP1R3B 
GL, 

PPP1R4 
PPP1CA  Glycogen metabolism [69] 

PPP1R3C 
PTG, 

PPP1R5 
  Glycogen metabolism [70-72] 

PPP1R3D PPP1R6 PPP1CC  Glycogen metabolism [68] 

PPP1R3E 
KIAA1443, 
FLJ00089 

  Glycogen metabolism [73] 

PPP1R3F Hb2E   
Glycogen metabolism; Depletion 

resulted in G2 M arrest 
[74] 

PPP1R3G    Glycogen metabolism [33] 
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Regulatory Subunit 
PPP1C 
isoform 

Family Holoenzyme function 
References 
supporting 

function Gene 
Alternatives 

names 

PPP1R7 Sds22 PPP1CB  
Mitosis, regulation of sperm 
function and epithelial cell 

polarity and shape 
[75-77] 

PPP1R8 
NIPP1, 
ARD-1 

PPP1CA 
PPP1CB 
PPP1CC 

 RNA splicing [78, 79] 

PPP1R9A Neurabin I PPP1CA 
Neurabin 

family 

Dendritic spine signaling, 
synaptic plasticity and synaptic 

transmission 
[37, 38, 80, 81] 

PPP1R9B 
Spinophilin, 
Neurabin II 

PPP1CA 
PPP1CB 
PPP1CC 

Neurabin 
family 

Dendritic spine signaling, 
synaptic plasticity and synaptic 

transmission 
[37, 38, 81, 82 , 83] 

PPP1R10 
PNUTS, 

p99, 
CAT53 

PPP1CA  

RNA splicing, chromosome 
decondensation, apoptosis, 

proteasomal degradation and 
retinal synaptic activity 

[84-89] 

PPP1R11 

Inhibitor 3, 
HCG-V, 
TCTE5, 

TCTEX5, 
IPP3 

PPP1CA 
PPP1CC 

 
Inhibits PPP1, apoptosis, sperm 

function 
[90-92] 

 

PPP1R12A 
MYPT1, 
M110, 

MBS, M130 

PPP1CB 
MYPT 
family 

Myosin/actin targeting [55] 

PPP1R12B 

MYPT2, 
PP1bp55, 
M20 splice 

form 

PPP1CB 
MYPT 
family 

Myosin/actin targeting; target 
subunit of myosin phosphatase 

in heart 
[93] 

PPP1R12C p85, LENG3 PPP1CB 
MYPT 
family 

Myosin/actin targeting [94] 

PPP1R13A 
TP53BP2, 
p53BP2, 
ASPP2 

PPP1CA 
PPP1CC 

 Apoptosis [95, 96] 

PPP1R13B 
ASPP1, 

p53BP2-like 
PPP1CA  Apoptosis [97] 

PPP1R14A CPI-17  
PHI 

family 

Inhibits smooth muscle myosin 
phosphatase increasing muscle 

contraction 
[46, 98] 

PPP1R14B PHI-1  
PHI 

family 
Modulates retraction of 

endothelial and epithelial cells 
[46, 99] 

PPP1R14C 
KEPI, 

CPI-17like 
 

PHI 
family 

PKC-dependent PPP1 inhibitor 
regulated by morphine; 

regulation of signaling pathways 
important for drug reward and 

addiction 

[46, 100, 101] 

PPP1R14D 

shorter 
isoform, 
GBPI-1, 

CPI17like 

 
PHI 

family 

Inhibits PPP1 when 
phosphorylated (Brain/Stomach) 

- activated by PKC and 
inactivated by PKA 

[46, 102 ] 

PPP1R15A GADD34 
PPP1CA 
PPP1CB 
PPP1CC 

GADD34 
and 

related 

Protein synthesis, regulation of 
calreticulin exposure, TGFbeta 

signaling 
[57, 103, 104]; 

PPP1R15B CReP PPP1CA 
GADD34 

and 
related 

Protein synthesis [105 , 106] 

PPP1R16A MYPT3 PPP1CB 
MYPT 
family 

Myosin/actin targeting, 
translocation of nuclear 

receptors 
[107 , 108] 

PPP1R16B 
TIMAP, 

ANKRD4 
  

Regulation of pulmonary 
endothelial barrier 

[48] 
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Phosphoprotein phosphatase 1 binding motif 

 

PIPs are structurally unrelated, but most of them share a short, degenerate RVXF-

type docking motif that binds to a hydrophobic groove located on a surface behind the 

PPP1C active site [109]. Frequently, this motif is flanked N-terminally by four or five basic 

residues and C-terminally by four or five acidic residues. However the binding of this motif 

does not change the PPP1 conformation and functions only to anchor the PIPs to PPP1. 

This binding is essential, as it brings PPP1 into close proximity with its PIPs and promotes 

secondary interactions that will contribute to PPP1 isoform selection and regulates the 

activity and substrate specificity of the holoenzyme [39]. Presently, the Hendrickx pattern 

of the RVxF motif is the one in which both the specificity and the sensitivity are relatively 

high compared with the Wakula and Meiselback previous definitions [109-111] 

Other PPP1 binding motifs have also been described. The SILK motif, present in 

PPP1R2 and other regulators, occurs N-terminal to the RVxF motif and binds also to a 

PPP1 hydrophobic groove, different from RVxF, which faces opposite to the catalytic site. 

This motif doesn’t change the conformation of PPP1 and serves for anchoring [65, 112]. A 

motif present in the MYPT family of proteins (PPP1R12 subfamily) is the myosin 

phosphatase N-terminal helicoidal element or MyPhoNE. This motif is also present N-

terminally of RVxF, binds to a shallow hydrophobic cleft of PPP1 and contributes to 

substrate selection [55]. Other motifs already described, but not well studied, include the 

anti-apoptotic family members of Bcl2 motif juxtaposed the RVxF motif that confers an 

apoptotic signature [113, 114] and the C-terminal RARA motif, which is also required, 

besides RVxF, for the binding of PPP1R15A to PPP1C [57] (Table I.3). 

These PPP1 signatures in the different PIPs permit the identification and 

characterization of new PIPs that interact with PPP1, and are a key to understanding the 

myriad of functions of PPP1 and its subcellular role. 
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Table I. 3: PPP1 binding motifs. Information about each PPP1 binding motif known to date is 
presented, as well as, the specific pattern. Examples of PIPs for each motif are also shown. aa, 
amino acid. 

 Motif PIP Reference 

 

RVxF    

motif 

 

[RK]-X(0,1)-[VI]-{P}-[FW] 

X(0,1) is any aa, present or absent 

{P} represents any aa except P 

PPP1R8 

PPP1R10 

[110] 

[HKR]-[ACHKMNQRSTV]-V-[CHKNQRST]-[FW] PPP1R10 [111] 

[K54R34L4]-[K28R26S10T9A8M3V3H4N3Q3]-[V94I6]-

{FIMYDP}-[F83W17] 

{FIMYDP} represents any aa except F/I/M/Y/D/P 

numbers show the respective percentage of each 

aa calculated from all the known PIPs 

PPP1R8 

PPP1R10 

[109] 

SILK     

motif 

K-[GS]-I-L-[RK] -X(7-107)-[RK]-X(0,1)-[VI]-{P}-[FW] 

X(7-107) means that SILK motif needs to be from 7 

to 107 aa of distance from the RVxF motif; 

X(0,1) is any aa, present or absent;  

{P} represents any aa except P 

NOM-1 

WBP11 

[51] 

[115, 116] 

MyPhoNE 

motif 

R-X-X-Q-[VIL]-[KR]-X-[YW] 

X is any aa 

PPP1R12A 

PPP1R12B 

[55] 

PPP1R2 

degenerate 

motif 

R-[KR]-X-H-Y 

X is any aa 

PPP1R2 [112] 

K-S-Q-K-W PPP1R2 [45] 

Other motifs 

[RK]-X(0,1)-[VI]-X-F-X-X-[RK]-X-[RK] 

X(0,1) is any aa, present or absent 

X is any aa 

Bcl-2 

Bad 

Bcl-X 

Bcl-W 

[114] 

[42] 

R-A-R-A PPP1R15A [57] 

R-N-Y-F iASPP [117] 
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Protein phosphatase 1 role in testis and sperm  

 

Several PPP family members have shown to be expressed in cells from testis 

and/or spermatozoa, suggesting an important function in spermatozoa formation (Table 

I.3). All PPP1C isoforms (A/B/C1/C2), are expressed in mammalian testis [118], whereas 

to date only PPP1CA and PPP1CC2 were shown to be present in spermatozoa, with the 

latter being more abundant. Ppp1CC gene null male mice were shown to be infertile due 

to impaired spermatogenesis, leading to the absence of epididymal spermatozoa [119]. 

Although PPP1CA expression was increased and its localization altered, it could not 

substitute for PPP1CC, further suggesting a specific role for the sperm-specific PPP1CC2 

in sperm differentiation and morphogenesis [118]. 

 

Table I. 4: Testis and sperm expression of the main PPP family members. 

Protein 
Phosphatase 

Testis Sperm 

PPP1CA Yes [120] 
Yes [121] Fardilha, 
unpublished data) 

PPP1CB Yes [120] No 

PPP1CC1 Yes [120] No 

PPP1CC2 
Yes, highly abundant 

[15, 16, 120, 122] 
Yes [14, 15, 123] 

PPP2 Yes [124] Yes [123, 125] 

PPP3 Yes [126, 127] Yes [128] 

PPP4 
Yes, highly abundant 

[24, 124] 
ND 

PPP5 Yes [26] ND 

PPP6 
Yes, highly abundant 

[27, 124] 
ND 

PPP7 
Yes, highly abundant 

[28] 
ND 

  Legend: ND, Not determined. 

 



Introduction Chapter I 
 

Centre for Cell Biology  11 
University of Aveiro   

Testes contain hundreds of tightly packed seminiferous tubules, each one 

composed of several layers of peritubular myoid cells. The peritubular myoid cells are 

responsible for the irregular contractions of the seminiferous tubules which propel fluid 

secreted by the supporting Sertoli cells, together with testicular spermatozoa into the 

lumen and through the tubular network [129]. 

Spermatogenesis takes place in the seminiferous tubules and is the process by 

which spermatozoa are produced. It can be divided into three major phases: (1) 

proliferation and differentiation of spermatogonia, (2) meiosis and (3) spermiogenesis 

(transformation of round spermatids into spermatozoa) and spermiation (release of 

spermatozoa from the supporting Sertoli cells) [130, 131]. Interstitial Leydig cells are 

responsible for testosterone production, which is essential for maintenance of 

spermatogenesis.  

In testis, PPP1CC2 is localized in the cytoplasm of secondary spermatocytes and 

round spermatids, as well as elongating spermatids and testicular and epididymal 

spermatozoa, while PPP1CC1 expression is observed mainly in Leydig cells but also 

weakly in all stages of spermatogenesis in both the cytoplasm and nuclei and PPP1CA in 

spermatogonia, peritubular cells, pachytene spermatocytes and interstitial Leydig cells 

[118].  

After spermiation, spermatozoa exit the seminiferous tubules through a system of 

genital ducts and enter the first part of the epididymis. The epididymides are divided, 

morphologically and functionally into caput, corpus and cauda. The sperm mature during 

their passage through the caput and corpus, whereas the cauda functions predominantly 

for storage. Epididymal sperm maturation involves a series of modifications: (1) 

remodeling of the sperm plasma membrane, (2) changes in composition and cellular 

localization of the proteins, (3) alteration of the glycoproteins content and (4) changes in 

pH and in the levels of Ca2+ and cAMP [125, 132, 133]. Sperm maturation involves the 

interaction with proteins that are synthesized and secreted in a region-dependent manner 

from the epididymal epithelium. These maturation steps allow spermatozoa to acquire the 

progressive motility. 

Given that spermatozoa are terminally differentiated cells, essentially devoid of 

transcriptional and translational activity, they are an ideal model system to study the 

regulation of PPP1 in relation to motility and metabolism. Of note, several lines of 

evidence have demonstrated that PPs are direct players in the acquisition of sperm 

movement. Previous results show that PPP1CC2 activity is correlated with motility since 

phosphatase inhibitors were able to induce motility in completely immotile bovine caput 
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epididymal sperm and to stimulate the kinetic activity of mature caudal sperm. Intriguingly, 

these effects were completely independent of calcium and cAMP meaning that PPP1R1 is 

not involved [14, 123].  

Several studies have demonstrated that PPP1CC2 is important in regulating sperm 

motility [14, 76, 134, 135]. In sperm, PPP1CC2 is present along the entire flagellum 

including the midpiece, consistent with a role in sperm motility, but it is also found in the 

posterior and equatorial regions of the head, suggesting a role in the acrosome reaction 

[135]. In Chlamydomonas PPP1C is primarily, but not exclusively, anchored in the central 

pair apparatus, associated with the C1 microtubule and at less extent to the outer doublet 

microtubules, suggesting that PPP1 can control both dynein arms and thereby flagellar 

motility [136]. 

The PPP1 driven endogenous regulation of protein phosphorylation and sperm 

motility, could represent an important mechanism for physiological regulation of a cell that 

encounters dramatically different environments, as it journeys through the seminiferous 

tubules and the female reproductive tract. Previous results [14, 123] provide strong 

support for a novel unifying hypothesis, based on the observation that PPP1 is present in 

sperm and that pharmacological modulation of its activity profoundly affects sperm 

motility. In other cell types, PPP1 has been implicated in the control of diverse processes 

such as cellular metabolism, muscle contraction, mitosis, neurotransmitter release, etc. [1, 

3, 137]. Regulation of these processes involves complex intracellular pathways, initiated 

by activation of distinct receptors and second messenger systems [138]. However, the 

precise role played by STPPs and their regulation, have only recently started to be 

elucidated. The available data demonstrate their highly regulatable nature, contrary to 

previous opinions. One particularly interesting mechanism for controlling PPP1 activity 

involves its inhibition by heat-stable PP inhibitors PPP1R1, and PPP1R2, 

phosphoproteins whose state of phosphorylation controls their inhibitory activity. PPP1R1 

is phosphorylated by cAMP-dependent protein kinase and dephosphorylated by 

calcium/calmodulin-dependent PPP3 [139]. Thus, PPP1 is also involved in the cross-talk 

between the intracellular messengers, calcium and cAMP [138]. 

Furthermore, other maturation steps are acquired by spermatozoa in the female 

tract and prepare them for the fertilization process: capacitation, hyperactivation and 

acrosome reaction [140, 141]. It has already been shown the involvement STPPs in 

hyperactivated motility cAMP-dependent phosphorylation [142]. Also, Visconti and co-

workers have recently shown that inhibition of STPPs induces capacitation-associated 

signaling by tyrosine phosphorylation [143]. 
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Testis and sperm PPP1CC/PIP complexes 

 

The diversity of PPP1 function is achieved by its capacity to form functionally distinct 

multimeric complexes. Significantly, some testis/sperm-specific PIPs have been identified. 

For example, the spermatogenic zip protein 1 (Szp1), a member of the basic helix-loop-

helix family of transcription factors, which binds to PPP1CC2 in mouse testis [144]. 

Overexpression of Szp1 and loss of PPP1CC in the testis show similar phenotypes, such 

as spermatogenic arrest and germ cell apoptosis [145]. Another example is endophilin 

B1t, this testis enriched isoform of endophilin B1a was shown to bind PPP1CC2 but did 

not interact with a mutant form of PPP1CC2, lacking the specific C-terminus, nor with 

PPP1CA [146]. Moreover, the somatic isoform did not interact with any of the PPP1C 

isoforms and the characteristic punctuate expression pattern of endophilin in testis, was 

absent in PPP1CC null mice. Also, endophilin B1t was able to inhibit a recombinant 

PPP1CC2 activity [146]. Other proteins have also been implicated in the regulation of 

PPP1CC2 in testis/sperm either by protecting (14-3-3/YWHA) or inhibiting (PPP1R2-like, 

PPP1R7 and PPP1R11) PPP1CC2 activity during sperm maturation correlating with 

increased spermatozoa motility [15, 125, 135, 144, 147, 148].  

PPP1R2 is capable of inhibiting the catalytic subunit of PPP1 leading to the 

production of a stable PPP1C-PPP1R2 complex. GSK-3 phosphorylates PPP1R2 in the 

complex, relieving the inhibition and producing active PPP1 (Fig I.3). This biochemical 

pathway is likely to be operative in mammalian sperm since preliminary studies have 

identified a PPP1R2-like activity and also the presence of GSK-3 in mammalian sperm 

[14, 123]. 
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Figure I. 3: Illustrative scheme of the proteins involved in the acquisition of sperm motility 
based on PPP1CC2 regulation. AKAPs anchoring seem to modulate PPP1CC2 and PKA 
activities inducing sperm motility and phosphorylation of several proteins. PPP1CC2 and GSK3 
phosphorylation by AKT and an unknown , respectively, lead to their inactivation and their possible 
binding to the bridging molecule 14-3-3, in epididymal cauda. PPP1CC2 is maintained active in 
caput due to the phosphorylation of a PPP1R2-like protein by GSK3. In cauda, GSK3 activity 
lowers and therefore a PPP1R2-like protein inhibits PPP1CC2 leading to sperm motility. PPP1R7 
binds to PPP1CC2 in cauda sperm also inhibiting the phosphatase. In caput, PPP1R7 is prevented 
to inhibit PPP1CC2 due to a p17 unknown protein. Also, a multimeric complex has been identified 
composed by PPP1CC2, PPP1R7, actin and PPP1R11, where PPP1CC2 was inactive. (adapted 
from [149]). 

 

PPP1CC/PPP1R11 complex 

 

PPP1R11/I3 is a potent heat-stable PPP1 inhibitor [90, 150] and is a human 

homologue of the mouse t-complex expressed protein 5 (Tctex5), being genetically linked 

to the male sterility phenotypes of impaired sperm tail development and poor sperm 

motility in t complex mice [151-153]. Tctex5 gene synergistically with Tsga2 gene is a 

candidate for the “curlicue” and for the “stop” sperm phenotypes. The first phenotype is a 

chronic, negative bend of both the flagellar middle-piece and principal piece of 

spermatozoon, while the second phenotype prevents sperm from t-haplotype 

homozygotes from penetrating zona-free egg [154-156]. Tctex5 was shown to be present 
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in sperm protein lysates localizing to nuclei of pachytene spermatocytes, round 

spermatocytes, cytoplasm of Sertoli cells, in testis; cilia, secretion bodies and nuclei of 

epithelial cells and interstitium smooth muscle cells in the epididymis. In epididymal 

mouse spermatozoa Tctex5 is present in the head and principal piece of the tail [154] (Fig 

I.4). These are also the locations where PPP1CC2 is expressed [147]. 

 

 

Figure I. 4: Schematic representation of the subcellular localization of PPP1-PIP complexes in 
spermatozoon (adapted from [149]). 

 

PPP1CC/PPP1R7 complex 

 

A yeast sds22 homologue, PPP1R7, was identified in sperm [76], and inhibits the 

PPP1 catalytic subunit in rat liver nuclei [157]. Consistently, a PPP1R7 homologue was 

also identified in rat testis in association with PPP1CC2 [158]. The expression pattern of 

rat PPP1R7 matches that of PPP1CC2, suggesting that its involvement in 

spermatogenesis is correlated with the control of PPP1CC2 activity. Furthermore PPP1R7 

was also identified in motile caudal spermatozoa as a regulator of PPP1CC2 catalytic 

activity [135]. Additionally, sds22 has consensus sites for phosphorylation by GSK3, PKA 

and CDK2 (calmodulin dependent kinase II), all present in sperm. 

In male germ cells PPP1CC2, PPP1R11, PPP1R7 and actin form a multimeric 

complex in which PPP1CC2 is inactive [159]. The stability of the complex depended on 
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functional PPP1 interaction sites in PPP1R7 and PPP1R11, indicating that PPP1 

mediates the interaction between these two proteins, forming a catalytically inactive 

complex in the germ cell [160]. The function of this complex in sperm motility, if any, still 

needs to be elucidated (Fig I.3). 

 

PPP1CC/14-3-3 complex 

 

PPP1CC2, as well as other PPP1 isoforms, have at the C-terminus a consensus 

TPPR amino acid sequence containing a threonine residue (T311) that can be 

phosphorylated by CDK2, reducing its activity [161-163]. The proportion of phosphorylated 

PPP1CC2 in caudal sperm is higher than in caput epididymal sperm and is localized to 

the posterior region of the sperm head, the equatorial region, implicated in sperm-egg 

binding, and in the principal piece of the sperm tail [164]. Interestingly, CDK2 knockout 

mice are viable but male and female are sterile [165, 166]. Vijayaraghavan et al. proposed 

that regulation of PPP1CC2 activity by CDK2 phosphorylation might be a mechanism for 

developing sperm motility. This might be achieved through binding of PPP1CC2 to the 

bridging molecule 14-3-3. In sperm 14-3-3 binds PPP1CC2 [125] (Fig I.3). The 14-3-3 

protein is highly conserved among eukaryotic cells and acts as an adaptor protein in 

cellular signaling and metabolism. More than 100 binding partners have been identified, 

using affinity chromatography coupled with proteomic analysis [167-170]. 14-3-3 and its 

binding partners are regulators of protein-protein interactions during spermatogenesis 

[171]. It is consistent that 14-3-3 appears to regulate diverse cellular events such as cell 

cycle, apoptosis, protein trafficking, cytoskeleton rearrangements and metabolism [172]. 

The study of 14-3-3 interactome in bull sperm identified many proteins involved in different 

cellular events, from acrosome reaction to metabolism [173]. In particular, GSK3 was 

found to bind 14-3-3 [173, 174] (Fig I.3). Sperm 14-3-3 protein is present in the post-

acrosomal region of the head and the principal piece, similar to PPP1CC2 [125] (Fig I.4). 

As already stated, changes in tyrosine and serine phosphorylation of GSK3 occur in 

parallel with motility stimulation in sperm [175]. The exact functions of 14-3-3 through 

binding to sperm phosphoproteins are still subject of extensive research. 

 

PPP1CC/AKAPs complexes 

 

The cyclic AMP (cAMP)-dependent protein kinase (PKA) is a ubiquitous, 

multifunctional enzyme involved in the regulation of several cellular events. PKA 
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holoenzyme consists of four subunits, two catalytic and two regulatory (RI and RII). 

Subcellular targeting to the vicinity of preferred substrates is a means of restricting the 

specificity of these enzymes [176, 177]. Compartmentalization of PKA is mediated through 

association of its regulatory subunits with A-kinase anchoring proteins (AKAPs) [176]. To 

date, over 40 AKAPs have been identified, and in testis/sperm there are three AKAPs that 

have been directly related to PPP1CC2 (AKAP220, AKPA3 and AKAP4) and many more 

show a similar localization. 

AKAP220/AKAP11 binds PKA and PPP1, being a competitive inhibitor of PPP1 

[178]. In testis, AKAP220 associates with PKA, where it may target the kinase to 

peroxisomes [179]. AKAP220 mRNA is expressed at high levels in human testis and in 

isolated human pachytene spermatocytes and round spermatids [180]. AKAP220 is 

present in human male germ cells and mature sperm and like RIIα, is located in the 

midpiece and is probably associated with cytoskeletal structures [180] (Fig I.4). The 

midpiece associated AKAP220 could serve to anchor PKA and/or PPP1CC2, directly 

regulating the contractile machinery in the sperm axoneme. Furthermore, it has been 

shown that disruption of RII interaction with AKAPs, by membrane-permeable peptides, 

causes the arrest of sperm motility [181]. 

AKAP4/AKAP82 cDNA was first isolated from a mouse testis cDNA-expression 

library [182, 183]. Mouse Akap4 expression was only detected in testis and it was 

determined that transcription is initiated at 20-22 days after birth and the mRNA is present 

in spermatids but not in pachytene spermatocytes [182, 184]. In RNA from testes extracts 

of hamster, guinea pig, rabbit, ram, and human, transcripts that hybridized to the mouse 

Akap4 cDNA were found [184]. AKAP4 protein was synthesized as a precursor present 

throughout the principal piece in testicular sperm. A small peptide corresponding to the 

precursor fragment and a higher molecular weight protein, possibly a phosphorylated form 

of the precursor, are present in epididymal sperm in low amounts. In mouse sperm, 

AKAP4 was detected throughout both the longitudinal columns and the semi-

circumferential ribs of the fibrous sheath [185] (Fig I.4). All these findings correlate with a 

restricted temporal and spatial expression of the AKAP4 protein, present only in 

spermatogenetic cells and the predominant protein in the fibrous sheath of the sperm 

flagellum. Targeted disruption of the Akap4 gene causes absence of sperm motility 

together with a complete lack of fibrous sheath on the principal piece of mature mice 

sperm, causing male mice to be infertile [186]. In spermatozoa, Akap4 gene knockout 

mice that lack flagellar movement, exhibit a significant change in the activity and 
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phosphorylation of PPP1CC2 [147]. This suggests the involvement of AKAP4 in the 

regulation of PPP1CC2 activity in the principal piece of mouse spermatozoa.  

AKAP3/AKAP110, also referred to as FSP95, undergoes tyrosine phosphorylation 

during in vitro capacitation of human sperm. Northern blot analysis of RNA from 50 human 

tissues determined that the transcripts are found only in testis, more specifically in round 

spermatids. Using a rat antiserum to recombinant protein, FSP95 was found only in the 

fibrous sheath and localized to the circumferential ribs of human sperm [187] (Fig I.4). 

Brown et al. reported that AKAP4 anchors AKAP3 and two novel spermatogenetic cells 

specific proteins, Fibrous sheath interacting proteins 1 and 2 (FSIP1 and FSIP2) [188]. 

Given that many AKAPs have been shown to be present in germ cells and localized 

to compartments related to motility where PPP1CC2 is also present they might be 

putatively involved in motility acquisition. 

S-AKAP84 localizes to the midpiece of mouse elongating spermatids and co-

localizes with mitochondria [189] (Fig I.4). Its splice variants D-AKAP-1 [116] and 

AKAP121 [190] were also detected in mouse testis and GC2 germ cells, respectively. 

TAKAP-80, was isolated by screening a rat testis expression library [191]. The 

corresponding protein was detected in rat testis and in purified fibrous sheath fractions 

from rat epididymal sperm (Fig I.4). The levels of protein were higher in mature compared 

to immature rat testis, correlating with the mRNA levels [191]. AKAP28, was detected in 

human testis, and is highly enriched in the axoneme structure (Fig I.4). It is likely to play a 

role in signaling mechanisms necessary for ciliar beating frequency [192]. WAVE1 

localization in spermatocytes and round spermatids coincided with Golgi apparatus, 

whereas in elongated spermatids and testicular sperm localized to the mitochondrial 

sheath [193] (Fig I.4). 

Recent data showed that inhibition of protein phosphatases with calyculin A resulted 

in an enhancement of the phosphorylated state at the activation loop of the PKA catalytic 

subunit in the mouse sperm principal and midpieces [194]. Also, PKA RII and PPP1CC2 

are co-localized in the principal and midpieces. PPP1 and PPP3 suppress full activation of 

PKA, as well as enhancement of the phosphorylated states of other flagellar proteins, in 

order to prevent precocious changes of flagellar movement from the progressive type to 

hyperactivation [194]. 

Together, these findings suggest that the AKAP/PKA/PPP1 complex is really 

important for regulation of sperm motility (Fig I.3). 

Of marked interest is the fact that each PPP1/PIP complex has a specific sperm 

subcellular location (Fig I.4). Clearly PPP1CC2/PIP complexes are essential regulatory 
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components in the signaling transduction cascades involved in sperm motility acquisition 

during epididymal transit. Defects in any component of these signaling cascades will give 

rise to pathological anomalies, leading to male infertility. Therefore, the study of new 

PPP1CC2/PIP complexes in testis and sperm are extremely important in a physiological 

and pathological point of view.  
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Objectives 

The aim of this work was to study new PPP1CC2/PIP complexes in testis and 

sperm and to characterize their important physiological role. 

Therefore, this thesis addresses a previously well known somatic PIP in 

testis/sperm, named PPP1R2 and two new PPP1CC2 testis/sperm specific PIPs that were 

found in a yeast two-hybrid technique using a human testis cDNA library. 

Chapter II comprises two sections in paper format and one section in thesis format. 

In the first section (paper format), the objective was to study the presence of PPP1R2 and 

PPP1R2P3 (PPP1R2 pseudogene 3) proteins in human sperm as well as their specific 

sperm localization. PPP1R2P3 is a new PIP, also designated as I2-L (Inhibitor 2-

Like/PPP1R2P3, NCBI Id: NM_206858) [149, 195]. Further, phosphorylation studies in 

PPP1R2P3 in vitro were also pursued. In the second section (paper format), the objective 

was to study the PPP1R2 pseudogenes using bioinformatics to understand their evolution 

and significance in mammals. In the third section (thesis format), transgenic mice 

expressing human PPP1R2 or PPP1R2P3 were produced to understand the role of these 

proteins in spermatogenesis and sperm maturation. 

Chapter III comprises two sections. The first section (paper format) addresses the 

identification and characterization of a novel dynein light chain, Tctex1d4, in testis and 

sperm as a new binding partner of PPP1CC. In the second section (paper format) 

bioinformatics and molecular biology were integrated to understand Tctex1d4 evolution 

and the RVxF modification that occurred in Pika. 

By unraveling these three new proteins that interact with PPP1CC and are present 

in testis and sperm the thesis aim to provide new insights about PPP1CC2 function in 

these tissues. 
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Introduction 

PPP1CC2 is the only PPP1 isoform highly enriched in sperm [1, 2] present along the 

entire flagellum including the mid-piece, consistent with a role in sperm motility [3, 4]. 

PPP1CC2 direct involvement in sperm motility was consistent with the fact that PPP1 has 

two-fold higher activity in immotile bovine caput epididymal sperm when compared to 

mature motile caudal sperm [2]. Moreover, inhibition of PPP1CC2 activity by okadaic acid 

and calyculin A causes both initiation and stimulation of motility in caput and cauda sperm, 

respectively [2]. 

A mechanism of PPP1 regulation likely to be directly implicated in sperm motility 

involves the long-known PPP1 inhibitor 2 (PPP1R2) and GSK3. A PPP1R2-like activity 

was detected in sperm and was reversed by purified GSK3 [2]. PPP1 and PPP1R2 form a 

stable, catalytically inactive complex. Phosphorylation of rabbit PPP1R2 at Thr73 by 

GSK3 releases PPP1 inhibition [5]. In sperm, GSK3 activity was detected by activation of 

purified PPP1-PPP1R2 holoenzyme, which demonstrated that immotile caput sperm 

contained six-fold higher GSK3 activity than motile caudal sperm [2]. The presence and 

activity of GSK3 in sperm has been further characterized sustaining its role in sperm 

motility regulation [6, 7]. However, the presence and role of the PPP1R2-like entity, which 

would make the regulating bridge between PPP1 and GSK3, has never been confirmed. 

In this Chapter the presence of PPP1R2 in human sperm is for the first time 

demonstrated and its localization characterized (Chapter II.A). Also, a new PPP1R2 

related protein from testis and sperm, named PPP1R2P3, is described for the first time. 

Further, PPP1R2 related processed pseudogenes are extensively characterized being 

their functional relevance discussed in detail (Chapter II.B). Finally, we addressed the 

PPP1R2 and PPP1R2P3 function in spermatogenesis and sperm maturation using the 

mouse transgenic technique (Chapter II.C). 

The results presented clearly demonstrate the relevance of PPP1CC2/PPP1R2-

related protein complexes in sperm function. We have proposed a novel model to explain 

sperm motility acquisition in the epididymis (the structure where sperm matures and 

acquires motility and the capacity to fertilize the oocyte) based on the above mentioned 

complexes. 
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Abstract 

Protein Ser/Thr Phosphatase PPP1CC2 is an alternatively spliced isoform of 

PPP1CC that is highly enriched in testis and selectively expressed in sperm. Inhibition of 

PPP1CC2 by addition of the toxins okadaic acid and calyculin A causes both initiation and 

stimulation of motility in caput and cauda sperm, respectively, making it interesting to 

define endogenous mechanisms for inhibition. A protein inhibitor was previously detected 

in sperm and was neutralized by GSK3 phosphorylation, suggesting it is related to 

PPP1R2. Here we show unequivocally evidence for the presence of PPP1R2 plus a 

related protein, PPP1R2P3, in human ejaculated sperm. Further, in sperm, 

PPP1R2/PPP1R2P3 are phosphorylated in serines residues, Ser121 and Ser122. Also, 

we identified a novel phosphorylated residue, Ser127, by mass spectrometry. Moreover, 

in PPP1R2P3 the key phosphosites are substituted to non-phosphorylated residues, T73P 

and S87R. We show that the novel protein PPP1R2P3 is a heat stable inhibitor of 

PPP1CC, with similar potency as PPP1R2. Furthermore, we show by 

immunocytochemistry and Western blot localization of PPP1CC2 holoenzymes containing 

PPP1R2 or PPP1R2P3 in the head and tail of sperm and in both soluble and insoluble 

fractions. The holoenzymes localized in the head might have an important role in the 

acrosome reaction while the axoneme bound holoenzymes are likely important for the 

control of flagellar motility. A novel model for sperm motility acquisition is proposed in 

which PPP1CC2 is irreversibly inhibited by PPP1R2P3 when it substitutes for PPP1R2 in 

caudal sperm to trigger motility or in the female reproductive tract to initiate hyperactivated 

motility. Thus this work proposes a mechanism for epididymal initiation of sperm motility, 

involving PPP1CC2/PPP1R2 and PPP1CC2/PPP1R2P3 complexes.  
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Introduction 

The reversible phosphorylation of proteins is a major control mechanism involved in 

a wide range of eukaryotic cellular responses. The phosphorylation events occur mostly 

on serine, threonine and tyrosine residues, and the pivotal players are kinases and 

phosphatases. Spermatozoa are specialized cells as they are highly compartmentalized, 

transcriptionally inactive and unable to synthesize new proteins. Phosphorylation plays a 

crucial role in sperm physiology controlling motility, capacitation, motility and acrosome 

reaction [1, 2]. Sperm motility defects are one of the main underlying causes of male 

infertility [2]. The biochemical mechanisms essential for sperm maturation and the 

development of motility are still far from understood, however serine/threonine 

phosphoprotein phosphatase 1 (PPP1) and glycogen synthase kinase-3 (GSK3), are part 

of the regulatory process [3, 4]. Three separate genes (α/A, β/δ/B and γ/C) encode the 

catalytic subunit of PPP1 (PPP1C). PPP1CC undergoes an alternative splicing event 

giving rise to a ubiquitous isoform PPP1CC1 and a testis-enriched and sperm specific-

PPP1CC2 [3, 5]. PPP1CC2 is the only PPP1 isoform highly enriched in bovine, rhesus 

monkey and human sperm [3, 5] being present along the entire flagellum including the 

mid-piece, consistent with a role in sperm motility, and also in the posterior and equatorial 

regions of the head, suggesting a role in the acrosome reaction [2, 6]. PPP1CC2 direct 

involvement in sperm motility was consistent with the fact that PPP1C had two-fold higher 

activity in immotile bovine caput epididymal sperm compared to mature motile caudal 

sperm [3]. Moreover, inhibition of PPP1CC2 activity by okadaic acid and calyculin A 

causes both initiation and stimulation of motility in caput and cauda sperm respectively [3]. 

Homozygous knockout mice for PPP1CC gene (a deletion of both isoforms) lead to 

sterility of male but not female mice. This sterility results from a combination of gross 

structural defects in spermatids that cause apoptosis and lack of spermiation [7, 8]. The 

evolutionary conservation and the importance of serine/threonine phosphatases in 

regulating flagellar motility is highlighted by the involvement of a PPP1 homolog in the 

regulation of rooster sperm motility [9, 10] and by the involvement of a serine/threonine 

phosphatase in the regulation of microtubule sliding velocity in Paramecium and 

Chlamydomonas [11-15]. PPP1 activity towards different substrates is mediated via 

binding to specific regulatory proteins, the PPP1 interacting proteins (PIPs) [16, 17]. The 

increasing diversity of such PIPs and their tissue specificity makes them attractive 

pharmacological targets [17]. A mechanism of PPP1 regulation likely to be directly 

involved in sperm motility involves the long-known PPP1 inhibitor 2 (PPP1R2) and GSK3. 

A PPP1R2-like activity was detected in sperm and was neutralized by phosphorylation 
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with purified GSK3 [3]. PPP1 and PPP1R2 are known to form a stable, catalytically 

inactive complex. Phosphorylation of rabbit PPP1R2 at Thr73 by GSK3 releases the 

inhibition and the complex becomes active [18]. In sperm, assays showed that immotile 

caput sperm contained six-fold higher GSK3 activity than motile caudal sperm [3]. The 

presence and activity of GSK3 in sperm has been further characterized emphasizing its 

role in sperm motility regulation [19, 20]. However, the presence and role of PPP1R2, 

which would make the connection between PPP1 and GSK3, has not yet been confirmed. 

In this work the presence of PPP1R2 in human sperm is demonstrated and its localization 

characterized. Also, a new PPP1R2 isoform, PPP1R2P3, previously assigned as an 

intron-less pseudogene [21], is recovered as a protein for the first time. Further, the 

relevance of these different holoenzymes PPP1CC2/PPP1R2 and PPP1CC2/PPP1R2P3 

in human sperm are discussed.  
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Material and Methods 

 

Yeast two-hybrid 

Methods for yeast two-hybrid screening of a human testis cDNA library using human 

PPP1C have been previously described [22-24]. DNA sequence analysis was performed 

using an ABI PRISM 310 Genetic Analyser (Portugal Applied Biosystems, Porto, 

Portugal). The DNA sequences obtained were compared to the NCBI database, using the 

BLAST algorithm (http://BLAST.ncbi.nlm.nih.gov/). The multiple sequence alignments 

were performed using the ClustalW program from Ensembl [25]. 

 

PPP1R2 and PPP1R2P3 cloning, expression and purification 

The cDNA of PPP1R2 pseudogene 3 (PPP1R2P3) was inserted into the pET28c 

(Novagen, Madison, Wisconsin, USA) expression vector in EcoRI and XhoI restriction 

sites, adding a histidine tag (His-tag) to the N-terminal of the protein. The pET-PPP1R2P3 

construct sequence was verified and transformed into E. coli strain Rosetta (DE3) 

(Novagen, Madison, Wisconsin, USA). The expression of His-tag PPP1R2P3 was induced 

with 1mM IPTG for 3hrs at 37ºC and the protein purified using a Ni-NTA resin (QIAGEN, 

Dusseldorf, Germany) according to the supplier’s instructions. Briefly, the cells were lysed 

in 10mM imidazole, sodium phosphate buffer, pH 8.0, centrifuged at 15000g for 30min at 

4ºC, and the supernatant was applied to the resin. The resin was washed with 20mM 

imidazole and the His-tag PPP1R2P3 was eluted with 500mM imidazole. The eluate was 

further purified from a 12% SDS-PAGE gel. A portion of the lane containing PPP1R2P3 

was stained with coomassie blue and the corresponding band containing the remaining 

protein cut out. The gel band was washed three times with water, cut into smaller pieces 

and 1ml of 100mM Tris-HCl, pH 8.5, 0.1% SDS was added before frozen at -20ºC 

overnight. The slurry was frozen and thawed three times and then passed through a 

0.22μm filter membrane. The gel-free filtrate was then dialyzed against 4x500ml of 10mM 

Tris-HCl, pH 7.5 buffer for 24hrs at 4ºC. The protein concentration of recombinant His-

PPP1R2P3 was determined by BCA® assay (Fisher Scientific, Loures, Portugal). 

PPP1R2P3 were also inserted into the pTACTAC expression vector [26] in the NdeI and 

XbaI restriction sites, the sequence verified and then transformed into Rosetta. The 

expression of PPP1R2P3 was induced with 0.4mM IPTG for 3hrs at 37ºC. The protein 

was partially purified to a bacterial heat extract (recombinant PPP1R2P3) as previously 

described for PPP1R2 [27]. PPP1R2 was also inserted in pTACTAC expression vector 



Chapter II.A Discovery and characterization of two forms of PPP1R2 in human sperm 
 

40  Centre for Cell Biology 
  University of Aveiro 

[26] and recombinant protein purified same way as for PPP1R2P3 (recombinant 

PPP1R2). 

 

Yeast co-transformation with plasmid DNA 

Yeast competent AH109 cells were co-transformed with pACT-PPP1R2P3 and 

pAS2-PPP1CA, pAS2-PPP1CC1, pAS2-PPP1CC2 or pAS2-PPP1CC2end, by the lithium 

acetate method [23, 24, 28]. Afterwards, the transformation mixture was plated on 

selective media containing X--Gal and incubated at 30ºC to check for MEL1 expression 

as indicated by the appearance of a blue color (Clontech, Saint Germain-en-Laye, 

France). 

 

Blot overlay analysis 

For blot overlay analysis, 0.3μg of commercial PPP1R2 (NEB, New England Biolabs 

(UK), Herts, UK) and recombinant His-PPP1R2P3 were resolved by SDS-PAGE and then 

transferred to a nitrocellulose membrane. Blots were overlaid with purified PPP1CC1 or 

PPP1CC2 diluted in Tris buffer saline with Tween-20/bovine serum albumin (25pmol/mL) 

[22, 29] and detected with the antibodies CBC3C [against the C-terminal of PPP1CC, 

detects both isoforms [30]] or CBC502 (specific for the C-terminal of PPP1CC2), both 

raised in rabbit. Immunoreactive bands were revealed by incubating with horseradish 

peroxidase conjugated anti-rabbit secondary antibody and developed by ECL (GE 

Healthcare, Amersham Biosciences Europe GmbH, Freiburg, Germany). 

 

Phosphatase activity assays 

The IC50 values of PPP1R2 and PPP1R2P3 for purified PPP1CC1 and PPP1CC2 

isoforms were determined using [32P]phosphorylase a as substrate. The substrate was 

prepared from phosphorylase b (Sigma-Aldrich Química, S.A., Sintra, Portugal) using [γ-

32P]ATP (3000 Ci/mmol, GE Healthcare, Amersham Biosciences Europe GmbH, 

Freiburg, Germany) and phosphorylase kinase (Sigma-Aldrich Química, S.A., Sintra, 

Portugal) as previously described [31]. An appropriate range of concentrations of 

commercial PPP1R2 and His-PPP1R2P3 were incubated with the purified PPP1C 

subunits and the phosphatase activity determined. The IC50 was calculated using the 

BioDataFit 1.02 software (Chang Bioscience, Castro Valley, California, USA). 
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Phosphorylation of PPP1R2 and PPP1R2P3 

Recombinant PPP1R2, PPP1R2P3 or human sperm heat extract of native 

PPP1R2/PPP1R2P3 (about 200ηg of inhibitor protein in 50mM Tris-HCl pH 7.5, 0.1mM 

EGTA and 0.03% Brij-35) were phosphorylated by GSK-3β or CK2 (Calbiochem, MERCK, 

Darmstadt, Germany) or both as previously described [32]. The phosphorylation reaction 

was run at 30ºC for 90min and then terminated with the addition of 4X SDS loading buffer. 

In separate 12% gels 1/10 of the reaction volume and the remaining were ran. The 1/10 

reaction was analyzed by Western blot and the remaining reaction gel was dried and 

autoradiographed. 

 

Sperm extracts 

Ejaculated sperm was collected from healthy donors by masturbation to an 

appropriate sterile container (informed consents were signed allowing samples to be used 

to scientific purposes). Spermograms were performed by experienced technicians and 

only samples with normal parameters were used [33]. For all methods, sperm was 

washed three times in 1xPBS. For immunoprecipitation sperm was lysed in 1xRIPA buffer 

(radioimmunoprecipitation buffer, Millipore Iberica S.A.U., Madrid, Spain) supplemented 

with protease inhibitors (10mM benzamidine, 1.5μM aprotinin, 5μM pepstatin A, 2μM 

leupeptin, 1mM PMSF), sonicated 3x10sec and centrifuged at 16000g for 20min, at 4ºC. 

The supernatant was collected and heat stable extracts were prepared by immersing the 

sample in a boiling water bath for 30min, chilling on ice for 2min and centrifuging at 

16000g for 20min, at 4ºC. The final supernatant was used in the subsequent steps. For 

Western blot both the supernatant (soluble fraction) and the pellet (insoluble fraction) were 

resuspended in 1% SDS. For the preparation of heads and tails, washed sperm was 

briefly sonicated and the detachment checked by phase contrast microscopy (PH) using 

an Olympus IX81 epifluorescence microscope equipped with appropriate software 

(Olympus Portugal - Opto-Digital Tecnologias, S.A., Lisboa, Portugal). Sperm were 

directly applied onto a sucrose gradient (1.8M, 2.02M and 2.2M) to separate heads from 

tails. In brief, gradient was centrifuged at 5000g for 1hr and fractions corresponding to 

tails and heads collected. Subsequently fractions were centrifuged at 16000g, 10min, to 

collect the pellet free of sucrose and proteins dissolved in 1% SDS. For 

immunocytochemistry, washed sperm were used directly on the coverslips. Human testis 

extracts were also prepared using 1% SDS using the same protocol as for sperm samples 

with the exception of using a tissue homogenizer. 
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Immunoprecipitation 

RIPA supernatant sperm extracts were pre-cleared using Dynabeads® Protein G 

(Life Technologies S.A., Madrid, Spain). Using a direct immunoprecipitation approach, 

1µg of sheep anti-PPP1R2 or rabbit anti-PPP1R2 was pre-incubated with Dynabeads® 

Protein G during 1hr at 4ºC with rotation. After incubation, sperm pre-cleared extracts 

were applied to the antibody-dynabeads complex and then incubated overnight with 

rotation at 4ºC. After washing three times with 1xPBS in 3%BSA for 10min with rotation at 

4ºC, beads were resuspended in loading buffer and boiled. 

 

Mass spectrometry 

For mass spectrometry analysis, immunoprecipitates were resolved by 10% SDS-

PAGE along with purified positive controls. Gels were stained with Coomassie blue 

colloidal (Sigma-Aldrich Química, S.A., Sintra, Portugal). In brief, gels were fixed by a 

fixation solution (40% methanol and 10% acetic acid) during 1hr, washed with distilled 

water and then transferred to the Coomassie blue colloidal staining solution for 1hr. After 

staining, the gels were washed with distilled water and afterwards destained with 25% 

methanol until bands were visualized. 

Bands were excised directly from the gel using a spatula and completely destained. 

In-gel digestion was performed overnight at 37°C with trypsin (Promega, Madison, 

Wisconsin, USA) in 10mM HCl and 50mM ammonium hydrogen carbonate (NH4HCO3) at 

pH 7.8. Resulting peptides were extracted once with 100µl of 1% formic acid (FA), and 

twice with 100µl of 5% FA, 50% acetonitrile (ACN). Extracts were combined and ACN was 

removed in vacuo. For LC-MS analysis, a final volume of 40µl was prepared by addition of 

1% FA. Electrospray tandem mass spectrometry (ESI-MS/MS) was performed on a 

Orbitrap Velos instrument (Thermo Scientific, Bremen, Germany) Fragment ions were 

generated by low-energy collision-induced dissociation (CID) on isolated ions with a 

fragmentation amplitude of 0.5 V. MS spectra were summed from four individual scans 

ranging from m/z 300-1500 with a scanning speed of 8.100 (m/z)/s. MS/MS spectra were 

a sum of two scans ranging from m/z 100-2800 at a scan rate of 26.000 (m/z)/s. 

Generated data were imported to ProteinScapeTM, a proteomics data platform (Bruker 

Daltonik GmbH, Bremen, Germany, [34]) and analyzed using MASCOT (version 2.2.0, 

Matrix Science, London, UK, [35]) search algorithm with search parameters as follows: 

precursor ion tolerance of 1.2 and 0.3 Da tolerance for MS/MS spectra. Proteins were 

considered to be identified if the Mascot score (ProteinScapeTM) was higher than 65. 
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Western blotting 

Extracts were mass normalized using BCA® assay (Fisher Scientific, Loures, 

Portugal). Immunoprecipitates and extracts were resolved by 10% SDS-PAGE. Proteins 

were subsequently electrotransferred onto nitrocellulose membranes and 

immunodetected with the appropriate antibodies, using ECL chemiluminescence (GE 

Healthcare Spain, Madrid, Spain). The primary antibodies used in this study included 

sheep polyclonal anti-PPP1R2 (1:100), the rabbit CBC502 (1:2000, against the C-terminal 

of PPP1CC2), the rabbit CBC3C (1:1000, against the C-terminal and detects both 

PPP1CC isoforms) and the loading controls mouse monoclonal anti-β-tubulin (1:500, Life 

Technologies S.A., Madrid, Spain) and mouse monoclonal acetylated-α-tubulin (1:2000, 

Life Technologies S.A., Madrid, Spain). The secondary antibodies used were horseradish 

peroxidase-conjugated anti-rabbit (1:5000), anti-sheep (1:1000) and anti-mouse (1:5000) 

IgGs for enhanced chemiluminescence (ECL, GE Healthcare, Amersham Biosciences 

Europe GmbH, Freiburg, Germany) detection. 

 

Immunocytochemistry 

An aliquot of washed sperm (25µl) was placed onto a glass coverslip pre-coated 

with 100μg/ml poly-L-ornithine, and dried at room temperature, in a six-well plate 

containing one coverslip per well. To each well 1ml of 4% paraformaldehyde in 1xPBS 

was gently added and left to stand for 10min. Subsequently, sperm were washed twice 

with 1ml 1xPBS for 10min. For permeabilization, 1ml of 1:1 methanol/acetone solution 

was added for 2min and then the specimens washed twice with 1ml 1xPBS for 10min and 

blocked for 1hr with 3% BSA in 1xPBS, before incubation with primary antibodies (rabbit 

CBC502, 1:250 and sheep anti-PPP1R2, 1:100) for 2hrs at RT. After three washes with 

1xPBS, the fluorescent labeled secondary antibodies anti-rabbit Texas-Red, 1:300 

(MolecularProbes, Eugene, USA) and anti-sheep FITC, 1:50 (DAKO, Glostrup, Denmark) 

were added and the coverslips incubated for 2hrs. Finally, three washes with 1xPBS were 

performed and coverslips were mounted on microscope glass slides with one drop of anti-

fading reagent containing DAPI for nucleic acid staining (Vectashield, Vector Laboratories 

Burlingame, California, USA). Images were acquired using an Olympus IX81 

epifluorescence microscope and digital camera, equipped with appropriate software 

(Olympus Portugal - Opto-Digital Tecnologias, S.A., Lisboa, Portugal). 
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2D-PAGE analysis 

The human sperm heat stable extracts (hsPPP1R2/PPP1R2P3) or 

hsPPP1R2/PPP1R2P3 plus 10ηg of recombinant PPP1R2 were acetone precipitated and 

the pellets were resuspended in 250µl of 2D rehydration solution (8M Urea/ 2M Thiurea/ 

2% CHAPS/ 0.002% of bromophenol blue) and supplemented with 2.5μl of IPG buffer (in 

the 4-7 pH range) and 14mg of DTT. The samples were pipetted into a strip holder and 

the electrophoresis was started (1h at 30V, 2h at 150V, 1h at 500V, 1h at 1000V and 2h at 

8000V). After the second dimension on 12% gels, samples were analyzed by Western 

blot. 

 

Dephosphorylation of human sperm PPP1R2/PPP1R2P3 

Human sperm PPP1R2 extracts were incubated overnight with either protein 

tyrosine phosphatase 1B (Upstate, Millipore Iberica S.A.U., Madrid, Spain) at 37ºC, calf 

intestinal phosphatase (NEB, New England Biolabs (UK), Herts, UK) at 37ºC or 

PPP1CC1, at 30ºC, with the respective assay buffers. The reactions were stopped with 

the addition of 4x SDS loading buffer and analyzed by Western blot. 
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Results and Discussion 

 

Identification of PPP1R2P3 - a novel PPP1R2 isoform in testis 

To identify regulatory subunits of PPP1CC1 and PPP1CC2 these isoforms were 

used as baits to screen a human testis cDNA library by yeast two-hybrid. From the 

PPP1CC1 screening, one of the 120 positive clones encoded the complete coding 

sequence of a novel isoform of the known PPP1C regulator known as PPP1R2 or inhibitor 

2 (I2). While PPP1R2 is present in chromosome 3 and is encoded by 6 exons, PPP1R2P3 

is an intronless gene and therefore was designated as a probable pseudogene by both 

NCBI and Ensembl databases. This clone has been deposited in the GenBank database 

under the ID:JF438008.1 [2, 24]. The clone is located in chromosome 5 and aligns to the 

sequence ID:NR002168, classified as PPP1R2 pseudogene 3 (PPP1R2P3). PPP1R2P3 

mRNA was also present in human testis cDNA libraries by the Mammalian Gene 

Collection (MGC) program (nucleotide ID: BC066922; protein ID: Q6NXS1) [36]. By 

searching Unigene from NCBI for PPP1R2P3 specific expressed sequence tags (ESTs) 

seven ESTs were obtained, three of them from testis, two from brain and one from lung. 

Taken together, our results, the ESTs, and the MGC results [36], so far, five independent 

ESTs were found which support the fact that PPP1R2P3 is indeed a testis-expressed 

gene and not a pseudogene. 

 

PPP1R2P3 has only 16 nucleotide substitutions (92.2%, identity), which correspond 

to 9 amino acid changes (95%, identity) in the translated sequence compared to PPP1R2. 

Comparing the PPP1R2P3 protein sequence with that of the PPP1R2 in ClustalW2, we 

clearly show that all the PPP1C binding regions are maintained (Figure II.A. 1). PPP1R2 

interaction with PPP1C involves tow primary motifs, 145KLHY148 and 43KSQKW47. The first 

motif interacts at the catalytic center of PPP1C, displacing the essential metal ions, 

inducing rapid inhibition and slower inactivation of PPP1C. The later motif binds to the 

PPP1C hydrophobic groove. Other points of contact in PPP1R2 are the N-terminal SILK 

motif (12KGILK16, in humans) that possibly initiates the binding, and the C-terminal acidic 

stretch, required for reaction with GSK3 [32, 37, 38]. GSK3 functions in the indirect 

activation of PPP1C holoenzyme [39]. 

We found important differences between PPP1R2 and PPP1R2P3, in that 

phosphorylation sites for GKS3 (Thr73) and CK2 kinases (Ser87) are altered to Pro and 

Arg, respectively (Figure II.A. 1). These residues have key roles in PPP1 regulation by 

PPP1R2. Phosphorylation of rabbit PPP1R2 at Thr73 by GSK3, releases the inhibition 
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and the complex PPP1R2/PPP1C becomes active [18]. Additionally, the phosphorylation 

of PPP1R2 by GSK3 is enhanced when Ser87, 121 and 122 are also phosphorylated by 

CK2, particularly Ser87 [32, 40].  

 

 

Figure II.A. 1: ClustalW2 alignment of PPP1R2 and PPP1R2P3. Protein sequences for PPP1R2 
and PPP1R2P3 were obtained from Uniprot database. Sequences were submitted to a ClustalW2 
alignment. Important motifs/regions for PPP1R2/PPP1R2P3 binding to PPP1C are shown in boxes. 
Important phosphorylation sites are indicated with black arrows above the residues and with the 
respective known kinase. * represent high conservation, : and . represent low conservation in which 
the substituted residue has respectively more and less similar properties. 

 

PPP1R2P3 interacts and inhibits PPP1C 

To rigorously validate the yeast two-hybrid result we re-confirmed the PPP1R2P3 

interaction with different PPP1C isoforms. The sequential yeast co-transformation, 

showed the interaction of PPP1R2P3 with PPP1CA, PPP1CC1 and PPP1CC2 and the 

unique C-terminal of PPP1CC2 (Figure II.A. 2A). Since in yeast co-transformation the 

interaction is forced and happens inside the nucleus this might explain the apparent 

unspecificity toward the PPP1 isoforms. In vivo, the PPP1 isoforms have different 

tissue/cellular and subcellular localizations [41, 42] that may determine the fate of 

PPP1R2P3 interaction with specific PPP1C isoforms. In order to compare the binding of 

PPP1R2 and PPP1R2P3 to PPP1CC isoforms, and demonstrate the interaction as direct, 

a blot overlay was performed (Figure II.A. 2B). A blot containing the same amount of 

commercial PPP1R2 or His-PPP1R2P3 was incubated with PPP1CC1 or PPP1CC2 and 

the interaction detected using the CBC3C and the CBC502 antibodies, respectively 

(Figure II.A. 2B). The binding of PPP1R2P3 to both PPP1CC isoforms was confirmed and 

the binding was similar as to PPP1R2. 
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Figure II.A. 2: Interaction of PPP1R2P3 with different PPP1 isoforms. A. Sequential 
transformation of yeast AH109 with bait plasmid (pAS2-PPP1CA, pAS2-PPP1CC1, pAS2-
PPP1CC2, or pAS2-PPP1CC2end) and the prey plasmid pACT2-PPP1R2P3. pAS2-PPP1CC2end 
is the unique C-terminal tail of PPP1CC2 produced by alternative splicing of the PPP1CC gene. B. 
Overlay Western blot detection of PPP1R2 and PPP1R2P3 and PPP1CC1 and PPP1CC2. 
Commercial PPP1R2 and His-PPP1R2P3 were separated by SDS-PAGE, transferred to 
nitrocellulose and overlaid with recombinant PPP1CC1 or PPP1CC2, as indicated. Western blotting 
was performed with the respective specific antibodies. 

 

Since PPP1R2 is a potent heat stable inhibitor of PPP1 in the nanomolar range [27], 

we decided to determine if PPP1R2P3 is heat stable and if it exhibited PPP1 inhibitory 

activity, and if so, what was the potency compared to that of PPP1R2. We determined the 

IC50 values of recombinant His-PPP1R2P3 for the PPP1CC isoforms using the standard 

phosphorylase phosphatase assay [31]. Results show that PPP1R2P3 is a potent heat 

stable inhibitor of PPP1C with a dose-response curve similar to the commercial PPP1R2 

(Figure II.A. 3A) and IC50 values in the subnanomolar range (Figure II.A. 3B, PPP1CC1, 

0.73 ± 0.10 nM and PPP1CC2, 0.09 ± 0.08 nM). 
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Figure II.A. 3: PPP1R2 and PPP1R2P3 inhibit PPP1CC. A. Graphical representation of 
PPP1CC1 and PPP1CC2 inhibition curves by commercial PPP1R2 and His-PPP1R2P3, using 

phosphorylase a as substrate. B. Table showing the comparison of PPP1CC isoforms IC50s by 
PPP1R2 and PPP1R2P3 using the phosphorylase phosphatase assay.

 a 
The values are expressed 

as the mean ± S.E.M. of at least three independent experiments. 

 

PPP1R2P3 is not phosphorylated by GSK3 

It is known that phosphorylation of PPP1R2 at Thr73 (in rabbit) by GSK3, releases 

the inhibition of PPP1C and the complex PPP1C/PPP1R2 becomes active [18]. Also, 

phosphorylation by CK2 in the serines 87, 121 and 122 enhances Thr73 phosphorylation 

[32, 40]. The absence of the GSK3 phosphorylation site, Thr73, and of the CK2 

phosphorylation site, Ser87, in PPP1R2P3 led us to investigate the phosphorylation of 

PPP1R2P3 by these kinases. Both PPP1R2 and PPP1R2P3 were incubated with GSK3 

or CK2, or both, in the presence of radioactively-32P-labeled ATP. PPP1R2 is known to 

be a poor substrate for GSK3 in vitro, but if phosphorylated by CK2, synergistic 

phosphorylation by GSK3 can be observed [32]. In our hands this occurred with 

recombinant PPP1R2 (Figure II.A. 4, first panel). However, under the same conditions, no 

PPP1R2P3 phosphorylation by GSK3 was detected and the phosphorylation in the 

presence of both kinases was the same as with CK2 alone (Figure II.A. 4, second panel). 

The results are consistent with the T73P substitution and indicate there is no other site for 

GSK3 phosphorylation in PPP1R2P3. 
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Figure II.A. 4: Comparison of PPP1R2 and PPPR2P3 phosphorylation by GSK3 and CK2. 
Recombinant PPP1R2 and PPP1R2P3 were incubated in kinase buffer with reactive ATP (0); or in 
the presence of GSK3β kinase (G), or CK2 kinase (C); or both kinases (G/C), for 90min at 30

o
C. 

Protein phosphorylation was detected by autoradiography (
32

P) following SDS-PAGE. 
Immunoreactivity detected with a specific sheep anti-PPP1R2 antibody is shown for comparative 
purposes. 

 

PPP1R2 and PPP1R2P3 are present in human ejaculated sperm 

Based on biochemical studies it was suggested that sperm PPP1CC2 is regulated 

by a PPP1R2-like activity [3, 5]. However, definitive evidence for the presence of PPP1R2 

in spermatozoa has not been reported. The PPP1R2 mRNA of 1.2kb, 1.4-1.7kb, 2.4-2.7kb 

and 4kb in testis have previously been described in rat and rabbit [32]. These messages 

strictly correspond to the polyadenylation signals identified by bioinformatics. Furthermore, 

a new highly expressed testis-specific and presumably spliced 0.9-1.1kb message from 

the PPP1R2 gene was also found in rabbit and rat. This message was only detected after 

50 days and not before 20 days old rats [32, 43]. Efforts to identify PPP1R2 at the protein 

level in testis and sperm have proven to be difficult because of the low amount of protein 

in soluble extracts and the quality of the available antibodies. PPP1R2 is an intrinsically 

unstructured protein (IUP) with a high proportion of disorder inducing residues versus few 

hydrophobic residues [38, 44, 45]. Since SDS binds to hydrophobic amino acids, proteins 

that have few, such as PPP1R2 (predicted, 23kDa), will run in SDS-PAGE at a position 

corresponding to a higher molecular weight than that predicted by the primary sequence 

(32kDa, for PPP1R2) [46, 47]. Also, PPP1R2P3 has the same predicted molecular weight 

of PPP1R2 and in SDS-PAGE migrate at the same position, 32kDa (Figure II.A. 2B). To 

bypass the low abundance and take advantage of PPP1R2 being heat stable, generally 

heat stable fractions followed by protein precipitation are used to concentrate the samples 

[48]. So far only one report showed successful identification of PPP1R2 in heat stable 

extracts of bull testis and mouse testis and sperm using a PPP1R2 antibody (rabbit anti-

PPP1R2, see materials and methods) raised in rabbit against an affinity-purified peptide 

(135REKKRQFEMKRKLH148 from the mouse sequence) [49]. 
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We used a sheep polyclonal anti-PPP1R2 antibody, raised against purified rabbit 

PPP1R2 as immunogen [46, 50-55] which detected PPP1R2P3, and we observed a band 

around the expected size (32kDa) in testis and sperm 1% SDS extracts (Figure II.A. 5A). 

Also, to demonstrate the presence of PPP1CC in the same extracts, an antibody against 

the C-terminus of PPP1CC was used (CBC3C). We detected in testis two bands that 

correspond to PPP1CC1 and PPP1CC2, while only one band, PPP1CC2, was detected in 

sperm, as expected [3]. Moreover, since PPP1R2 and PPP1R2P3 are heat stable PPP1C 

inhibitors, we prepared heat stable extracts by boiling RIPA supernatant extracts. A band 

corresponding to PPP1R2/PPP1R2P3 was detected in the heat stable extract at the 

expected size, 32kDa (Figure II.A. 5B, second lane). 

 

 

Figure II.A. 5: PPP1R2/PPP1R2P3 is present in human testis and ejaculated sperm. A. A 
human testis and sperm screening (50µg) of PPP1R2/PPP1R2P3 and PPP1CC isoforms was 
performed using sheep anti-PPP1R2 and CBC3C antibodies. Extracts were prepared in 1%SDS. β-
Tubulin was used as loading control. B. PPP1R2/PPP1R2P3 was immunoprecipitated from a 
human sperm heat stable extract with sheep anti-PPP1R2 antibody followed by Western blotting 
with the same antibody. Recombinant His-PPP1R2P3 (50ηg) and sperm lysate before boiling 
(soluble fraction) were used as controls. PPP1R2 was immunoprecipitated using dynabeads 
protein G. IP, immunoprecipitated. 

 

To unequivocally confirm the existence of PPP1R2 and the new PPP1R2P3 isoform 

in human sperm we adopted a innovative strategy, trying to bypass the problem of the 

aberrant way PPP1R2/PPP1R2P3 migrate in SDS-PAGE and the difficulty of past work to 

detect this protein in sperm. We performed an immunoprecipitation of 

PPP1R2/PPP1R2P3 using the PPP1R2 antibodies from five independent human 

ejaculated sperm samples (four using the sheep anti-PPP1R2 and one using the rabbit 

anti-PPP1R2) followed by mass spectrometry analysis. Immunoprecipitation was 

performed using human ejaculate heat stable extracts to further concentrate the protein. 

We were able to immunoprecipitate sufficient amount of PPP1R2/PPP1R2P3 for detection 

of protein peptides by mass spectrometry (Table II.A. 1). Using the Orbitrap Velos mass 



Discovery and characterization of two forms of PPP1R2 in human sperm Chapter II.A 
 

Centre for Cell Biology  51 
University of Aveiro   

spectrometer we were able to identify 41 MSMS spectra corresponding to 11 different 

peptides of PPP1R2/PPP1R2P3. From these, 5 MSMS spectra corresponding to 2 

peptides match unequivocally with PPP1R2 and 3 MSMS spectra corresponding to 1 

peptide match with PPP1R2P3, with the rest of them matching to both (Table II.A. 1 and 

Figure II.A. 6). Taking into consideration peptides matching to both and the specific ones 

for each protein, the sequence coverage obtained was 63.9% for PPP1R2 and 56.6% for 

PPP1R2P3. Also, the mascot score levels for each protein were near 600 (in addition, 

spectra were manually evaluated). For the first time both PPP1R2 and PPP1R2P3 were 

recovered from the same extract of human sperm, using two different antibodies. 

 

 

Figure II.A. 6: Schematic representation of the alignment between PPP1R2 and PPP1R2P3 
where the peptides obtained in the mass spectrometry are shown. The sequences for 
PPP1R2 in dark grey and PPP1R2P3 in light grey are shown in rectangles (see ClustalW2 
alignment in figure 1). Boxes represent the important PPP1 binding regions. Black arrows show 
phosphorylation sites and the respective known kinase is indicated. Black vertical bars represent 
the residues in PPP1R2P3 that are different from PPP1R2. Black bars below the protein 
sequences show the coverage of the peptides obtained by mass spectrometry. Black trace bar 
indicate the peptide that allowed us to distinguish PPP1R2P3 from PPP1R2. 
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Table II.A. 1: Peptides identified by Orbitrap Velos mass spectrometry for PPP1R2, PPP1R2P3 or 
for both and for PPP1CC2, after immunoprecipitation of human sperm samples with sheep or rabbit 
anti-PPP1R2 antibodies. aa, amino acids; pI, isoelectric point. 

 

Mass spectrometry data of the same immunoprecipitates showed that PPP1CC2 

was also present. Five peptides out of 10 MSMS spectra were identified that matched 

Protein 
Name 

Uniprot ID 
MW     
(Da) 

pI 
Protein 
size (aa) 

Coverage 
Mascot 
score 

PPP1R2 IPP2_HUMAN 23,015 4.64 205 22.0% 74.12 

Peptide 
Range 

(start-end) 
Number of 

spectra 
m/z 

meas. 
z 

Mascot 
score 

K.WDEMNILATYHPADKDYGLMK.I 47 - 67 3 848,39 3 47,40 

K.TSTTSSMVASAEQPRGNVDEELSK.K 19 - 42 2 847,40 3 26,72 

Protein 
Name 

Uniprot ID 
MW     
(Da) 

pI 
Protein 
size (aa) 

Coverage 
Mascot 
score 

PPP1R2P3 IPP2M_HUMAN 23,048 4.82 205 7.3% 48,95 

Peptide 
Range 

(start-end) 
Number of 

spectra 

m/z 
meas. 

z 
Mascot 
score 

K.WDEINILATYHPADK.G 47 - 61 3 595,96 3 48,95 

Protein Name 
MW     
(Da) 

pI 
Protein 
size (aa) 

Coverage 
Mascot 
score 

Common to both PPP1R2 and PPP1R2P3    49.3% 546.34 

Peptide 
Range 

(start-end) 
Number of 

spectra 

m/z 
meas. 

z 
Mascot 
score 

R.KLAAAEGLEPK.Y 103 - 113 7 563,83 2 70,38 

R.IQEQESSGEEDSDLSPEER.E 116 - 134 5 1082,46 2 117,82 

K.LAAAEGLEPK.Y 104 - 113 5 499,78 2 63,21 

K.LHYNEGLNIK.L 146 - 155 4 400,88 3 53,17 

R.KLHYNEGLNIK.L 145 - 155 4 664,87 2 51,25 

K.LHYNEGLNIKLAR.Q 146 - 158 2 514,29 3 23,57 

R.IQEQESSGEEDSDLSPEEREK.K 116 - 136 2 807,69 3 59,32 

K.DLHDDDEDEEMLETADGESMNTEESNQG

STPSDQQQNK.L 
164 - 201 1 1434,23 3 30,63 

K.YRIQEQESSGEEDSDLSPEER.E 114 - 134 1 828,70 3 11,42 

K.LAAAEGLEPKYR.I 104 - 115 1 439,91 3 15,97 

K.TSTTSSMVASAEQPR.G 19 - 33 1 784,86 2 49,60 

Protein 
Name 

Uniprot ID 
MW     
(Da) 

pI 
Protein 
size (aa) 

Coverage 
Mascot 
score 

PPP1CC2 PP1G_HUMAN 38,518 5.78 337 15% 252,57 

Peptide 
Range 

(start-end) 
Number of 

spectra 

m/z 
meas. 

z 
Mascot 
score 

R.VASGLNPSIQK.A 315 - 325 5 557,32 2 54,76 

R.GVSFTFGAEVVAK.F 222 - 234 2 656,35 2 72,94 

K.NVQLQENEIR.G 27 - 36 2 621,83 2 42,11 

K.YPENFFLLR.G 114 - 122 1 599,82 2 39,6 

K.LNIDSIIQR.L 7 - 15 1 536,31 2 43,16 
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PPP1CC2 with 15% coverage and a protein MASCOT score higher than 200 (manually 

checked). This indicates that PPP1CC2 binds to PPP1R2/PPP1R2P3 in human 

spermatozoa (Table Table II.A. 1). 

Phosphorylation of Thr73 by GSK3 renders the PPP1R2/PPP1C complex active and 

this phosphorylation is enhanced when Ser87, 121 and 122 are also phosphorylated by 

CK2, particularly Ser87 [32, 40]. Based on past biochemical studies, the current 

hypothesis is that PPP1R2 is phosphorylated at Thr73 leading to activation of the 

PPP1R2/PPP1CC2 complex and sperm immotility in caput epididymis. In contrast in 

cauda epididymis and in ejaculated sperm the PPP1 complex is inactive leading to a 

motile sperm [3, 5]. 

In extracts from ejaculated sperm, three independent peptides show post-

translational modifications, identified as phosphorylations at Ser121, Ser122 and Ser127. 

However, they could not be assigned to either PPP1R2 or PPP1R2P3 given the fact that 

both proteins are identical in that region. To our knowledge, this is the first time that a 

phosphorylation in Ser127 is reported for PPP1R2/PPP1R2P3. No tyrosine or threonine 

phosphorylations were identified. The peptides obtained with phosphorylations correspond 

to only 7% of the total number of obtained peptides strongly supporting the fact that in the 

majority of the PPP1R2/PPP1R2P3 are not phosphorylated, in accordance to the model 

proposed above. 

Peptides have already been misassigned to PPP1R2P3 protein by mass 

spectrometry in two independent reports [56, 57]. Protein acetylation in Ala2 and two 

phosphorylations in Ser121 and Ser122 were observed by high throughput MS analysis in 

human Jurkat T cell leukemia and embryonic kidney (HEK293) cell lines [56, 57]. In Figure 

II.A. 1 and Figure II.A. 6 it is seen that in these regions (Ala2, Ser121 and Ser122) both 

PPP1R2 and PPP1R2P3 are similar and so, the peptides assigned to PPP1R2P3 may 

well be from PPP1R2. So, for the first time we have shown unequivocally that PPP1R2P3 

pseudogene is in fact transcribed and translated, being present in human mature sperm. 

 

PPP1R2 subcellular-localization in human spermatozoa 

To further pursue the PPP1R2/PPP1R2P3 presence in sperm we studied its 

subcellular localization and co-localization with PPP1CC2 in human mature spermatozoa. 

We performed immunocytochemistry experiments using the sheep anti-PPP1R2 and 

CBC502 antibodies (Figure II.A. 7). 
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Figure II.A. 7: Co-localization of PPP1CC2 and PPP1R2/PPP1R2P3 in morphologically 
normal and abnormal spermatozoa. Human spermatozoa were labeled with rabbit anti-
PPP1CC2 and sheep anti-PPP1R2 antibodies, and specific secondary antibodies conjugated with 

Texas-Red and FITC fluorophores, respectively. A. Negative control using only the fluorescence 
labeled secondary antibodies. B. Normal spermatozoa. C. Abnormal tail spermatozoa. D. Abnormal 
mid-piece spermatozoa. E. Abnormal head spermatozoa. F. Multiple abnormalities spermatozoa. 
Phase contrast (PH). Scale bar=20µm. 

 

Results showed that PPP1R2/PPP1R2P3 are present along the flagellum, in the 

mid-piece, principal piece, except the end-piece, and also in the head, more specifically in 

the equatorial and post-acrosomal regions (Figure II.A. 7B). PPP1CC2 localization is also 

similar, co-localizing to the same regions as seen with PPP1R2. Furthermore, a negative 

control using only secondary antibodies showed that this localization pattern is specific 

(Figure II.A. 7A). The PPP1CC2 localization is also corroborated by a previous report [6] 

and the localization is consistent with its role in sperm forward and hyperactivated motility 

and possibly in acrosome reaction [3-5, 58-60]. We also checked if in sperm with 

abnormalities the sub-localization patterns of both proteins remained the same (Figure 

II.A. 7 C-F). In sperm with only one type of morphological defect either in the tail, mid-
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piece or head, no changes were observed for both proteins [61]. However in sperm with 

multiple abnormalities it appears that PPP1R2/PPP1R2P3 is relocated to the head, which 

does not happen with PPP1CC2 expression pattern. Although this observation needs 

further examination, this differential staining could be the basis for a novel biomarker for 

sperm with multiple defects (Figure II.A. 7, panel D-G). To further reconfirm the 

immunolocalization data, RIPA soluble and insoluble extracts were resolved by SDS-

PAGE (Figure II.A. 8A). The results showed that PPP1R2/PPP1R2P3 is mainly present in 

the soluble extracts. Although RIPA lysis buffer is a stringent buffer we still see some 

PPP1R2 protein in the insoluble fraction. In contrast, PPP1CC2 is present in both 

fractions but more abundantly in the pellet fraction. These results show that PPP1CC2 is 

tightly attached to the axoneme. 

Furthermore tail and head preparations were also made using a sucrose gradient. In 

this separation although heads are kept intact, tails are demembranated and only the 

axoneme structure is maintained, thus all soluble proteins present in the tail are removed. 

By Western blotting we demonstrate that both PPP1R2/PPP1R2P3 and PPP1CC2 are 

present in tail and head and in similar amounts (Figure II.A. 8B). This result is important to 

show that indeed PPP1R2/PPP1R2P3 is associated with the tail, probably with PPP1CC2, 

but its binding could be abolished using RIPA buffer. That is PPP1CC2 is probably bound 

to the axoneme along with PPP1R2/PPP1R2P3. A previous report has shown that PPP1 

is anchored to Chlamydomonas axoneme in the central pair apparatus, associated with 

the C1 microtubule and at less extent to the outer doublet microtubules, suggesting that 

PPP1 can control both dynein arms and thereby flagellar motility [62]. This data correlates 

with what was obtained from the immunocytochemistry and Western blot results (Figure 

II.A. 7 and Figure II.A. 8), where both proteins were shown to be present in head and tail. 
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Figure II.A. 8: PPP1R2/PPP1R2P3 are present in human testis and sperm extracts. A. 
PPP1R2/ PPP1R2P3 and PPP1CC2 presence in the RIPA supernatant (soluble fraction) and pellet 
(insoluble fraction) sperm lysates has been performed using sheep anti-PPP1R2 and rabbit anti-
PPP1CC2 antibodies. 100µg of both fractions were loaded in a SDS-PAGE gel. Acetylated α-
tubulin was used as loading control. B. A human sperm sample (2x10

8
 sperm cells) was sonicated 

to disrupt head and tail bond, and subjected to a sucrose gradient. Both pools were verified by 
phase contrast (PH). 100µg of both fractions were loaded in a SDS-PAGE gel. After transfer, blot 
was probed with sheep anti-PPP1R2 and rabbit anti-PPP1CC2 antibodies. Acetylated α-tubulin 
was used as loading control. 

 

 

Phosphorylation of PPP1R2/PPP1R2P3 in Human sperm 

Western blot of human sperm heat stable extract (hsPPP1R2/PPP1R2P3) revealed, 

depending on the samples, two bands migrating above both purified PPP1R2 and 

PPP1R2P3 (Figure II.A. 9A). 
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Figure II.A. 9: Western blot analysis of endogenous PPP1R2/PPP1R2P3 from human sperm. 

A. Comparison of endogenous human sperm PPP1R2/PPP1R2P3, with recombinant PPP1R2 and 
PPP1R2P3, using sheep anti-PPP1R2 antibody. hsPPP1R2, heat stable human sperm extract. 

Recombinant PPP1R2P3 and PPP1R2 are shown as positive controls. B. Anti-PPP1R2 Western 
blot of 2D separation of hsPPP1R2 human sperm extract. Left panel, heat stable human sperm 

extract; right panel, heat stable human sperm extract supplemented with recombinant PPP1R2. C. 
hsPPP1R2 was incubated in the presence of different phosphatases, in the respective buffers at 
30ºC for 3hrs. 0, no phosphatase, control; PTP, incubation with Protein Tyrosine Phosphatase 1B; 
CIP, incubation with Calf Intestinal Phosphatase; PPP1C, incubation with PPP1CC1. Recombinant 

PPP1R2 is shown as positive control. D. hsPPP1R2 was incubated in the presence of GSK3 (G) or 
CK2 (C), or both (G/C), as previously described. Resulting changes in protein migration, probably 
reflecting alterations in phosphorylation, were detected by Western blot analysis using the sheep 
anti-PPP1R2 antibody. 
 

In order to investigate the nature of those bands, human sperm heat stable extract 

was resolved by 2D-PAGE revealing three isolated spots of different molecular weight and 

pI, suggesting the existence of different phosphorylated forms of PPP1R2/PPP1R2P3 

(Figure II.A. 9B).  Besides threonine and serine, PPP1R2 can also be tyrosine 

phosphorylated [63]. We attempted to dephosphorylate the human sperm heat extract 

with protein tyrosine phosphatase 1B (PTP), calf intestinal phosphatase (CIP) and 

PPP1CC1. Under the conditions used, only CIP, a nonspecific phosphatase, could 

dephosphorylate the hsPPP1R2/PPP1R2P3, which resulted in an increase in 

electrophoretic mobility. This band did not run at the same molecular weight, as 

recombinant PPP1R2 (Figure II.A. 9C). When hsPPP1R2/PPP1R2P3 was incubated with 

GSK3 or CK2 or both, only GSK3 was able to induce a mobility shift (Figure II.A. 9D). 

Taken together, these results suggest that PPP1R2/PPP1R2P3 in sperm could be 

phosphorylated at serine residues, probably by CK2 in Ser121, Ser122 and Ser127.  
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Conclusion 

The current hypothesis for sperm motility acquisition states that a PPP1R2-

like/PPP1CC2 complex controls the sperm motility and is in turn regulated by a 

mechanism of reversible phosphorylation by GSK3 and an unknown phosphatase [3, 5] 

(Figure II.A. 10, left panel). Nevertheless, the PPP1R2-like activity in human sperm was 

not identified. 

 

 

Figure II.A. 10: Novel model for sperm motility acquisition based on PPP1R2 and PPP1R2P3. 
Sperm cells mature in the epididymis in order to be able to enter in the female reproductive tract 
and fertilize the oocyte (upper panel). In the first segment of the epididymis (caput), the sperm is 
immotile due to the activation of the PPP1R2/PPP1CC2 complex by GSK3, while in the last 
segment of the epididymis (cauda), PPP1R2P3 substitutes PPP1R2 as an irreversible inhibitor and 
sperm acquires motility. Since sperm cells are terminally differentiated and essentially devoid of 
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transcriptional and translational activity, we assume that in the caput region, PPP1R2P3 is 
somehow bound to a protein (yellow lozenge) that keeps it from binding to PPP1CC2. 
PPP1R2/PPP1CC2 complex controls sperm motility and is in turn regulated by a mechanism of 
reversible phosphorylation by GSK3 and an unknown phosphatase. This complex is operative in 
axoneme and regulates flagellar motility (left lower panel). PPP1R2P3 may also be involved in the 
regulation of hyperactivated motility and in the acrosome reaction in the female reproductive tract 
(right, lower panel). Other PPP1CC2 complexes exist in sperm [2]. Other PPP1C inhibitors exist in 
sperm forming dimers and even trimers, for example PPP1R11/PPP1R7/PPP1CC2 [70]. PPP1R7 
is mainly soluble and is present in the principal piece and head-neck junction of spermatozoa 
bound to an inhibiting PPP1CC2 [2, 6] and, PPP1R11 exists in tail and head of spermatozoa [2, 
71]. 
 

Here we show, by mass spectrometry, that PPP1R2 is present in human sperm 

(Table II.A. 1). Also, peptides for PPP1CC2 were recovered in the same 

immunoprecipitation extracts, meaning that PPP1R2/PPP1CC2 may in fact form a 

complex in sperm (Table II.A. 1). We also demonstrated by immunocytochemistry and 

Western blot that PPP1R2 and PPP1CC2 co-localize in almost all the extent of the 

spermatozoon and in the same structures (Figure II.A. 5, Figure II.A. 7 and Figure II.A. 8). 

This strongly supports the hypothesis that the PPP1R2-like activity, identified several 

years ago might be in fact be assigned to PPP1R2 [3, 5]. 

Furthermore, we have also identified by mass spectrometry a second PPP1R2-like 

protein (Table II.A. 1), termed PPP1R2P3 that was consider to be a pseudogene in many 

databases. 

Processed pseudogenes, like PPP1R2P3, are intronless, with polyA traits in the C-

terminal, no parental promoter, and are integrated in the genome in a new location. 

Further, since they were originated from a retrotransposition activity, they have truncated 

5’UTR, due to the low processivity of the reverse transcriptase, and direct repeats in both 

ends [64]. Testis is an organ where many pseudogenes are expressed and the gene 

products have been shown to actively participate in spermatogenesis or other germ cell 

functions [65-67]. This happens because the transcription in testis, compared to other 

somatic tissues, is not as tightly regulated due to hyper transcription rates, which could 

lead to unbiased activation of otherwise imperfect or weak promoters [67, 68]. We have 

also identified PPP1R2P3 in a testis cDNA library [24]. Also, the apparent function of 

pseudogenes in testis germ cells could be a way to facilitate the creation of new genes 

from the parental ones [65]. We have shown that PPP1R2P3 pseudogene is in fact 

transcribed and translated, being present in the mature human sperm cell (Table II.A. 1). 

PP1R2P3 protein binds to PPP1CC isoforms and is a heat stable inhibitor (Fig.2 and 3) 

that cannot be phosphorylated by GSK3, being therefore a putatively irreversible inhibitor 

of PPP1C (Fig.4). Also, PPP1R2P3 was phosphorylated by CK2 in vitro, probably in 
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residues 121 and 122, as shown by mass spectrometry (Figure II.A. 4 and Table II.A. 1). 

Regarding the PPP1R2P3 specific localization in testis/sperm and co-localization with 

PPP1CC2 we cannot distinguish from that of PPP1R2, since antibodies we have detect 

both PPP1R2P3 and PPP1R2 (Figure II.A. 5 and Figure II.A. 7 and Figure II.A. 8). 

We propose a new model in which in the first segments of the epididymis (caput) the 

sperm is immotile due to the activation of the PPP1R2/PPP1CC2 complex by GSK3, while 

in the last segment of the epididymis (cauda), PPP1R2P3 takes place and substitutes 

PPP1R2 as an irreversible inhibitor of PPP1CC2 triggering sperm motility. 

Since sperm are terminally differentiated cells essentially devoid of transcriptional 

and translational activity, we could not take into consideration the regulation of the 

expression of both proteins. So, it is possible that PPP1R2P3 is somehow bound another 

protein that may keep it from binding to PPP1CC2 in immotile caput sperm, in a manner 

similar to what is suggest to occur with sds22 (PPP1R7) in caput sperm [69] (Figure II.A. 

10, left middle panel). 

This mechanism of controlling sperm motility by PPP1CC2 and GSK3 seems to 

have evolved in mammals, since other vertebrate classes do not have this alternatively 

spliced phosphatase [49]. We suggest that the occurrence of PPP1R2P3 protein, which is 

only present in primates, seems to lead to a novel regulatory mechanism of PPP1CC2 

activity that might have evolved in this order. 

In addition, cauda sperm motility is further stimulated by incubation with the same 

phosphatase inhibitors, okadaic acid and calyculin A, mimicking hyperactivated motility [3, 

5]. This raises another interesting possibility in which the initial acquisition of motility along 

the epididymis is due to the inhibition of a PPP1CC2 pool by PPP1R2, whereas, a second 

PPP1CC2 pool may be inhibited by PPP1R2P3 leading to hyperactivated motility in the 

female tract (Figure II.A. 10, right bottom panel). 

The mechanisms described above may be occurring simultaneously, since peptides 

specific for both proteins have been identified in ejaculated sperm. What determine the 

levels of motility regulated by those processes may be the relative amounts available and 

the activity of kinases and phosphatases involved in the regulatory process. The final 

spermatozoon motion and velocity is the result of several complex events, but many 

involve PPP1CC2 and its PIPs [2].  
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Abstract 

Protein phosphatase 1 regulatory subunit 2 (PPP1R2), also known as 

inhibitor-2 (I2), is an inhibitor and binding partner of the phosphoprotein 

phosphatase 1 (PPP1), a major Ser/Thr protein phosphatase involved in many 

cellular processes. In the human genome, several sequences collectively named 

PPP1R2 pseudogenes (PPP1R2P) have been identified that are highly similar to 

PPP1R2. The evolutionary analysis in mammals here presented shows evidences that 

two retroposons appeared prior to the great radiation of the mammals being seven 

primate-specific and retroposed at different times during the evolution of this group. From 

all ten pseudogenes present in humans only four appear to be transcribed and from these 

only three translated. Due to PPP1R2 role in sperm motility, mass spectrometry analysis 

was performed trying to detect new PPP1R2-related proteins. A new PPP1R2-related 

protein, PPP1R2P9, was found in human sperm. Besides the physiological roles that 

these proteins seems to have, some appear to be also associated with disease and 

pathological conditions. Our results show that this evolution process might be in part 

related with the formation of new genes and the gain of new specific functions and that 

these pseudogenes are not just silent regions as initially believed. 
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Background 

Protein phosphatase 1 regulatory subunit 2 (PPP1R2), also known as inhibitor-2 

(I2), is one of the first regulatory subunits identified as an inhibitor and binding partner of 

the phosphoprotein phosphatase 1 (PPP1), a major Ser/Thr protein phosphatase involved 

in many cellular processes from cell cycle to protein synthesis, muscle contraction, 

glycogen metabolism, cytokinesis, and neuronal signaling [1, 2]. PPP1R2 forms a stable 

and high affinity complex with PPP1 catalytic subunit (PPP1C) by blocking the active site. 

The reactivation of the complex is triggered by phosphorylation of PPP1R2 at Thr72 by 

several kinases, including extracellular signal-regulated kinases (ERKs), cyclin-dependent 

kinases (CDKs) and glycogen synthase kinase 3 (GSK3) [3-8]. PPP1R2 is also 

phosphorylated at the residues Ser86, Ser120 and Ser121 by casein kinase 2 (CK2), but 

these phosphorylations do not alter the inhibitory activity of PPP1R2, with the exception of 

Ser86 that accelerates the subsequent phosphorylation at Thr72 by GSK3 [3]. PPP1R2 is 

a potent heat and acid-stable inhibitor (1-10nM) that at low concentrations has been 

demonstrated to act as chaperone by helping the proper folding of newly synthesized 

PPP1C [9, 10]. Most PPP1C regulators have well conserved PPP1C binding motifs: the 

RVxF motif binds to the hydrophobic groove of PPP1C and the SILK motif, when present, 

is usually N-terminal to the former, among others [11]. PPP1R2 has two conserved 

degenerated RVxF motifs, the 145KLHY148 and the 43KSQKW47; the later already described 

to bind to the hydrophobic groove. Besides, a SILK motif (12KGILK16, in humans) that 

possibly initiates the binding, and the C-terminal acidic stretch that is required for GSK3 

activation, are also present [11-13]. PPP1C/PPP1R2 complex has already been implied in 

several processes such as cardiac function [14-16], mitosis and meiosis [17-22], tubulin 

acetylation and neuronal cell survival [23]. Also, it has been shown that a 

PPP1CC2/PPP1R2-like complex is important in the acquisition of sperm motility [24, 25]. 

 

The PPP1R2 gene is conserved throughout all eukaryotes, from yeast to humans 

[26, 27]. In humans, it is located in chromosome 3 and spans 30kb containing 6 exons, 

the last with 2521bp, and a mRNA of 3474bp with the codifying sequence (CDS) 

encompassing nucleotide positions 377 to 994. In the human genome, as observed for 

other ancient PPP1 inhibitors such as PPP1R8 (NIPP1) and PPP1R11 (I3), several 

sequences have been identified that are highly similar to PPP1R2. [26]. For PPP1R2, nine 

loci were found that present hallmark features of processed pseudogenes, such as being 

intronless, presenting frameshifts disruptions, no parental promoter, truncated 5’UTR and 

polyA traits at the 3’UTR [28]. These related sequences were collectively named PPP1R2 
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pseudogenes (PPP1R2P) and were numbered from 1 to 9 [26]. These pseudogenes are 

scattered in the genome due to random retrotransposition phenomena [29]. These 

phenomena consist on the reverse transcription of cellular RNAs and insertion into the 

nuclear genome [30]. For instance, in human, the parental PPP1R2 is present in the 

chromosome 3 while PPP1R2P9 gene is located in the X chromosome and the 

PPP1R2P3 in the chromosome 5 [26]. Pseudogenes were often considered to evolve 

under neutrality, in which mutations that accumulate were out of scope of selection [31]. 

This assumed that pseudogenes are functionally inert. Several studies indicate that from 

the nine PPP1R2 pseudogenes, four have been detected at the message level using high 

throughput techniques. PPP1R2P1 and P2 were discovered in human [32, 33], 

PPP1R2P3 in human and crab-eating macaque (Macaca fascicularis) and PPP1R2P9 

(also called I4) was found in human and mouse (Mus musculus) [34-36]. This clearly 

indicates that some of these pseudogenes might in fact have a biological role further 

supported by recent evidences that suggest that pseudogenes may indeed be functionally 

active [37-42]. Thus, the study of their evolution and conservation might provide support 

for a functional role and give insights into their potential mechanism of action. Therefore, 

in this work we did an exhaustive search for PPP1R2 pseudogenes in publicly available 

mammalian genomes in order to infer their evolutionary history and to suggest their 

potential functions. The collected pseudogenes were further characterized and detection 

at the protein level pursued.  
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Methods 

 

Sequences retrieval 

The human PPP1R2 mRNA sequence (GenBank accession number NM_006241.4) 

was used to detect orthologs and pseudogene-related sequences by performing a BLAST 

on Genbank database, National Center for Biotechnology Information (NCBI, 

http://BLAST.ncbi.nlm.nih.gov/) against all available mammalian genomes. Only 

sequences with more than 60% of sequence similarity and with query coverage of more 

than 35% were recovered. 

 

Evolutionary tree reconstruction 

The retrieved sequences were aligned using ClustalW implemented in Bioedit 

7.0.9.0 [43] (Table II.B. 1). For phylogenetic reconstruction, and to improve accuracy, only 

sequences encompassing >85% coverage of the human PPP1R2 CDS (nucleotide 

positions 377-994 of the mRNA sequence) and with >60% of sequence similarity were 

included in the alignment. In order to infer the phylogenetic relationships between the 

PPP1R2 gene and related pseudogenes, a Neighbour-Joining (NJ) tree was constructed 

using MEGA software version 5 [44]. The evolutionary distances were computed using the 

p-distance method and alignment gaps, missing data and ambiguous bases were treated 

with the partial deletion option (site coverage cutoff 95%). Reliability of clustering of the 

branches was calculated using the bootstrap test with 1000 replicates. 

 

Table II.B. 1: Nucleotide sequences retrieved from NCBI Genbank database that were used for 
subsequent alignments and evolutionary analysis. 

Order Species Gene Name Alias ReferenceID Chr ChrID 

Primates Human PPP1R2 
I2 
IPP2 

NM_006241.4  3q29 NC_000003.11 

 
Homo sapiens PPP1R2P1 

 
NG_027882.1 6p21.3 NC_000006.11 

  
PPP1R2P2 

 
NG_000913.3 21q22.13 NC_000021.8 

  
PPP1R2P3 I2L NR_038443.1 5q33.3 NC_000005.9 

  
PPP1R2P4 

 
NG_011458.1 13q14.13 NC_000013.10 

  
PPP1R2P10 

 
NG_029109.1 13q21.31 NC_000013.10 

  
PPP1R2P5 

 
NG_021516.1 2q12.3 NC_000002.11 

  
PPP1R2P6 

 
NG_022575.1 7q34 NC_000007.13 

  
PPP1R2P8 

 
n.a. 5p14.3 NC_000005.9 

  
PPP1R2P9 

I4 
IPP4 

NR_002191.2 Xp11.3 NC_000023.10 

 
            

 
Chimpanzee PPP1R2 I2 XM_516963.3 3 NC_006490.3 

 
Pan troglodytes PPP1R2P1 

 
XR_127820.1 6 NC_006473.3 
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Order Species Gene Name Alias ReferenceID Chr ChrID 

  
PPP1R2P2 

 
BS000199.1  21 NC_006488.2 

  
PPP1R2P3 I2L XM_003310938.1 5 NC_006472.3 

  
PPP1R2P10 

 
XM_003314161.1 13 NC_006480.3  

  
PPP1R2P5 

 
XR_127157.1 2A NC_006469.3 

  
PPP1R2P6 

 
AC144780.1 7 NC_006474.3 

  
PPP1R2P8 

 
n.a. 5 NC_006472.3 

 
            

 
Orangutan PPP1R2 

I2 
IPP2 

XM_002814436.1 3 NC_012594.1 

 
Pongo abelii PPP1R2P1 

 
AC206576.3 6 NW_002874546.1 

  
PPP1R2P2 

 
n.a. 21 NC_012612.1 

  
PPP1R2P3 I2L XM_002816121.1 5 NC_012596.1 

  
PPP1R2P10 

 
XM_002824322.1 13 NC_012604.1 

  
PPP1R2P10-Like 

 
n.a. 13 NC_012604.1 

  
PPP1R2P5 

 
n.a. 2A NC_012592.1 

  
PPP1R2P6 

 
n.a. 7 NC_012598.1 

  
PPP1R2P9 

I4 
IPP4 

XM_002831555.1 X NC_012614.1 

 
            

 
Gibbon PPP1R2 

I2 
IPP2 

XM_003280422.1 scaf_234 (11) NW_003501604.1 

 
Nomascus leucogenys PPP1R2P1 

 
n.a. scaf_81 (1b) NW_003501451.1 

  
PPP1R2P2 

 
n.a. scaf_32 (25) NW_003501402.1 

  
PPP1R2P3 

 
n.a. scaf_57 (2) NW_003501427.1 

  
PPP1R2P5 

 
XM_003277451.1 scaf_152 (14) NW_003501522.1 

  
PPP1R2P6 

 
n.a. scaf_71 (13) NW_003501441.1 

  
PPP1R2P9 

I4 
IPP4 

XM_003271019.1 sca_72 (X) NW_003501442.1 

 
            

 
Rhesus macaque PPP1R2 

I2 
IPP2 

XM_001097826.2 2 NC_007859.1 

 
Macaca mulatta PPP1R2P1 

 
n.a. 4 NC_007861.1 

  
PPP1R2P2 

 
n.a. 3 NC_007860.1 

  
PPP1R2P10 

 
n.a. 17 NC_007874.1 

  
PPP1R2P5 

 
AC187497 13 NC_007870.1 

  
PPP1R2P9 

I4 
IPP4 

XM_001088324.2 X NC_007878.1 

 
            

 
Grivet PPP1R2P1 

 
AC241599.3 n.a. n.a. 

 
Chlorocebus aethiops 

     

 
            

 
Marmoset PPP1R2 

I2 
IPP2 

XM_002758211.1 15 NC_013910.1 

 
Callithrix jacchus PPP1R2P5 

 
n.a. 14 NC_013909.1 

  
PPP1R2P1 

 
AC242643.3 4 NC_013899.1 

  
PPP1R2P6 

 
n.a. 8 NC_013903.1 

  
PPP1R2P9-Like 

 
n.a. X NC_013918.1 

  
PPP1R2P9 

I4 
IPP4 

XM_002762795.1  X NC_013918.1 

              

Artiodactyla Pig PPP1R2P9-Like 
I4 
IPP4 

XR_131237.1 X NC_010461.3 
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Order Species Gene Name Alias ReferenceID Chr ChrID 

 
Sus scrofa 

     

 
            

 
Cow PPP1R2 

I2 
IPP2 

NM_001035392.1 1 NC_007299.4 

 
Bos taurus PPP1R2P9 

I4 
IPP4 

NM_001079599.1 X NC_007331.3 

 
            

 
Horse PPP1R2 

I2 
IPP2 

XM_001500822.3 19 NC_009162.2 

 
Equus caballus PPP1R2P9 

I4 
IPP4 

XM_001491737.1 X NC_009175.2 

              

Proboscidea Elephant PPP1R2P9-Like 
 

XM_003418018.1 n.a. n.a. 

 
Loxodonta africana 

     
              

Carnivora Giant panda PPP1R2 
I2 
IPP2 

XM_002921452.1 scaf_1297 NW_003217779.1 

 
Ailuropoda melanoleuca PPP1R2-Like 

 
n.a. scaf_639 NW_003217930.1 

  
PPP1R2P9 

I4 
IPP4 

XM_002922902.1 scaf_438 NW_003217919.1 

 
            

 
Dog PPP1R2 

 
XM_535781.2 33 NC_006615.2 

 
Canis lupus familiaris PPP1R2P9 

 
XM_548958.2 X NC_006621.2 

              

Lagomorpha Rabbit PPP1R2 
 

NM_001082744.2 14 NC_013682.1 

 
Oryctolagus cuniculus PPP1R2P9 

 
XM_002719841.1 X NC_013690.1 

              

Rodentia Rat PPP1R2 
I2-α1 
I2-α2 

NM_138823.2 11 NC_005110.2 

 
Rattus norvegicus PPP1R2P9-Like I2-β 

XM_002730182.1 
XM_002727659.1 

X NC_005120.2 

  
PPP1R2P9 

 

XM_002730188.1 
XM_002727510.1 
NM_001106953.1 

X NC_005120.2 

 
            

 
Mouse PPP1R2 

 
NM_025800.3 16 NC_000082.5 

  
PPP1R2P9 

 
NR_033171.1 X NC_000086.6 

  
PPP1R2P9-Like 

 
NR_033731.1 X NC_000086.6 

              

Marsupials Opossum PPP1R2-Like 
 

XM_001371978.2 n.a. NW_001583292.1 

 
Monodelphis domestica 

     
              

 

 

Divergence times 

Divergence times from the other species in relation to Homo sapiens in millions of 

years ago (Mya) were obtained from the website http://www.timetree.org/. 

 

Pseudogene classification and conserved linkage 

Sequences obtained from the BLAST queries were analyzed in terms of intronic 

regions presence, polyA traits, truncation of the 5’UTR and chromosomal location. 
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Chromosomal locations from all mammals were obtained from the Genbank database with 

the exception of gibbon (Nomascus leucogenys) that was obtained from the website 

http://www.biologia.uniba.it/gibbon/ [45] (Table II.B. 1). Pseudogenes located in the same 

chromosome and nearby and/or with intronic regions were classified as duplicated 

pseudogenes. Pseudogenes that were located in different chromosomes and have polyA 

traits, truncation of the 5’UTR and no introns were classified as processed pseudogenes. 

Furthermore, genes that are flanking each human PPP1R2 pseudogene and are well 

conserved among mammals were selected. Conserved linkage, meaning conservation of 

synteny and also conservation of the gene order, was then searched in order to provide 

insight regarding the human PPP1R2 pseudogenes orthologous in the other species 

analyzed.  

 

Distance to closest and repeated regions 

The distance of each pseudogene to the closest neighboring gene, not taking into 

account other pseudogenes present nearby or the transcript orientations, was calculated. 

Repeated sequences were detected by submitting each pseudogene sequence to the 

program RepeatMask from Institute for Systems Biology, Seattle, Washington, USA 

(http://www.repeatmasker.org/). 

 

GC-content and polyA signals 

Isobase Isochore Database (http://www.geneinfo.eu:8080/isobase/index.jsp) was 

searched to assign each PPP1R2 pseudogene to the respective isochore [46]. The GC-

content of each pseudogene CDS was calculated and the difference between each 

pseudogene and the respective flanking regions was performed. PolyA signals were 

obtained by submitting the sequences to the program PolyApred 

(http://www.imtech.res.in/raghava/polyapred/). 

 

Sperm extracts and immunoprecipitation. 

Testis is one of the organs where most pseudogenes are expressed and it was 

shown that the gene products have a function in spermatogenesis or other germ cell 

functions [47-49]. Therefore, since sperm are produced in testis and are easily obtained, 

the presence of some of the studied pseudogenes was checked in human sperm. Thus, 

ejaculated sperm was collected from healthy donors and spermograms were performed 

as described before [50]. In brief, sperm was lysed in 1xRIPA buffer 
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(radioimmunoprecipitation buffer, Millipore Iberica S.A.U., Madrid, Spain) supplemented 

with protease inhibitors (10mM benzamidine, 1.5μM aprotinin, 5μM pepstatin A, 2μM 

leupeptin, 1mM PMSF), sonicated 3x10sec and centrifuged at 16000g for 20min, at 4ºC. 

RIPA supernatant sperm extract was immunoprecipitated using Dynabeads® Protein G 

(Life Technologies S.A., Madrid, Spain) and 1µg of rabbit anti-PPP1R2 (against a mouse 

PPP1R2 peptide, amino acids 134–147) with standard direct immunoprecipitation 

procedure [50]. Also, an independent RIPA supernatant sperm extract was prepared, 

boiled in a water bath for 30min, chilled on ice for 2min and centrifuged at 16000g for 

20min, 4ºC to obtain a heat stable extract. 

 

Mass spectrometry 

For mass spectrometry analysis, the immunoprecipitate and the heat stable extract 

were resolved by 10% SDS-PAGE along with purified positive controls. Gels were stained 

with Coomassie blue colloidal (Sigma-Aldrich Química, S.A., Sintra, Portugal) using 

standard procedures [50]. 

Bands were then excised from the gel using commercial PPP1R2 band as control 

and destained. An overnight digestion with trypsin (Promega, Madison, Wisconsin, USA) 

was performed and resulting peptides were extracted and prepared for mass spectrometry 

analysis using an Orbitrap Velos mass spectrometer as described elsewhere [50]. 

Subsequent generated data were imported to ProteinScapeTM (Bruker Daltonik GmbH, 

Bremen, Germany, [34]) and analyzed using MASCOT (version 2.2.0, Matrix Science, 

London, UK, [35]) search algorithm. Proteins were considered to be identified if the 

Mascot score (ProteinScapeTM) was higher than 65. 
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Results and Discussion 

 

Phylogenetic analysis 

A total of 119 sequences were retrieved from the NCBI database using the PPP1R2 

nucleotide sequence. Ten pseudogenes were obtained from human sequences increasing 

by one the previous stated number in the literature [26]. In order to increase the reliability 

of the alignment for phylogenetic reconstruction, we selected sequences with >85% 

coverage and >60% similarity with the human PPP1R2 CDS. By doing this, we were able 

to include in the tree 67 sequences that represented all the pseudogenes with the 

exception of PPP1R2P7 (Table II.B. 1). The sequences not used encompass pseudogenic 

fragments and sequences without CDS (PPP1R2P7) or truncated CDS (some PPP1R2P8 

and PPP1R2P9). The NJ tree obtained showed two major clusters (Figure II.B. 1). The 

basal cluster includes all PPP1R2P9 sequences (with the exception of Rodentia and 

Callithrix PPP1R2P9-Like) and the elephant (Loxodonta africana) PPP1R2P9-like 

sequence. The upper cluster is composed by all PPP1R2 sequences and the other 

pseudogene groups, with the gray short-tailed opossum (Monodelphis domestica) 

PPP1R2-like sequence appearing as an outgroup for this cluster. This is consistent with 

the presence of PPP1R2 in eukaryotes, being indeed an ancient and well conserved gene 

[26]. Concerning the retroposition of the different pseudogenes in the NJ tree two major 

events are clearly seen. The first event was the retroposition of PPP1R2P9 prior to the 

separation of Metatheria (marsupial mammals) and Eutheria (placental mammals), 

evidencing this pseudogene as the most ancient one still present in humans. The second 

event was the retroposition wave that occurred in the beginning and during the primate 

radiation with the appearance of the other groups. This is in accordance with the NJ tree 

that shows these groups after the non-primate PPP1R2 sequences cluster (Figure II.B. 1).  
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Figure II.B. 1: Evolutionary tree of PPP1R2 and related pseudogenes. The evolutionary history 
was inferred using MEGA5 with the Neighbor-Joining method and the partial deletion option (site 
coverage cutoff 95%). Reliability of the tree was assessed by bootstrap with 1000 replicates and is 
indicated in the nodes. 
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Furthermore, PPP1P2P3 grouping with the primate PPP1R2 sequences is in agreement 

with it being one of the youngest pseudogenes that have been retroposed, 20.6-29.2 

million years ago (Mya) (Figure II.B. 2). 

 

 
Figure II.B. 2: Evolution of pseudogenes diagram. Time scale from the early mammals 
evolution till humans is shown with emphasis in the primate class. The time in million years ago 
(Mya) indicates the splits between groups. Pseudogenes estimated emergence is shown, as well 
as, important retrotransposable elements. 

 

PPP1R2P1 

By analyzing the NJ tree, we observed that the PPP1R2P1 orthologs genes cluster 

together in a highly supported branch (bootstrap value of 90) and are a sister group of the 

cluster composed by the parental PPP1R2 gene and the primates PPP1R2P3 (Figure II.B. 

1). This study demonstrates that PPP1R2P1 is primate-specific and was originated before 

the division of New World monkeys (Platyrrhini) and Catarrhini that occurred 43.4-65.2 

Mya (Figure II.B. 2). Figure II.B. 3 shows that PPP1R2P1s are assigned to the negative 

strand orientation of chromosome 4 in marmoset (Callithrix jacchus) and rhesus monkey 

(Macaca mulatta), chromosome 1b in gibbon and to chromosome 6 in the rest of the 

primates. The human PPP1R2P1 gene was first mapped to the short arm of chromosome 

6 (6p21.31) in the class II major histocompatibility complex (MHC) region by in situ 

hybridization [51, 52]. The TAP1 (transporter 1, ATP-binding cassette, sub-family B) and 
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HLA-DMB genes flanking the PPP1R2P1 in Homo sapiens are also present in the other 

primates which reinforces the tree results and shows a conserved linkage in primates.  

 

 

Figure II.B. 3: Conserved linkage of PPP1R2P1 and PPP1R2P2. PPP1R2P1 and PPP1R2P2 
location in terms of chromosome and flanking genes is presented concerning each species where 
they were found, showing the conserved linkage. Divergence time is shown on the left. The 
numbers flanking the pseudogenes are related to the parental PPP1R2 message. Black boxes 
refer to the short interspersed elements (SINEs) Alu repeats that are primate-specific. Grey boxes 
refer to the long interspersed elements (LINEs) in this case a LINE1 element. Number above the 
boxes states the location where the repeat interrupted the sequence. In the case of chimpanzee 
PPP1R2P1 a duplicated pseudogene was originated and the repeats are located in the middle of 
both, and so, the numbers refer to the final of one pseudogene and the initial of the other. Also, a 
deletion is shown (129 to 194) that is common to all pseudogenes with the exception of gibbon and 
marmoset. 
 

Concerning the genomic sequence, PPP1R2P1 is intronless and has conserved the 

polyA traits that were present at the 3’UTR of the parental mRNA, meaning that it is a 

processed pseudogene, with 88% similarity to the parental gene and with 97% sequence 

coverage. It has a small 70bp deletion that seems to have appeared in Hominidae after 

the divergence from Hylobatidae, ~20.6 Mya. Also, an Alu repeat was inserted after the 

radiation of the Hominoidea (that include Hominidae and Hylobatidae), ~29.4 Mya, in the 

middle of the sequence (~1500bp) disrupting it, but without affecting the CDS (Figure II.B. 

2). Interestingly, in chimpanzee (Pan troglodytes), PPP1R2P1 suffered a duplication event 

that gave rise to a second locus that is 100% identical to the parental PPP1R2P1 from 

which is separated by two Alu repeats flanking a LINE1 element (Figure II.B. 2, not 
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included in the NJ tree). The high similarity between these two loci suggests that the 

duplication event occurred recently. 

Transcribed processed pseudogenes tend to be closer to other functional genes 

(median, 22.9kb) than the transcriptionally silent ones (median, 38.7kb) [53]. 

Chromosomal location of this gene is favorable for the acquisition of a biological role 

since is in the MHC region and therefore many genes occur nearby, with only 16.6Kb 

distance to the closest one. MHC region of chromosome 6 has many genes that encode 

for proteins with important role in immune system and autoimmunity, like the human 

leucocyte antigen (HLA) [54]. Studies in humans identified in this region a frameshift 

mutation in PPP1R2P1, stating that it was probably an intronless processed pseudogene 

[55]. However this and other early studies have used a mixture of multiple haplotypes. 

Afterwards, eight HLA-homozygous haplotypes were established and changes in these 

regions were characterized [56]. Subsequent studies identified that the PPP1R2P1 

frameshift mutation was not present in all individuals [57-59]. In fact, only haplotypes from 

SSTO, APD and MCF seem to have this mutation, whereas in PGF, COX, QBL, DBB and 

MANN it was absent [54]. Furthermore, in a random screening of 18 genomic samples, 

two were homozygous for the frameshift, seven were heterozygous and nine were 

homozygous for the continuous open reading frame (ORF), which revealed a frameshift 

frequency of ~0.31 [57]. Also, as expected by our phylogenetic analysis, studies in the 

marsupial mammal gray short-tailed opossum (Monodelphis domestica), dog (Canis 

familiaris), cat (Felis catus) and mouse MHC region showed that PPP1R2P1 gene was 

absent [60, 61]. 

The presence of promoters, enhancers and other regulatory elements could be the 

explanation for why some ESTs have already been found linked to this pseudogene, 

although basal transcription should not be set aside. Gene expression of PPP1R2P1 was 

shown to be upregulated comparing to normal tissue by RNA differential display and 

qPCR cDNA in vascularized human breast carcinoma and was deposited as a mRNA 

entry in Unigene (NCBI: AF275684.1), NCBI [32]. More recently, human PPP1R2P1 was 

chosen has a potential gene to be involved in initiation and formation of ganglioglioma 

although showing chromosomal alterations common to both the benign and malignant 

components of the tumor in humans [62]. In Gene Expression Omnibus (GEO) from NCBI 

and in ArrayExpress from Ensembl, high-throughput gene expression databases, 19 GEO 

profiles and 2 experiments were found, respectively, in humans. Altogether, these results 

suggest that in human, PPP1R2P1 might be functionally relevant. 
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Concerning the mRNA stability, only part of the 5’UTR (238bp), due to the low 

processivity of the reverse transcriptase and the 70bp deletion already described, and part 

of the 3’UTR (506bp) are present. Therefore, the stability might be compromised although 

a polyA signal ATTAAA is present near the extreme of the 3’UTR (position 1361 according 

to Figure II.B. 3). Regarding the human CDS and possible translation, the Kozak 

sequence, important for translation initiation, is present in the parental gene and is 

conserved. 

Furthermore, in other primates the ORF has frameshift disruptions that introduce 

premature stop codons, meaning that this pseudogene in these species does not produce 

a putative functional protein or the protein is truncated. 

 

PPP1R2P2 

PPP1R2P2 was originated in Catarrhini after its separation from the Platyrrhini 29.2-

42.6 Mya (Figure II.B. 2). Indeed, our phylogenetic analysis demonstrates that 

PPP1R2P2s form a robust cluster between PPP1R2P5 and P4/P10 genes clusters 

(Figure II.B. 1). The PPP1R2P2 gene is present in the positive strand orientation of 

human chromosome 21q22.13 and covers 99% of the parental gene ORF with 86% 

similarity, being only truncated at the 5’UTR. In the other primates PPP1R2P2 is also 

present in chromosome 21 and always in the positive strand orientation, with the 

exception of gibbon where it is localized in the positive strand orientation of chromosome 

25 and rhesus monkey where it is localized to chromosome 3 and in the negative strand 

orientation. Runt-related transcription factor 1 (RUNX1) and SET domain containing 4 

(SETD4, a variant of PPP2 inhibitor 2) genes flank PPP1R2P2 in all species analyzed, 

confirming the conserved synteny and the NJ tree results (Figure II.B. 3). In humans, 

chromosome 21 has only ~232 genes, a low density only surpass by the Y chromosome 

(130) and as expected the processed pseudogene density is also low, 34 [63]. Concerning 

the distance to other genes, and as expected, PPP1R2P2 was inserted in a region without 

genes. The SETD4 gene is the closest, but still ~145Kb distant. 

The only interruption to the ORF occurred in gibbon by an Alu repeat that also 

disrupts the CDS (~430bp) (Figure II.B. 3). Considering the CDS, many mutations in all 

species analyzed introduced frameshift mutations leading to premature stop codons. 

Moreover, all the four polyadenylation signals present in the parental PPP1R2 mRNA are 

conserved in PPP1R2P2. Although protein expression is unlikely, message was found by 

qPCR in human testis but not in peripheral blood leukocytes because it is methylated in 

these cells [33]. Also, two experiments from ArrayExpress Ensembl, report the up/down 
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regulation of this pseudogene in prostate adenocarcinoma and in a prostate 

transcriptomic study in Caucasian population [64]. These results might in fact be artifacts 

or could be assigned to other PPP1R2 pseudogenes/parental gene since this pseudogene 

is promoterless and no other promoters are nearby. 

 

PPP1R2P3 

Evolutionary analyzes indicate that PPP1R2P3 is one of the youngest processed 

pseudogenes, being originated after the separation of Hominoidea from Cercopithecoidea 

(old world monkeys), 20.6-29.2 Mya, since rhesus monkey and marmoset do not have a 

PPP1R2P3 copy (Figure II.B. 2 and Figure II.B. 4). 

 

 

Figure II.B. 4: Conserved linkage of PPP1R2P3 and PPP1R2P10/4. PPP1R2P3 and 
PPP1R2P10/4 location in terms of chromosome and flanking genes is presented concerning each 
species where they were found, to show the conserved linkage in these pseudogenes. Divergence 
time is shown on the left. The numbers flanking the pseudogenes are related to the parental 
PPP1R2 message. In orangutan an unknown sequence according to the current genome assembly 
was inserted in PPP1R10-like and is shown with a number referring to the location. The distances 
in dashed lines of the duplicated forms in human and orangutan are also indicated. 

 

Interestingly in crab-eating macaque (Macaca fascicularis) with caloric restrictions, 

PPP1R2P3 gene has shown to be downregulated in skeletal muscle by microarrays and 
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RT-qPCR techniques when compared to normal feeding animals [65]. Since PPP1R2P3 is 

not present in rhesus monkey, from the same group, and is highly similar to the parental 

gene, this result was probably misinterpreted as being PPP1R2P3 instead of parental 

PPP1R2, or other pseudogenes present in Cercopithecoidea. Phylogenetic analysis 

shows that PPP1R2P3 nucleotide sequences from human, chimpanzee, orangutan and 

gibbon are clustered together and are closer to the parental PPP1R2 primate cluster than 

the rest of human pseudogenes (Figure II.B. 1).  

BLAST search using the mRNA of parental PPP1R2 gene indicate 98% coverage 

and 95% similarity. Human PPP1R2P3 is present in chromosome 5q33.3 and is also 

located in the same chromosome in the other primates and always in the positive strand 

orientation, except in gibbon that is in chromosome 2. Furthermore, PPP1R2P3 is flanked 

by sarcoglycan delta (SGCD) and T-cell immunoglobulin and mucin domain containing 4 

(TIMD4) genes in all primates, showing a shared synteny (Figure II.B. 4). The TIMD4 

gene is the closest one, ~66Kb apart, meaning that PPP1R2P3 is located in a region with 

low transcription rate. Past work using in situ hybridization has already mapped 

hPPP1R2P3 to chromosome 5 (5q33) [52].  

PPP1R2P3 shows low divergence from the parental gene and the ORF is complete 

without any frameshift or element repeats disruptions inside the CDS. The ORF is 

truncated at the 5’UTR as expected, due to the low processivity of the reverse 

transcriptase, and in the 3’UTR it lost two of the four polyadenylation signals, that may 

lead to a short ~1500-1600nt message. We have previously found, by a yeast two hybrid 

screening of human testis cDNA using as bait PPP1CC1, one clone assigned to 

PPP1R2P3 (GenBank:JF438008.1) [66, 67]. PPP1R2P3 mRNA has also shown to be 

present in human testis tissue cDNA libraries by the Mammalian Gene Collection (MGC) 

program [35]. Search for PPP1R2P3 ESTs in databases, revealed that after the parental 

gene, this is one of the pseudogenes more represented. Unigene from NCBI has seven 

ESTs, three of them from testis, two from brain and one from lung, being the other one not 

assigned. In high-throughput databases GEO profiles and ArrayExpress, 11 Geo profiles 

and 114 experiments are respectively present, that state up and down-regulation of this 

pseudogene. Together with our previous data, this strongly suggests that this pseudogene 

is in fact transcribed. Moreover, in humans, PPP1R2P3 has only 16 nucleotide changes 

(92.2%), which correspond to 9 amino acid changes in the translated sequence, including 

the Thr73 to Pro and the Ser87 to Arg that are important phosphorylation sites for the 

GKS3 and CK2 kinases. 
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Two independent reports using mass spectrometry have assigned peptides to 

PPP1R2P3 [68, 69]. However, these peptides share the sequence with both parental 

gene and PPP1R2P3 being most probably misassigned. Nevertheless, in a recent paper 

we were capable to recover from human ejaculated sperm a peptide that was specifically 

assigned to PPP1R2P3, demonstrating for the first time that this previous stated 

processed pseudogene has evolved to the gene category gaining important functions in 

sperm physiology [50]. 

 

PPP1R2P4/10 

PPP1R2P4 and PPP1R2P10 are both located in the long arm of human 

chromosome 13 and are 17.4Mb apart. Ceulemans et al. first described the 

presence of PPP1R2P4 in 2002, but no information was at that time provided for 

PPP1R2P10. In our BLAST search both were detected and retrieved and we find 

that, in fact, PPP1R2P10 (as stated in NCBI) is the ancestral and PPP1R2P4 a 

duplication that occurred only in humans, being therefore a duplicated 

pseudogene (Figure II.B. 1 and Figure II.B. 4). Moreover, PPP1R2P10 is a 

processed pseudogene and was originated before the division of Platyrrhini and 

Catarrhini (Figure II.B. 2).  

BLAST results show a 41% coverage and 88% similarity with the parental gene. 

Figure II.B. 1 demonstrates that PPP1R2P4/10s form a robust cluster more distant from 

the parental gene than the previous described pseudogenes. Concerning the position, 

PPP1R2P10 (and P4 in humans) is present in the negative strand orientation in all 

primates except for marmoset, which is present in the positive strand orientation of 

chromosome 1 (Figure II.B. 2). PPP1R2P10 is flanked in all primates by the protocadherin 

20 (PCDH20) and protocadherin 9 (PCDH9) genes showing a conserved linkage and 

further confirming its chromosomal location. Also, in orangutan, a duplication occurred 

very close (~8.8kb) to PPP1R2P10 that is not related with human PPP1R2P4, and was 

hence here named PPP1R2P10-Like, being therefore a duplicated pseudogene (Figure 

II.B. 1 and Figure II.B. 2). 

Surprisingly, PPP1R2P10 is not present in gibbon, which might suggest that it has 

been deleted. Lesser apes family (Hylobatidae), in contrary to the great apes and 

humans, have major chromosome translocations [70]. Although these translocations do 

not explain this particular deletion, the higher rate of rearrangements and possibly errors 

in crossing over during meiosis might explain the deletion occurred. In fact, when we 
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looked to orangutan (Pongo abelii) chromosomal region between PCDH20 and PCDH9 

genes, 5.25Mb separates them with 11 putative pseudogenes in between, but in gibbon 

the distance between the two genes is only 4.73Mb with 3 putative pseudogenes 

maintained (legumin-like and steroidogenic acute regulatory protein, mitochondrial-like). 

This means that 0.52Mb were deleted and probably along with it PPP1R2P10 and other 

pseudogenes. Another explanation might be the fact that since gibbon genome annotation 

is still in the first assembly, the pseudogene could be masked.  

PPP1R2P10 is surrounded nearby only by pseudogenes, showing that this region is 

probably less transcribed. Moreover, PPP1R2P4/10/10-Like ORFs are truncated at the 

3’UTR (648bp) near the first polyadenylation signal and since no expression pattern was 

found in ESTs and high-throughput databases, this may indicate that this pseudogene is 

indeed transcriptionally silent. In terms of CDS, many frameshift disruptions cause 

premature stop codons in all ORFs, which could indicate that this pseudogene is not 

translated. 

 

PPP1R2P5 

The PPP1R2P5 has a high coverage (98%) with the parental gene although the 

similarity is lower, 86%. Furthermore, like PPP1R2P1 and P10, PPP1R2P5 was 

originated before the division of Platyrrhini and Catarrhini (Figure II.B. 2). By phylogenetic 

analysis, all PPP1R2P5s form a robust cluster (bootstrap value 87) close to PPP1R2P2 

and P4/10 clusters (Figure II.B. 1). These four pseudogenes form also a group clearly 

separated from the PPP1R2P3/P1 and parental gene group (Figure II.B. 1). PPP1R2P5 is 

located in chromosome 2 in all great apes (2A in chimpanzee and orangutan), 

chromosome 14 in gibbon and marmoset and chromosome 13 in rhesus monkey, always 

in negative strand orientation (Figure II.B. 5). 
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Figure II.B. 5: Conserved linkage of PPP1R2P5 and PPP1R2P6. PPP1R2P5 and PPP1R2P6 
location in terms of chromosome and flanking genes is presented concerning each species where 
they were found, showing the conserved linkage. Divergence time is shown on the left. The 
numbers flanking the pseudogenes are related to the parental PPP1R2 message. Black boxes 
refer to the short interspersed elements (SINEs) Alu repeats that are primate-specific. Number 
above the boxes states the location where the repeat interrupted the sequence. Grey box delimited 
with a black line in rhesus monkey PPP1R2P5 refer to a parental PPP1R2 insertion. Number on 
the top indicates where the insertion took place in the pseudogene, while numbers at the bottom 
show which region of the parental PPP1R2 was inserted. 

 

PPP1R2P5 is flanked by the genes, ST6 beta-galactosamide alpha-2,6-

sialyltranferase 2 (ST6GAL2) and solute carrier family 5 choline transporter, member 7 

(SLC5A7) in all primates analyzed which shows a conserved linkage (Figure II.B. 5). The 

only interruption to the ORF occurred before the divergence of Hominidae and 

Hylobatidae, since it is only present in rhesus monkey, by an Alu repeat at the position 

1500, but without disrupting the CDS. Other repeats are also present in marmoset but not 

related with the Hominoidea species Alu repeat (Figure II.B. 5). In rhesus monkey, an 
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insertion of a parental mRNA portion (2231-2475) in the same orientation and at the 

position 1221 has occurred but without disrupting the CDS. 

Considering the CDS, many mutations in all the species analyzed introduced 

frameshift mutations leading to premature stop codons. PPP1R2P5 is not surrounded by 

any genes or pseudogenes, being the closest one, the ST6GAL2 gene, 53.8Kb far. This 

region is probably less transcribed which is also corroborated by the fact that no ESTs or 

expression in high-throughput databases were found. Altogether, this suggests that 

PPP1R2P5 has no relevant biological role and might be a true processed pseudogene. 

 

PPP1R2P6 

PPP1R2P6 has been originated before the division of the Platyrrhini and 

Catarrhini, 42.6-65.2 Mya (Figure II.B. 2). Phylogenetic analysis shows that PPP1R2P6s 

form a robust cluster (bootstrap value 100) more distant from the parental gene cluster 

than the previous pseudogenes but closer to the Lagomorpha PPP1R2 (Figure II.B. 1). 

BLAST results show a 44% coverage (1506/3475) and an 85% similarity with the parental 

gene. PPP1R2P6 is present in chromosome 7 of great apes and humans and in the 

chromosome 13 of gibbon always in the positive strand orientation, with the exception 

being the marmoset in which it is present in the negative strand orientation of 

chromosome 8 (Figure II.B. 5).  

This pseudogene is flanked by the jumonji C domain containing histone 

demethylase 1 homolog D (JHDM1D) and solute carrier family 37 (glycerol-3-

phosphate transporter), member 3 (SLC37A3) genes showing a conserved 

linkage, being the JHDM1D gene the closest one, 40.4Kb apart (Figure II.B. 5). 

Surprisingly, PPP1R2P6 is absent in rhesus monkey what might suggest that it has 

been deleted. In fact, when looking to the gibbon chromosomal region between JHDM1D 

and SLC37A3 genes, 194.8Kb distance separates them, but in rhesus monkey the 

distance between the two genes is only 160.2Kb. This means that 34.6Kb were deleted 

and probably along with it PPP1R2P6, although caution should be taken because rhesus 

monkey genome assembly might be incomplete in this region since at least 10.1Kb are 

still unknown and so PPP1R2P6 could also be masked and therefore not retrieved by our 

BLAST searches. 

Before the divergence of Hominidae and Hylobatidae, 20.6-29.2 Mya, an Alu repeat 

was inserted at nucleotide position 1355 without disrupting the CDS but disrupting the 

ORF. An Alu repeat was also inserted in marmoset also disrupting the ORF, but with no 
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relation with the Alu repeat of Hominoidea (Figure II.B. 5). Also, no common consensus 

polyadenylation signals were found. This pseudogene is located near other genes, but in 

accordance to the arguments presented and since no ESTs and no expression in high-

throughput databases were found, this pseudogene should be transcriptionally silent. 

Also, many mutations in all the species analyzed have introduced frameshifts leading to 

premature stop codons. 

 

PPP1R2P7 

PPP1R2P7 is the first described in this work that is not primate specific. 

Evolutionary analysis suggests that it was originated 163.9-94.4 Mya since it is 

present in all the mammal orders, with the exception of the Glires clade 

(Lagomorpha and Rodentia). However, this pseudogene was not included in the 

phylogenetic analysis since it only has the 3’UTR of the parental message. 

PPP1R2P7 is present in chromosome 4 in Homininae (humans, chimpanzee 

and gorilla) in the negative strand orientation and is flanked by the pyruvate 

dehydrogenase (lipoamide) alpha 2 (PDHA2) and RAP1, GTP-GDP dissociation 

stimulator 1 (RAP1GDS1) genes showing a conserved linkage in all species 

(Figure II.B. 6). BLAST results show a 46% coverage and a 67% similarity with the 

parental PPP1R2 message. 

Since it is one of the most ancient pseudogenes, many mutations and LINE1 

repeats have occurred. In particular, a substitution in the final of the sequence has 

occurred in the primates, or even earlier since it is present in the pig (Sus scrofa) 

sequence (Figure II.B. 6) switching the parental sequence by an unknown 

sequence. This sequence resembles a downstream region of the parental 

PPP1R2 gene in Artiodactyla, which indicate that a recombination event, or 

another retroposition might have occurred. Also, two LINE1 repeats have occurred 

in Artiodactyla and Carnivora and one LINE1 repeat has occurred before the 

divergence of the genera Pan and Homo (Figure II.B. 5). 
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Figure II.B. 6: Conserved linkage of PPP1R2P7. PPP1R2P7 location in terms of chromosome 
and flanking genes is presented concerning each species where it was found, showing the 
conserved linkage. Divergence time is shown on the left. The numbers flanking the pseudogenes 
are related to the parental PPP1R2 message. Grey boxes refer to the long interspersed elements 
(LINEs) LINE1 elements. White boxes delimited with a black line show a region that is absent and 
substituted by other unknown region. Numbers below the boxes show the region that is absent. * 
part of this sequence has unknown nucleotides and so the range (2558-3203bp) might be similar to 
the other species (2843-3203bp). 
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PPP1R2P8 

Evolutionary analysis of PPP1R2P8 shows that it was originated before the 

division of the Platyrrhini and Catarrhini (Figure II.B. 2). Phylogenetic analysis was 

performed only in the Homo and Pan genera since in the other species only the 

3’UTR was obtained. In the NJ tree, it forms a robust cluster (bootstrap value 100) 

distant from the parental primate PPP1R2 group but more closely related to the 

Rodentia PPP1R2 group (Figure II.B. 1). 

BLAST results show a 39% coverage and a 72% similarity with the parental 

human PPP1R2 message. PPP1R2P8 is located in the negative strand orientation 

of chromosome 5 of Homininae and is flanked by the cadherin 18 (CDH18) and 

cadherin 12 (CDH12) genes showing a conserved linkage in all the primates 

analyzed (Figure II.B. 7). Furthermore, it is absent in gibbon, although the flanking 

genes are present and in orangutan only 146bp of the sequence still remain 

(Figure II.B. 5). Many frameshift disruptions and a large number of sequence 

repeats were inserted disrupting totally the sequence. These sequence repeats 

include LINEs (L1, L2 and CR1 families), SINEs (Alu/B1 and MIR families), DNA 

(hAT-Charlie and TcMar-Tigger families) and LTR (ERV1, ERVL and MaLR 

families) repeats and other DNA repeat elements (Figure II.B. 7). This pseudogene 

should be therefore transcriptionally silent. 
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Figure II.B. 7 (previous page): Conserved linkage of PPP1R2P8. PPP1R2P8 location in terms 
of chromosome and flanking genes is presented concerning each species where it was found, 
showing the conserved linkage. Divergence time is shown on the left. The numbers flanking the 
pseudogenes are related to the parental PPP1R2 message. Grey boxes refer to the long 
interspersed elements (LINEs) most LINE1 elements and one LINE2 element. Black boxes indicate 
the short interspersed elements (SINEs) most Alu repeats that are primate-specific but also others. 
Boxes with squares indicate long terminal repeat (LTR) endogenous retroviral-related (ERVL). 
Black traced white boxes indicate DNA-related repeats. Number above the boxes states the 
location where the repeat interrupted the sequence. Numbers inside the boxes indicate if there is 
more than one in line. 

 

PPP1R2P9 

PPP1R2P9 is probably the first PPP1R2 pseudogene that has been retroposed. 

Indeed, evolutionary analysis shows that it was originated 163.9-167.4 Mya (Figure II.B. 2) 

and that it is widespread in mammals, being inclusively present in the marsupial gray 

short-tailed opossum. Phylogenetic analysis was performed and clearly shows a robust 

basal cluster independent of the upper cluster that includes all the other PPP1R2-related 

sequences in which the closest group is the PPP1R2P8 (Figure II.B. 1). This is the most 

divergent group of pseudogenes when comparing with the parental PPP1R2 message. 

BLAST results show a 39% coverage and 63% similarity when compared with the human 

PPP1R2 message. PPP1R2P9 is present always in chromosome X in the negative strand 

orientation in primates, although the strand orientation varies in the other order 

representatives (Figure II.B. 8). 

This pseudogene was also found duplicated in marmoset (two copy), rat (three 

copies), mouse (three copies) and pig (two copy), none of them related to each other 

(Figure II.B. 5). This suggests that the parental PPP1R2 has been retroposed in this 

species more than once to chromosome X. 

PPP1R2P9 is flanked by the calcium/calmodulin-dependent serine protein kinase 

(CASK) and the monoamine oxidase A (MAOA) genes, showing a conserved linkage 

(Figure II.B. 6). The CASK gene is 0.85Mb upstream and the MAOA gene is 0.88Mb 

downstream, and so, their promoters and regulatory sequences are very distant to provide 

the help to PPP1R2P9 transcription. The rest of the neighborhood is constituted by 

pseudogenes with very low transcription rates. 
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Figure II.B. 8: Conserved linkage of PPP1R2P9. PPP1R2P9 location in terms of chromosome 
and flanking genes is presented concerning each species where it was found, showing the 
conserved linkage. Divergence time is shown on the left. The numbers flanking the pseudogenes 
are related to the parental PPP1R2 message. Grey boxes refer to the long interspersed elements 
(LINEs) LINE1 elements. Black boxes refer to the short interspersed elements (SINEs) B2 repeats 
that are rodent-specific and to the tRNAs present in the horse and in the giant panda sequences. 
Box with squares refers to long terminal repeat (LTR) in the giant panda sequence, which is an 
endogenous retroviral-related (ERVL). Number above the boxes states the location where the 
repeat interrupted the sequence. Numbers inside the boxes indicate if there is more than one in 
line. Grey box delimited with a black line in marmoset PPP1R2P9-like refer to a parental PPP1R2 
insertion. Number on the top refers where the insertion took place in the pseudogene, while 
numbers at the bottom show which region of the parental PPP1R2 was inserted. In mouse an 
unknown sequence according to the current genome assembly was inserted in PPP1R9-like and is 
shown with a number referring to its location. Also, a deletion is shown (1067 to 1373) in mouse 
PPP1R2P9-like. The distances in dashed lines of the duplicated forms in human and orangutan are 
also indicated. 
 

Considering the ORF, Figure II.B. 6 shows that at least in primates it is not 

disrupted. However, the 5’UTR of the parental gene is completely absent and the 3’UTR is 
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truncated (671bp in humans). At the 3’UTR there is a single polyA signal in the position 

1088 according with the human sequence, what might suggest that a shorter message is 

made. Sequence repeats, deletions, unknown and known sequence insertions were only 

found in the duplicated copies. The only exceptions are in mouse and rat (Rattus 

norvegicus) where the 3’UTR was completely deleted in the parental PPP1R2P9 (Figure 

II.B. 8). 

This pseudogene is the one with more transcriptional data related. In Unigene, 

NCBI, two mRNAs and 9 ESTs, six from testis and one from brain were found. Also 704 

Geo profiles and 102 experiments were found in NCBI and ArrayExpress (Ensembl), 

respectively. This suggests that silent regulatory areas were present in the region were 

PPP1R2P9 was retroposed and during the evolution PPP1R2P9 might have gain the 

ability to be transcribed. 

PPP1R2P9 was originally found in cDNA libraries of human germ cell tumors. It was 

found to be 61.5% and 43.7% similar to PPP1R2 at the nucleotide and protein levels 

respectively, and to maintain all the important phosphorylation sites, PPP1C binding 

motifs and the nuclear polyadenylation signal (residues 133 to 142) [34]. The nucleotide 

similarity score is in accordance with our BLAST results and when comparing the human 

PPP1R2P9 protein with the parental gene product in ClustalW2 we found 113 amino acids 

changes. This means a 41% score, also very close to that obtained by Shirato and co-

workers [34]. 

Furthermore it binds to PPP1C directly and in heat stable extracts inhibits potently 

with an IC50 of 0.2nM [34]. More recently it was found in human testis tissue by the MGC 

project team [35]. Also, PPP1R2P9 gene expression has shown to be affected in 

transgenic mice of STAT5-induced tumors [36]. 

Considering the CDS, all species show a continuous CDS with no or small 

truncations at the C-terminus (e.g. in mouse and rat), with the exception of pig where no 

protein translation was obtained from the CDS. Furthermore, no continuous CDS was 

obtained for the PPP1R2P9 duplications with the exception of rat PPP1R2P9-Like (the 

one found 8.2Mb upstream of the original rat PPP1R2P9, Figure II.B. 8). 

 

Other pseudogenes and pseudogenic fragments 

Besides the above-described pseudogenes, several pseudogenic fragments (100-

600bp) were identified in all species analyzed. The larger ones (200-600bp) were 

localized to the 3’UTR when comparing to the parental PPP1R2 message, while the 

smaller ones (100bp) were localized to the CDS. In primates, only one pseudogenic 
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fragment is present and is mapped to the 3’UTR. This pseudogenic fragment appeared 

before the division of Platyrrhini and Catarrhini and is localized to chromosome 12 in 

humans (Figure II.B. 2). 

Other pseudogenes that could not be assigned to the human ones and are species-

specific, were found in giant panda (Ailuropoda melanoleuca), dog, rabbit (Oryctolagus 

cuniculus) and mouse. These were considered pseudogenes, since are larger than 600bp 

or, are larger than 400bp but contain part of the CDS. Mouse genome presented the 

largest number, six, and curiously, three of them are present in chromosome 17 and 

closely located, suggesting that they are duplications. All of the three have the CDS intact 

but lost the normal start codon, having however an upstream start codon that might 

produce, if transcribed, a longer product. This suggests that other retropositions were 

disseminated in the mammalian genomes. 

 

GC-content 

In the human genome, the average GC-content is ~41%, but the CDS of genes and 

the Alu repeats have normally higher GC percentage, ~53% and ~57%, respectively [71]. 

Also, GC-rich regions are more densely populated on functional genes [71].  

Isochores are long stretches of DNA with a uniform GC-content. There is a clear 

tendency of LINE1 (long interspersed nuclear elements, family L1) to be present in GC-

poor regions (isochores L1 and L2, <41%), Alu elements (SINEs, short interspersed 

nuclear elements) in GC-rich regions (isochores H2 and H3, >46%) and processed 

pseudogenes in intermediate GC-content regions (isochore H1, 41-46%) [71, 72]. 

Conserved transcribed processed pseudogenes tend to have a GC-content higher than 

the respective flanking regions [73]. 

Concerning the PPP1R2 gene, the CDS has a GC-content of 46% and is localized 

in a L2 isochore, which does not follow the normal patterns and could indicate that the 

pseudogenes will also have a lower GC-content, at least the closest ones. 

Therefore, we searched if the human pseudogenes also have this in common and if 

they have higher probability of being transcribed. PPP1R2P1 has a putative CDS with a 

GC-content of 43.4%, being localized in a L2 isochore (37-42%) but surrounded by two 

H2 isochores (47-52%) where the TAP1 and HLA-DMB genes are present (Figure II.B. 3). 

This pseudogene is below the average of transcribed processed pseudogenes and the 

GC-content of PPP1R2P1 is not considerably higher than the surrounding flanking region. 

Taking together, the GC-content, chromosomal location, surrounding genes, conservation 

of the ORF and past gene expression data, we hypothesize that in humans this 
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pseudogene might be in fact expressed and may be functional at least in some 

individuals. 

PPP1R2P3 is present in a region of isochore L2, which is also in accordance with 

the absence of genes in this region. Furthermore PPP1R2P3 GC-content of 46.3% is 

higher than the flanking region, 37-42% that is common in transcribed processed 

pseudogenes. This is in agreement with it being in fact transcribed and translated in testis 

and sperm [50].  

PPP1R2P9 is present in a region that has a low GC-content, being localized in a L2 

isochore and only represented by pseudogenes. This means that this is supposedly a low 

transcription region. Moreover, the GC-content of the CDS is 49.8%, one of the highest 

among the PPP1R2 pseudogenes and considerably higher than the surrounding flanking 

region (37-42%, L2). This is also in common with transcribed processed pseudogenes. 

Concerning the other pseudogenes, most of them are also present in L2 isochore 

regions, with the exception of PPP1R2P6 that is present in a H1 isochore region. Also, 

since no ESTs were identified, except for PPP1R2P2, and many mutations in all the 

species analyzed have introduced frameshifts resulting in premature stop codons, we 

consider them to be transcriptionally silent, and so true pseudogenes. 

 

PPP1R2-related proteins: protein detection 

PPP1CC2, a sperm-specific protein phosphatase, is involved in sperm motility, since 

inhibition of its activity by okadaic acid and calyculin A causes both initiation and 

stimulation of motility in caput and cauda sperm, respectively [24, 25]. In fact, PPP1CC2 

has two-fold higher activity in immotile bovine caput epididymal sperm compared to 

mature motile caudal sperm [24, 25]. Moreover, in vivo, this inhibition was associated with 

a PPP1R2-like activity since GSK3 was able to reverse the process [24]. We have 

previously shown that PPP1R2 and PPP1R2P3 are present in testis and sperm were they 

may account for this PPP1R2-like activity [50]. Testis is one of the organs where most 

pseudogenes are expressed and its gene products were shown to have important roles in 

spermatogenesis and other germ cell related functions [47-49]. This might be due, in part, 

to the transcription not being as tightly regulated, which could lead to activation of 

otherwise imperfect or weak promoters [49, 53]. PPP1R2 has been shown to be one of 

the PPP1C regulators with more pseudogenization [26]. Given that from all pseudogenes, 

only PPP1R2P1 and PPP1R2P9, besides PPP1R2P3, are putatively translated, we 

checked if we could obtain peptides representative of the pseudogenes from human 

ejaculated sperm by mass spectrometry [50]. The molecular weight of these pseudogenes 
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should be similar to the parental one, as it happens with PPP1R2P3, being therefore 

present in the same region where the band was extracted to mass spectrometry analysis. 

Also, since PPP1R2 is a heat stable inhibitor of PPP1C we tested if peptides related to 

those pseudogenes would appear in heat stable extracts. The antibody that we used to 

immunoprecipitate PPP1R2-related proteins was raised against a peptide containing 

amino acid residues 134-147 from the mouse PPP1R2 sequence. In this region of 14 

residues, PPP1R2P1 is similar and PPP1R2P9 has three substitutions when comparing to 

PPP1R2 sequence. This antibody was used previously to detect PPP1R2 and PPP1R2P3 

in human sperm samples [50]. Results from human sperm immunoprecipitate and heat 

stable extract were analyzed using an Orbitrap Velos mass spectrometer and we were 

able to identify 23 MSMS spectra corresponding to 8 different peptides matching 

unequivocally with PPP1R2P9 (Figure II.B. 9 and Table II.B. 2) 

 

 

Figure II.B. 9: Protein alignment of PPP1R2P9 and PPP1R2 showing peptide obtained form 
mass spectrometry. A ClustalW2 alignment was performed using the protein sequence of 
PPP1R2P9 and PPP1R2. Black arrows indicate the important phosphorylation sites in PPP1R2 
and the respective known kinase. Phosphorylation sites detected by mass spectrometry and 
respective unknown kinase (?) are also depicted. Black bars at the bottom of each row of alignment 
show the region covered by the peptides obtained. * represent high conservation, : and . represent 
low conservation in which the substituted residue has respectively more and less similar properties. 
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Table II.B. 2: Peptides identified by Orbitrap Velos mass spectrometry for PPP1R2P9, from human 
sperm heat stable extracts and immunoprecipitates using rabbit anti-PPP1R2 antibodies. aa, amino 
acids; pI, isoelectric point. 
 

Protein Name  Uniprot ID  
MW  
(Da)  

pI  
Protein 
size (aa)  

Coverage  
Mascot 
score  

PPP1R2P9  IPP4_HUMAN  22,660  5.04  202  36,5%  381,09  

Peptide  
Range 
(start-
end)  

Number of 
spectra  

m/z 
meas.  

z  
Mascot 
score  

K.NKSSSGSSVATSGQQSGGTIQDVK.R  17 - 40  6  770,71  3  21,95  

K.SSSGSSVATSGQQSGGTIQDVK.R  19 - 40  6  1034,49  2  99,44  

K.SSSGSSVATSGQQSGGTIQDVKR.K  19 - 41  4  1112,54  2  38,09  

R.LHYNEELNIK.L  143 - 152  2  424,89  3  31,40  

K.ANEPGTSYMSVQDNGEDSVRDVEGEDSVR.G  68 - 96  2  1053,45  3  63,05  

R.RLHYNEELNIK.L  142 - 152  1  476,92  3  29,73  

R.ATYRDYDLMK.A  58 - 67  1  431,20  3  28,17  

K.ANEPGTSYMSVQDNGEDSVR.D  68 - 87  1  1086,46  2  69,26  

 
 

The sequence coverage obtained for PPP1R2P9 was 36.5% and the mascot score 

levels were 381,09 (in addition, spectra were manually evaluated). This is the first time 

that PPP1R2P9 protein is detected being clearly recovered from human ejaculated sperm. 

Furthermore, these results also indicate that native PPP1R2P9 is indeed a heat stable 

protein and that it migrates at the same position as the parental PPP1R2 and PPP1R2P3. 

Finally, we were also able to obtain PPP1R2P9 peptides with phosphorylations in serines 

19, 20, 21, 23 and 24. Previous mass spectrometry studies also identified Ser20 of 

parental human PPP1R2 and Ser23 in the parental mouse PPP1R2 phosphorylated [74-

77]. The relevance of these phosphorylations in parental PPP1R2 and in PPP1R2P9 still 

needs to be assessed, however no phosphorylations were obtained for PPP1R2P9 

regarding the important functional residues, Thr72 and Ser120/121. Furthermore, no 

peptides were obtained for PPP1R2P1, which suggests that at least in sperm the protein 

is not present, although this possibility cannot be excluded. 

The human nucleotide sequences of PPP1R2P1/3 and 9 were translated and the 

corresponding amino acid sequence aligned with the human parental PPP1R2 using 

ClustalW tool (Figure II.B. 10). 
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Figure II.B. 10: Alignment of PPP1R2-related proteins reveals high conservation. A ClustalW2 
alignment was performed using the protein sequences of PPP1R2P1, PPP1R2P3, PPP1R2P9 and 
PPP1R2. Black arrows indicate the important phosphorylation sites in PPP1R2 and the respective 
known kinase. Black boxes encage each PPP1 binding motif known for PPP1R2 and the acidic 
stretch. Black bar indicate the peptide for which the the antibody used for immunoprecipitation was 
raised. * represent high conservation, : and . represent low conservation in which the substituted 
residue has respectively more and less similar properties. 
 

Alignment shows that PPP1R2P9 is the most divergent (41%) and PPP1R2P3 is the 

most similar (95%) when comparing with the parental PPP1R2 (Figure II.B. 10). 

Concerning the important regions, we observe that Ser120 and 121, SILK and KSQKW 

motifs and the nuclear localization signal (residues 133 to 142) are conserved in all 

PPP1R2-related proteins. The other PPP1 binding motif KLHY is conserved in PPP1R2P3 

but a substitution in the first residue to Thr or Arg is observed for PPP1R2P1 or 

PPP1R2P9, respectively. The acidic stretch (DDDEDEE) required fo 

r GSK3 phosphorylation is maintained in PPP1R2P3 although the GSK3 

phosphorylation site is substituted to Pro. The other two PPP1R2-related proteins 

maintain the GSK3 phosphorylation site but the acidic stretch has several changes 

particularly in PPP1R2P9. Finally, concerning the CK2 phosphorylation site important to 

enhance GSK3 phosphorylation, it is conserved in PPP1R2P1 but substituted by Arg in 

PPP1R2P3 and PPP1R2P9. Overall, the results show that these three PPP1R2-related 

proteins should maintain the ability to bind to PPP1C as was already demonstrated for 

PPP1R2P3 and PPP1R2P9 [34, 50]. Also, the ability to regulate the holoenzyme activity 
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by GSK3 phosphorylation appears to be compromised in PPP1R2P3, as we have shown 

previously [50], and at less extent in PPP1R2P9, due to the Ser87 change to Arg. 
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Conclusions 

Evidences of retroposons from the gene PPP1R2 is ancient, prior to the great 

radiation of the mammals, supported by the presence of PPP1R2P9 and PPP1R2P7 in 

the different groups of mammals. All the other pseudogenes found are primate-specific 

and were retroposed at different times during the evolution of this group. For instance, 

PPP1R2P3 exists only in the members of the Hominoidea family, whereas PPP1R2P8, 

the most distinct, is present in all groups and was retroposed 42.6-65.2 Mya. This reveals 

that retropositions have occurred in waves and in a unique way similar to the Alu repeats 

explosion that occurred 40-50 Mya after the divergence of simian ancestors from the 

prosimians (lemurs and lorises) [63]. The recent pseudogene duplication in humans, 

PPP1R2P4, and in chimpanzee, PPP1R2P1, suggests that evolution of pseudogenes is 

still an active process. 

In this study we clearly confirm that PPP1R2P9 is also present in human sperm and 

is a heat stable protein in its native form. The importance of these PPP1R2-related 

proteins in physiological conditions, such as spermatogenesis and sperm physiology, is 

relevant for further studies. Besides this, PPP1R2P1 and PPP1R2P9 were also found 

associated with pathological conditions [32, 34, 36, 62]. 

Furthermore, it has been shown that pseudogenes can regulate their parental 

counterparts at the message level either by siRNA generation and consequent gene 

silencing or by competition for positive and negative stabilizing factors and miRNAs, 

leading to an alteration of the parental mRNA levels [78]. Although PPP1R2P2 translation 

is very unlikely, its expression is stated and so, it is feasible that PPP1R2P2 or even other 

pseudogene messages could regulate the parental PPP1R2 message levels and 

therefore its function. 

These observations indicate that PPP1R2 pseudogenes have possible biological 

functions and could not be non-functional relics as was initially believed and that there 

evolution process might be in part related with the formation of new genes and the gain of 

new specific functions. Therefore, their denomination as pseudogenes must be rethought. 
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Chapter II.C 

 

Overexpression of PPP1R2 and PPP1R2P3 in mouse – a 

transgenic approach 

 

In the prior chapters the presence and localization of PPP1R2 in spermatozoa as 

well as the relevance of related pseudogenes were discussed. In this chapter PPP1R2 

and PPP1R2P3 will be overexpressed in testis using the mouse model to try to unravel 

the role of these proteins in mammalian sperm motility. 

 

Introduction 

A transgenic animal carries a foreign gene that has been deliberately inserted into 

its genome. In opposition, in a knock-out animal a target gene has been deliberately 

inactivated or “knocked-out”. Nowadays both terms, transgenic and knock-out, are 

commonly used as transgenic, being the first referred as standard transgenic when we 

just want to emphasize this technique. Mice are the favorite model to use the standard 

transgenic and knock-out techniques because they are mammals, have a relatively low 

cost of maintenance and a generation time of only nine weeks. Besides this, mice 

naturally develop conditions that mimic human disease, such as cardiovascular disease, 

cancer and diabetes, and so are widely used to study inherited human diseases. These 

animals are also very useful for delineating the function of newly discovered genes as well 

as for producing useful proteins in large animals [1]. 

 

Transgenic mice production 

There are three alternative methods to produce a transgenic animal: (i) DNA 

microinjection (ii) Embryonic stem (ES) cell-mediated gene transfer and (iii) Retrovirus-

mediated gene transfer. 

The first method involves the direct microinjection of a chosen gene construct into 

the pronucleus of a fertilized egg. It is one of the first methods that proved to be effective 

in mammals [2]. To minimize interference from the bacterial vector sequences, the 

transgene is usually excised from the plasmid vector before the microinjection. The 

insertion of the DNA is, however, a random process, and there is a high probability that 

the introduced gene will be inserted in silenced regions of the chromosome. Also multiple 

transgene copies can be inserted at a single locus and expression levels do not correlate 
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well with the copy number. The manipulated fertilized egg is then transferred into the 

oviduct of a pseudopregnant foster female that has been induced to act as a recipient by 

mating with a vasectomized male. A major advantage of this method is its applicability to a 

wide variety of species and is generally used in standard transgenic mice techniques. 

The second method involves prior insertion of the desired DNA sequence by 

homologous recombination into an in vitro culture of ES cells [3]. These cells are then 

incorporated into an embryo at the blastocyst stage of development. The result is a 

chimeric animal. ES cell-mediated gene transfer is the method of choice for the knock-out 

technique. This technique works particularly well in mice and has the advantage of 

allowing precise targeting of defined mutations in the gene via homologous recombination. 

The third method is used to increase the probability of gene expression [4]. The 

gene transfer is mediated with the help of a carrier or vector, generally a virus or a 

plasmid. Offspring derived from this method are chimeric and transmission of the 

transgene is only possible if the retrovirus integrates into some of the germ cells. 

The success rate in terms of live birth of animals containing the transgene or in 

which the gene is disabled is extremely low. Providing that the genetic manipulation does 

not lead to abortion, the result is a first generation (F1) of animals that need to be tested 

for the expression of the transgene. Depending on the technique used, F1 generation will 

result in heterozygous mice, in the case of DNA microinjection, or in chimeras, in the case 

of the other methods. Subsequent crossing of the quimeras with wild type mice will result 

in heterozygous offspring. To obtain a homozygous mouse, a female and a male 

heterozygous need to be crossed. In all these steps confirmation of heterozygosity by 

PCR or Southern blot need to be performed. Consequent crossing of homozygous will 

guarantee an offspring of homozygous without the need of further confirmation.  

 

Knock-out technique 

The knock-out technique can be performed globally, by disabling the gene in all cells 

of the animal, or locally in specific cells, using the Cre recombinase system [5] or, more 

recently, the yeast-derived Flip (FLP) recombinase [6]. The first one is generally applied, 

as a first approach to get fast conclusions about the importance of a specific gene, but 

has the disadvantage that some genes can be embryonically or neonatal lethal. The 

second (Cre/FLP) is applied when the gene needs to be studied in a particular tissue or 

there is the need to overcome the embryonical lethality by inducing the knock-out at latter 

stage in a time-dependent manner, as a switch. Both use the homologous recombination 

to switch-off the relevant gene. The Cre-recombinase system, also called, Cre-loxP 
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system involves the action of Cre (causes recombination), a type I topoisomerase from P1 

bacteriophage that catalyzes site-specific recombination of DNA between loxP (locus of X 

over in PI) sites, a 34 base pair (bp) sequence composed of two 13bp inverted repeats 

flanking an 8bp spacer region which confers directionality sites. Similarly, the system FLP-

recombinase catalyzes the recombination targeted to short (34 bp) DNA recognition 

sequences termed FRT sites. Two mice strains are needed, one in which the region of the 

gene targeted for deletion is flanked by the loxP sites or FRT sites in the same orientation 

(floxed or flipped mice), and a second line in which the expression of Cre/FLP 

recombinase is under the control of a time- and/or tissue-specific promoter. 

Besides the already stated advantages, Cre/FLP-recombinase systems can also be 

used to generate global knock-outs. So this flexibility allows that if global or different 

tissue-/time-dependent lines of Cre/FLP mice are available the role of the target gene can 

be studied at different places. The main difference between Cre and FLP recombination 

systems is that FLP system is very useful for the removal of the selection gene from the 

targeted gene at the ES cell stage. 

The expression of Cre/FLP-recombinases in a time dependent manner can be 

achieved by placing the Cre/FLP expression under the control of a minimal promoter and 

by directing the expression of the inducer protein (transactivator) to certain cell types. 

Transcription of Cre/FLP in mice can be activated by administration of the small 

molecules, such as tetracycline [7], Tamoxifen [8], RU486 [9] or ecdysone [10]. The major 

disadvantage of these regulatory systems is the separate insertion of the gene encoding 

the transactivator and that of the controllable Cre/FLP into the genome leading to large 

numbers of transgenic mice, which have to be intercrossed and tested for the desired 

combination of the transgenes. 

The knock-in technique uses the same system of the knock-out and consists of an 

endogenous gene that is replaced with a mutant variant in order to address the role of 

specific functional domains, amino acid residues, or signaling pathways in vivo. 

 

Standard transgenic technique 

The first widely used approach to study gene function in vivo was to produce 

transgenic mice that overexpressed target genes. This requires the full-length coding 

sequence (cDNA) of a gene to be cloned downstream of a promoter that will provide 

ubiquitous or tissue-specific expression. The major advantages of the transgenic 

approach are that it is relatively straightforward and inexpensive, high levels of target 

gene expression can be achieved, and transgenic overexpressing mice often demonstrate 
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an obvious phenotype. One disadvantage is that the site of integration of the transgene 

into the genome can seriously affect tissue specificity and levels of transgene expression, 

like for instance in regions of heterochromatin, so a high number of founder lines may 

need to be screened. Also the transgene can be incorporated in another gene disabling it, 

and leading to a wrong analysis of the phenotype. However, even well characterized 

promoters are often expressed at lower levels in non-target tissues, so rigorous analysis 

should include examination of transgene expression in a range of tissues. Although 

overexpression models by their nature produce nonphysiological levels of gene and 

protein expression, they can still provide valuable insights into normal gene function in 

vivo [11]. 

 

Vector construction 

The vector construction must take into account the final purpose of the experiment. 

In the standard transgenic technique, a transgene typically contains a promoter, a cDNA, 

an intron, and a polyadenylation signal. The cDNA should include at least the CDS and 

part of the 3’UTR and the intron should be added to stimulate the transport of mRNA out 

of the nucleus, since this process is coupled to the splicing process [12-14]. The artificial 

intron should be placed at the 3-prime end of the cDNA. The SV40 polyadenylation 

sequence is often used because of its strong polyadenylation signal that helps to stabilize 

the message. Also restriction sites should be added for excision of the entire transgene 

before microinjection. Tags are also often used in order to distinguish the transgene from 

the wild type form (Table II.C. 1). 

 

 

Table II.C. 1: Common tags used in transgenic mice systems. 

Tag Epitope Description Reference 

GFP  

green fluorescent protein and its variants, 

yellow, cyan and red fluorescent proteins 

(YFP, CFP and RFP), enables the 

visualization and localization without any 

further staining. It was isolated from jellyfish 

Aequorea aequorea and is a 238 amino acid 

protein with an apparent molecular weight of 

about 27-30 kDa 

[15] 
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Tag Epitope Description Reference 

AU1 DTYRYI 
derived from the major capsid protein of 

bovine papillomavirus-1 
[16] 

HA YPYDVPDYA 
derived from the human influenza 

hemagglutinin protein 
[17] 

Myc EQKLISEEDL derived from the human protooncogene myc [18] 

V5 GKPIPNPLLGLDST 

derived from a small epitope (Pk) present on 

the P and V proteins of the paramyxovirus of 

simian virus 5 

[18] 

FLAG DYKDDDDK 
The first one to be described, it’s a peptide 

highly hydrophilic 
[19] 

 

Multiple tags, double or triple, using 1 or 2 amino acid linkers between tags are now 

starting to be used (ex. 3xmyc, [20]; 3xHA [21], 3xFlag [22], and apparently help to 

increase the signal [23]. 

The choice of the appropriate promoter is extremely important. This is particularly 

evident in meiotic spermatogenic cells where a failure to mimic the correct expression of 

the transgene could lead to a decreased expression. To mimic the expression of the 

selected transgene, the same promoter, a variation or another well-studied promoter 

should be chosen. The promoters frequently used can be divided in viral and eukaryotic 

promoters [24]. The viral promoters were the first to be used, however, eukaryotic cells 

have evolved mechanisms to detect and silence viral transgene expression. Viral 

promoters have shown a frequent inability to sustain transgene expression in vivo, but 

despite this a large proportion of gene therapy applications continue to use them to drive 

transgene expression. Examples include the ubiquitous cytomegalovirus immediate early 

(CMV-IE) promoter and enhancer, the simian virus 40 (SV40), the Rous sarcoma virus 

long terminal repeat (RSV-LTR) and the Moloney murine leukemia virus (MoMLV) LTR 

promoters [24].  

The eukaryotic promoters emerging prove to be highly advantageous in achieving 

long-term expression in vivo and can also drive the expression in a tissue-/cell type-

dependent manner. They are classified as ubiquitous/non-tissue specific or tissue-/cell 

type-/disease-specific promoters. Examples of non-tissue specific promoters are the 

elongation factor 1α (EF1α) and the human phosphoglycerate kinase 1 (PGK1) [25]. The 

list of tissue-/disease-specific promoters has expanded considerably over the past few 
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years. Examples of tissue-specific promoters are various, the human α1-antitrypsin 

(hAAT) in liver [26], the adipocyte P2 in fat cells [27], the myosin light-chain in muscle [28], 

the amylase in acinar pancreas [29] and insulin in islets of Langerhans β cells [30]. In 

spermatogenic cells, the human PGK2 human drives the transgene expression at the 

stages of meiotic preleptotene spermatocytes (transcription) and pachytene 

spermatocytes (translation) (-445/+70, 515bp [31, 32], whereas mouse protamine 

promoter (mPrm) 1 and 2 drives the expression in the late stages of spermatogenesis, in 

round (transcription) and elongated spermatids (translation) (mPrm1 -240/-37, 203bp; 

mPrm2 -170/-82, 88bp, [33-36]. 

In the case of knock-out and knock-in techniques, to design the gene targeting 

constructs one should also take into account the homology arms in order to the 

homologous recombination to occur. The homology arms consist of 2 long segments of 

genomic DNA (gDNA) that flank a selection cassette. The gDNA homology arms can 

undergo a double-reciprocal recombination event with their matching sequences on one 

chromosome, carrying the selection cassette with them. The selection cassette thereby 

replaces the gDNA between the regions of homology on the chromosome. Also positive 

and negative selection cassettes are generally introduced to select positive ES cells (ES 

cells that have suffer homologous recombination). One of the most commonly used 

positive selection marker is the neor, a gene that encodes an enzyme that inactivates the 

antibiotic neomycin and its relatives, like the drug G418, which is lethal to mammalian 

cells. Therefore only positive ES will survive.  However, the presence of neor in an intron 

can result in an alteration of gene function and therefore produce an unwanted or even 

lethal phenotype [37]. This problem can be avoided by the use both the Cre and FLP 

recombination systems.  

A targeting vector containing both a FLP-flanked neor marker and a loxP-flanked 

exon can be introduced into ES cells. After selection, the neor can be removed with FLP 

recombinase before the ES cells be injected into host blastocysts. With this system, the 

chimeric offspring contain only a minimal genetic modification (the addition of two loxP 

sites and one Frt site) in the gene of interest, limiting the probability of a complicating 

phenotype.  

One commonly used negative selection marker contains the herpes simplex virus 

gene that encodes for thymidine kinase (tk). Thymidine kinase is an enzyme that 

phosphorylates the nucleoside analogue ganciclovir. Viral ganciclovir is a non-toxic drug 

for the cells but when mono-phosphorylated by tk and subsequently bi- and tri-

phosphorylated by cellular kinases is incorporated into the DNA of replicating cells by 
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DNA polymerase, blocking the cell cycle and inducing apoptosis [38]. Cells that are 

transfected and exposed to ganciclovir can also kill adjacent, untransfected cells by the 

so-called bystander effect, in which transfer of phosphorylated ganciclovir molecules 

occur between neighbor cells via gap junctions [39]. The tk negative selection cassette is 

cloned into the targeting construct outside of the homology arms, and so it will not be 

incorporated during homologous recombination. But it will be incorporated during most 

random integrations helping to select against those clones [40].  

Another negative selection marker is the diphtheria toxin A (DTA) gene. The A 

subunit inhibits protein synthesis via covalent modification of elongation factor 2 and has 

the advantage over tk/ganciclovir because is not taken up by other cells and works without 

the need of a second drug [41]. 

 

Objective 

 

The aim of this work was to use the DNA microinjection technique to achieve 

PPP1R2 and PPP1R2P3 overexpression in mice testis in order to address the functions of 

those two PPP1 inhibitors in spermatogenesis and sperm physiology. 
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Material and Methods 

 

Plasmids construction 

For the generation of transgenic mice two constructs were produced using the 

pBlueScriptII(SK-) vector (Stratagene now Agilent Technologies UK Ltd, Edinburgh, UK). 

Both constructs were designed in a similar way, having a human PGK2 promoter 

(hPGK2p), 3x HA tag, the cDNA and the SV40 polyadenylation signal. The cDNAs coded 

for hPPP1R2 (inhibitor-2) and hPPP1R2P3 (also called inhibitor-2-like). The parental 

pBlueScriptII(SK-) plasmid containing the hPGK2p, PPP1CC and the SV40 

polyadenylation signal was kindly provided by our collaborator Prof. Srinivasan 

Vijayaraghavan [42]. Parental plasmid was cut with EcoRI and XhoI (all restriction 

enzymes were bought from NEB, New England Biolabs (UK), Herts, UK) in order to 

remove the PPP1CC cDNA, run in an extraction 1% agarose gel and the corresponding 

band purified using QIAquick spin purple columns (QIAGEN, Dusseldorf, Germany). ClaI 

and SalI sites were taken out from the original vector. hPPP1R2 and hPPP1R2P3 cDNAs 

were excised from pET28a-hPPP1R2 and pET28a-hPPP1R2P3 (MERCK, Darmstadt, 

Germany) plasmids already described, using the same enzymes. Both cDNAs 

corresponding to the CDS with start and stop codons were prepared using the same 

methodology has for the vector backbone. Ligations were performed using T4 DNA ligase 

(NEB (UK), Herts, UK) according to manufacturer's protocol thereby producing the final 

plasmids pBlueScriptII(SK-)-hPGK2-PPP1R2/PPP1R2P3-SV40. 

The 3x HA tag fragment with restriction sites overhangs for EcoRI was obtained by 

hybridization of the two primers 3HA-FW (108nt, 5´-

attcatgtacccatacgatgttccagattacgctaccggatacccatacgatgttccagattacgctaccggatacccatacgat

gttccagattacgctaccggag-3´) and 3HA-RV (108nt, 5´-

aattctccggtagcgtaatctggaacatcgtatgggtatccggtagcgtaatctggaacatcgtatgggtatccggtagcgtaat

ctggaacatcgtatgggtacatg-3´) (all primers were synthesized by Eurofins MWG Operon 

Ebersberg, Germany). In brief both primers were resuspended in a volume of Tris 

annealing buffer (10mM Tris, pH 8.0), at the same molar concentration (100mM), then a 

dilution of 10mM was obtained and the primers mixed in equal volumes in a 1.5mL 

eppendorf tube. The tube was placed in a heatblock at 95 °C for 5min., and subsequently 

cooled to room temperature. Then, the 3x HA fragment was ligated as explained before 

producing the final constructs pBlueScriptII(SK-)-hPGK2-3xHA-hPPP1R2/hPPP1R2P3-

SV40. In all steps the positive clones were sequenced in the ABI PRISM 310 Genetic 
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Analyser (Portugal Applied Biosystems, Porto, Portugal) to ensure the right orientation 

and sequence of the product. 

 

DNA microinjection testing 

In order for the constructs to be sent to the Case Western Reserve University 

(CWRU, Cleveland, Ohio, USA), Case Transgenic and Targeting Facility the following was 

done: 200ug of pure plasmid DNA kit-purified at a concentration of 1 µg/µl or greater were 

prepared, information was given on the restriction enzymes which will allow to cut and gel-

purify the insert from the backbone, a photo of a gel with ladder showing the insert 

released from the plasmid backbone by restriction digest with the same enzymes that will 

be used to gel-purify the insert and a demonstration that 1 copy or less of the transgene 

could be detected by Southern blot or PCR methods in a background of mouse genomic 

DNA, using an assay on 1, 0.1, 0.01, 0.001 transgene copy equivalents until reach the 

point of no detection, in what is called, spike the plasmid, was also performed. 

In detail a bulk production of the plasmid was performed using the PureYield™ 

Plasmid Maxiprep System (Promega, Southampton, UK). Then a restriction digest using 

BamHI and KpnI restriction enzymes was performed in order to release the insert, PGK2-

3xHA-hPPP1R2/hPPP1R2P3-SV40 from the backbone, pBlueScriptII(SK-). The restriction 

cut was run in a 1% agarose gel along with 1kb plus DNA ladder (Life Technologies 

S.A., Madrid, Spain) and pictures were taken using the AlphaImager HP system (Fisher 

Scientific, Loures, Portugal). Finally in order to spike the plasmid, first an ear punch from a 

wild type SJL/BL6 mouse was obtained and the tissue was digested in a heat block for 1hr 

at 95º in 50μL of alkaline lysis buffer (25mM NaOH and 2mM EDTA, pH12.0 in ddH2O) 

and neutralized by mixing in 50μL neutralization buffer (40mM Tris-HCl, pH5.0 in ddH2O). 

A centrifugation was performed at maximum speed to get read of the fur. The supernatant 

containing the genomic DNA was used (1μL) to mask the plasmid during the spike. A PCR 

was subsequently done using the primers PGK2-FW (20nt, 5’-gcgcacacctcaggactatt-3’) 

and SV40-RV (23nt, 5’-cttggcgtaatcatggtggtacc-3’), and increasing amounts of plasmidic 

DNA (0,1; 0,5; 1; 2; 5 and 10pg) to obtain a final product of 1310nt. The PCR conditions 

were done has follows: initial denaturation (92ºC for 2min.), 30 cycles (92ºC for 30sec., 

59.5ºC for 30sec. and 72ºC for 1min.) and final extension (72ºC for 5min.). 

 

Transgenic mice generation 

The two constructs, pBlueScriptII(SK-)-hPGK2-3xHA-hPPP1R2/hPPP1R2P3-SV40, 

were sent to the Case Western Reserve University (CWRU, Cleveland, Ohio, USA), Case  
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Transgenic and Targeting Facility. In CWRU the insert was first extracted using the 

same enzymes of the subcloning and gel-purified it before microinjection. For 

microinjection of the DNA into the pronucleus, F2 (generation 2, SJL/BL6) zygotes were 

first obtained from a cross between F1 hybrids of SJL and C57BL/6J. Microinjection was 

performed in these zygotes and they were implanted in a foster mother. After the 

gestation of almost 3 weeks, the mice were maintained in their facility for a postnatal 

growth of 6 weeks and after they were weaned. Then the mice were shipped to the animal 

facility in the Department of Biological Sciences at Kent State University, Kent, Ohio, USA. 

 

Identification and genotyping 

Transgenic mouse production and use at Kent State University follows approved 

Institutional Animal Care and Use Committee (IACUC) protocols adapted from the 

National Research Council publication, Guide for the Care and Use of Laboratory 

Animals. The animals were received in the animal facility, separated in cages, maximum 5 

animals per cage, and divided by sex. Mice came in a rainbow of coat colors, white, 

brown, black, and yellow, because they are hybrids of two inbred strains (Table II.C. 2). 

They were kept in a quarantine room for two months, and were subjected to blood 

analysis, identification and genotyping. 

 

Table II.C. 2: Number of mice received in orders hPPP1R2 and hPPP1R2P3. Sex and colors 
are also shown for each order. 

 

 

 

 

 

 

 

 

The marking was done by earpunch using an ear puncher and according with a 

pattern described in Figure II.C.1. 

 

 
hPPP1R2 hPPP1R2P3 

 

 
Male Female Male Female Total 

Brown 14 15 19 22 70 

Black 6 4 7 9 26 

White 14 2 10 14 40 

Yellow 0 1 2 2 5 

Total 34 22 38 47 141 
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Figure II.C.1: Ear punching of mice. A. Punch(es) according to the illustrated code. B. 
Restraining the animal manually, place the ear puncher in the desired position and firmly quickly 
punch a hole (figure adapted from [43]). 

 

The ear punch was also used to genotype in the same conditions as explained in 

the section Plasmids construction, with the difference that a second set of primers, 

PPP1R2-Int-FW (26nt, 5’-actgcagatggagaaagcatgaatac-3’) and SV40-RV, was also 

selected for reconfirmation, giving a fragment of 302nt. Also tail snips of all mice were cut 

and the genomic DNA extracted with DNeasy® Blood & Tissue kit (QIAGEN, Dusseldorf, 

Germany), in order to check for false negatives. All the inserts were also subcloned in 

pGEM-T Easy (Promega, Madison, Wisconsin, USA) and sequenced (Cleveland Clinic 

Genomic Core sequencing service, Cleveland, Ohio, USA). After that, all positives 

(founders) were transported to a separate room and the lines established by breeding the 

founders with the wild type CD1 mice. Generally female mice reach sexual maturity 

around 6 weeks and males around 8 weeks.  

The new generations were allowed to growth for 3 weeks in the presence of the 

mother and after that separated to new cages, marked and genotyped. The negatives 

were euthanized by carbon dioxide according to the rules. Positives were kept for 

posterior experiments and for continuing the lineage. All the cages were identified with 

cards, and the mating pairs, founders and generations recorded.  

For fertility test a single male positive for the transgene and two female CD1 mice in 

reproductive age, were put together in a separate cage. Regularly and in the morning 

females were checked for plug presence. Plugs are useful for obtaining timed mating. A 

plug is hardened semen, blocking the vagina, and remains in place for about 12 hours 

after mating. Plugs are detected by visual inspection or by probing gently with a sterile 

toothpick on an immobilized female. Mating is assumed to occur at the midpoint of the 

A B 
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dark cycle. For example if the 12hr on/off cycle starts at 6 pm the midnight will be the 

midpoint, and thus noon of the next day is 0.5 days of gestation. Generally the gestation 

occurs for 18 to 20 days, and when the litter is born the date and number is recorded.  

Also fertility should be checked in at least 2 males of each founder line and caution 

should be taken if the females don’t deliver pups. In this case females in the box should 

be switched by new ones. 

 

Fertility test 

Transgenic male mice from the positive lines were mated with wild-type CD1 

females over a period of 5 weeks, and the number of offspring in each litter was recorded. 

CD1 females that failed to become pregnant were subsequently tested for fertility by 

mating to wild-type CD1 males. 

 

Samples preparation 

For all the experiments, mice were sacrificed using carbon dioxide and dissected 

under the fume hood. When possible a littermate negative or a wild type CD1 of 

approximate age, was used as negative control. The mice were open laterally with small 

incisions. The testis, epididymis and vas deferens were cut from each side. Each testis 

was weight with tunica in an analytical balance. Then, for protein extracts the tunica was 

removed and the testis homogenized in 1% SDS using a Model Pro 200 tissue 

homogenizer (Pro Scientific Inc., Oxford, Connecticut, USA).  

For immunohistochemistry, the testis with tunica was immersed in 4% 

paraformaldehyde/1x PBS and kept at 4ºC overnight. Cauda of epididymis and vas 

deferens were separated from the rest of the epididymis and immersed in 1x PBS solution 

warmed to 37ºC. The cauda of epididymis was punctuated with a fine-tip needle, cut as a 

fillet and vas deferens was squeezed. Sperm motility in caput and cauda of epididymis 

was also manually accessed under the stereomicroscope. Then epididymal sperm was 

allowed to exit, collected and washed two times with 1x PBS by centrifugation at 600g, 

room temperature. Sperm was subsequently counted in a haemocytometer chamber, and 

before preparing the sperm extracts an aliquot was mixed with 4% paraformaldehyde to 

visualize the morphology in differential interference contrast (DIC). The remaining sperm 

was diluted to 2x105 sperm/μL in 1% SDS and sonicated three times 10sec. For the 

preparation of supernatant and pellet extract fractions, homogenization buffer (10mM Tris 

pH7.0, 1mM EDTA, 1mM EGTA) with protease inhibitors (10mM Benzamidine, 1mM 

PMSF and 0.1mM TPCK), HB+, was used instead of 1% SDS. After centrifugation at 
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16000g, 20min., 4ºC, the supernatant fraction was collected to a new tube and the pellet 

was dissolved in 1% SDS (pellet fraction).  

Testis heat stable extracts were prepared from the supernatant fraction of 

homogenization buffer by boiling for 10min. at 95ºC, 2min. in ice and centrifugation at 

16000g, for 15min. at 4ºC. Supernatant fraction was then recovered to a new tube. 

 

SDS-PAGE 

In SDS polyacrylamide gel electrophoresis (SDS-PAGE) separations were carried 

out using established methods [44]. Small 12.5% gels were used for the separation of 

hPPP1R2 and hPPP1R2P3 proteins. In brief, the resolving gel was pipetted down the 

spacer into the gel apparatus, leaving some space for the stacking gel. Then, isopropanol 

was added to cover the top of the gel and the gel was allowed to polymerize for 1hr. The 

isopropanol was then poured out, the stacking gel was added to the apparatus, a comb 

inserted and the gel was allowed to polymerize for 30min.  

After the gel polymerization, the combs were removed, and the wells filled and 

washed with running buffer. The samples were prepared by adding to the protein sample 

4x loading buffer (LB). Samples were loading according with sperm number or total testis 

weight. Total testis weight of wild type mice is around 130-160mg, which corresponds 

roughly to 4-4.2μg/μL if homogenized in 1mL (calculated before by Bradford standard 

protein quantification method). Also brain, liver, lung and spleen tissues were sometimes 

used to check for the correct expression of the transgene. The gel was run for 50min., at 

200V using a power supply. 

 

Western blotting 

For electroblotting, the tank transfer system was used as follows: 3MM blotter paper 

(Whatman, GEHealthcare, Waukesha, Wisconsin, USA) was cut to fit the transfer 

cassette and was blotted to polyvinylidene fluoride membranes (PVDF, Immobilon-P, 

Millipore, Bedford, Massachusetts, USA) to fit the gel size. The gel was removed from the 

electrophoresis apparatus (Biorad, Hercules, California, USA) and the stacking gel 

removed and discarded. The transfer sandwich was assembled immersed in the transfer 

buffer to avoid trapping air bubbles. The cassette was placed in the transfer apparatus 

and filled with transfer buffer.  

Transfer was allowed to proceed for 1hr at 100V in ice. Afterwards, the transfer 

cassettes were disassembled, the membrane carefully removed and allowed to air dry 

prior to further manipulations. The membranes were incubated with specific antibodies 
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diluted in 3% low fat milk/1x TBS-T: anti-HA hybridome  (raised in mouse, 1:1000), anti-

PPP1R2 (raised in rabbit against the peptide 134EKKRQFEMKRKLH147, of mPPP1R2, 

1:2000) or with anti-actin (raised in mouse, 1:5000, GenScript, Piscataway, New Jersey, 

USA), the first two overnight and the third for 2hrs. Subsequently the membranes were 

washed once in 1x TBS-T, incubated with horseradish-peroxidase conjugated secondary 

antibodies (mouse and rabbit, 1:5000, GenScript, Piscataway, New Jersey, USA) for 1hr 

and then washed 2 times for 10min. in 1x TBS-T. 

The immunodetection was performed using a homemade enhanced 

chemiluminescence (ECL) and the pictures were taken in image acquisition system LAS-

3000 imager (Fujifilm, Tokyo, Japan). 

 

Morphology preparations 

For morphology, an aliquot of epididymal sperm collected and washed was diluted 

100x in 4% paraformaldehyde/1x PBS and put at 4ºC, during 2hrs. Then 10μL were 

applied in a slide, dried for 20min., a coverslip was put on top and then sealed using nail 

polish. Slides were then visualized under Olympus IX70 inverted microscope with a color 

camera and a cooled grayscale CCD camera (Olympus, Center Valley, Pennsylvania, 

USA) using DIC, an optical microscopy illumination technique used to enhance the 

contrast in unstained, transparent samples. 

 

Immunohistochemistry 

Whole testis was kept in 4% paraformaldehyde/1x PBS overnight, for fixation, as 

stated before in samples preparation section. Prior to embedded in paraffin, testis was 

washed in the following order: 75% ethanol for 1hr, 95% ethanol for 1hr, 100% ethanol for 

40min. twice and finally citrosol for 1hr. Then the tissue was put inside a plastic capsule 

and waxed for 1hr in Shandon Citadel 2000 Tissue Processor (Thermo Fisher Scientific, 

Waltham, Massachusetts, USA). Finally the tissue was embedded with wax inside a 

plastic mold and allowed to solidify on the cold plate cover of Shandon Histocentre 2 

Embedding Center (Thermo Fisher Scientific, Waltham, Massachusetts, USA).  

Tissues were kept in the plastic mold at 4ºC till processing. For 

immunohistochemistry the tissue was first sectioned using a microtome (Leica 

Microsystems Inc., Buffalo Grove, Illinois, USA) in 8μm slices and then slices were put in 

a electrothermal paraffin section mounting bath (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) for easily mounting the slides. Paraffin was removed from sections 

by sequential washings in citrosol 2x for 5min., 100% ethanol 2x for 5min., 95% ethanol 
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for 5min., 80% ethanol for 5min., 70% ethanol for 5min., 50% ethanol for 3min., and finally 

in ddH2O for 2min. The slides were put in a boiled citrate buffer bath and microwaved until 

boiling and then rest for 1min.  

After repeat the process twice, the slides were allowed to cool down to room 

temperature in the citrate buffer and then washed twice in 1x PBS-T for 2min. and 1xPBS 

for 5min. Slides were wiped carefully and the border of the section marked using a liquid 

blocker super pap pen (EM Sciences, Hatfield, Pennsylvania, USA). Sections were 

blocked by incubation during 1hr in 5% goat serum/1% bovine serum albumin/1x PBS in a 

humid chamber at room temperature. After wash twice in 1x PBS for 5min., sections were 

permeabilized for 15min. with 0.2% Triton X-100/1x PBS and then washed again in 1x 

PBS for 5min. An overnight incubation was performed with the primary antibodies, anti-HA 

(1:250) or anti-I2 (1:250) at 4ºC in the humid chamber. After washing twice in 1x PBS 

during 10min., sections were incubated with FITC (1:500, mouse, Santa Cruz 

Biotechnology Inc., Heidelberg, Germany) or Cy3-conjugated (1:250, rabbit, Jackson 

ImmunoResearch Laboratories, Inc., West Grove, Pennsylvania, USA) secondary 

antibodies for 1hr at room temperature, in a humid dark chamber. After washing 3x with 

1x PBS for 10min., the sections were mounted with mounting media vectashield, sealed 

with nail polish and viewed under an Olympus Fluoview 300 confocal microscope 

(Olympus, Center Valley, Pennsylvania, USA).  
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Results and Discussion 

 

Plasmids construction 

Plasmids were constructed as depicted in material and methods section. Afterwards 

PCR was performed to spike the plasmid till reach the point of no detection (Figure II.C. 

2A). A restriction digestion of both plasmids was also executed to show the separation 

between the insert (hPGK2-3x HA-hPPP1R2/hPPP1R2P3-SV40) and the plasmid 

backbone (pBlueScriptII(SK-)) using the same enzymes of the subcloning (Figure II.C. 

2B). A final map of both plasmids can be seen in Figure II.C. 2C. Subsequently the 

plasmids and all the data were sent to CWRU for mouse microinjection. 

 

Genotyping and establishing the lines 

A total of 141 animals were received from CWRU in the animal facility, 56 from the 

hPPP1R2 order and 85 from the hPPP1R2P3 order (Table II.C. 3). 

 

Table II.C. 3: Number of positives and the respective percentage. 

 

After screening all the mice using the earpunches only 2 positives (M13 and M14) 

for the hPPP1R2 order and 2 positives (F29 and F45) for the hPPP1R2P3 order were 

found, although an uncertain M34 (hPPP1R2 order) also gave positive but the insert 

obtained in the PCR had a lower size than the expected 1310bp band (Figure II.C. 3). A 

re-confirmation was made using a second pair of primers, which resulted in a 302bp band. 

As expected all the initial positives were obtained, but also M5 and the F10 (hPPP1R2 

order) and the M34 in a correct position. Moreover no more positives were obtained for 

the hPPP1R2P3 order (Figure II.C. 3). 

Order Mice Male Positives Female Positives % (+) 

PPP1R2 56 34 
M13, 

M14, M5 
22 F10 7,1 

PPP1R2P3 85 38   47 F29, F45 2,4 

Total 141 72 3 69 3 
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Figure II.C. 2: Data requested by CWRU to proceed for microinjection. A. Agarose gel showing 
the spike of the plasmid till reaches the point of no detection. The fragment obtained (1394bp) was 
amplified using primers that flank PGK2 and SV40 regions. Mouse ear genomic DNA (1μL) was 
used to mask the plasmid and mimic the future conditions positive mice for both sets of primers. B. 
Agarose gel showing the restriction digestion of 500ηg of both constructs. Plasmid backbone 
(2895bp) and insert (1464bp). C. Plasmid map. Arrows show the ORFs (insert and ampicillin). 

These new positives that were obtained with the second set of primers and not with 

the first could mean that PGK2-FW primer (forward of the first set) could not anneal 

because of the high GC content of the locus near the PGK2 promoter where it was 

integrated, whereas the SV40-RV annealed alone. CWRU state that although they don't 

C) 
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provide a guarantee, the goal is to deliver at least 3 founders and the average stated in 

the site is 9.1 founders. The percentage of frequency of transgenic founders per construct 

is 6% for 2 founders and 9% for 3 founders. This clearly means that by genotyping all 

mice lines the number of founders obtained was very low (7.1% for PPP1R2 and 2.4% for 

PPP1R2P3). 

 

Figure II.C. 3: Agarose gel showing positive mice for both sets of primers. The first set 
(PGK2FW/SV40) was used to select M13, F29 and F45 lines as positives. M34 line is positive but 
with a lower band, due to a deletion. M14 positive line is not shown. The second set of primers was 
used to re-confirm the positives and also to increase the possibility of getting more positives. As 
expected M13, M14, F29 and F45 lines showed up again. Two more lines, M5 and F10, were 
selected. M34 line is not shown, but the band size is the same as the others. Nt, nucleotide; FW, 
forward; RV, reverse; M, male; F, female 

 

To further re-confirm this outcome, tails snips of all animals and column purification 

of genomic DNA was performed and all the mice were genotyped again. Once again, the 

same results were obtained. Additionally, all the inserts, except for M5 and F10 mice, 

were sequenced, and as suspected M34 line which gave a short band size with the first 

set of primers and the normal band with the second set, showed a deletion in the last part 

of hPGK2, the entire HA-tag and the first part of hPPP1R2 cDNA. This deletion is in 

accordance with the size obtained and also with the restriction digestion, because EcoRI 

did not cut (HA-tag is flanked by EcoRI) and BstXI showed the same difference in size 

(Figure II.C. 4). This deletion might have occurred in CWRU facility during the restriction 

enzyme cut to release the insert for microinjection. 
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Figure II.C. 4: Agarose gel showing M34 and F45 cut with EcoRI and BstXI restriction 
enzymes. The restriction cut was performed in the fragment obtained from the PCR with the 
PGK2FW/SV40 set of primers. The PCR using this pair of primers produces a band of 1310nt 
when positive. These results show that EcoRI does not cut M34 line and that when M34 is cut with 
BstXI (middle of mPGK2 promoter) it produces a common band (108nt) and a lower band size 
(~800nt) than expected (1184nt). Nt, nucleotide. 

 

So the founders M5, M13, M14, F10, F29 and F45 were subsequently put to breed 

with wild type CD1 mice in order to see if the transgene was carried over to the next 

generation, to establish the lines and finally to check if the mice were fertile, specially the 

males since the transgene was under the expression of the testis-specific promoter 

hPGK2. All lines were established. Minor complications for the F29 founder occurred, 

since it was killing the pups after birth. The average litter size and percentage of positives 

for each line is stated in Table II.C. 4. The lines M5, M13 and M14 have shown to be 

fertile in the first cross since the founders were males, but for the rest of the lines a 

positive male from the second generation was chosen to test the fertility. These mice were 

also fertile. 

 

Table II.C. 4: Average litter size and percentage of positives in the founder lines. 

 

 

Transgene 
Founder 

Line 

Number of 

litters 

Average nº 

of pups (F1) 

Average nº 

of pups (F2) 

Positives % 

(F1) 

Positives 

% (F2) 

PPP1R2 

M5 3 8 n.d. 34 n.d. 

M13 8 11,2 13,5 5 56 

M14 5 14,3 8 42 42 

F10 4 10,5 n.d. 17 n.d. 

PPP1R2P3 
F29 13 6,8 13,8 32 31 

F45 9 9,5 12,3 68 43 
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In the case of the pronuclear microinjection technique, the insertion of a single 

transgene will indicate that the germ line transmission will follow the Mendelian 

inheritance. But generally a given founder will not necessarily transmit the transgene in a 

Mendelian fashion. Founders can be mosaic for the transgene, if integration occurs after 

the first cell division. Mosaicism occurrence account for 30% and can result in a frequency 

of inheritance lower than 50% in the first generation offspring [45]. Also, in some founders, 

the transgene might be integrated into more than one locus, resulting in a frequency of 

inheritance of more than 50%. In this case, the expression levels among the first 

generation offspring may vary depending on which integration site they inherit. Although 

the identification of the transgene insertion site is often not essential for functional analysis 

of the transgene, identifying the site or sites can have practical benefit.  

Furthermore, identification of the insertion site might be necessary to analyze 

unexpected phenotypes that might arise by insertional inactivation of an endogenous 

gene. Liang Z., and co-workers have shown an easy and straightforward way to do this. It 

consists in digesting the genomic DNA from a tail snip with a restriction enzyme present in 

distal 3’ of the transgene. After the digestion T4 DNA ligase is subsequently added to 

circularize the extracted fragments. Then a PCR using primers specific for the terminal 

transgene fragment will generate a amplicon that includes the flanking chromosomal 

sequence, that could then be sequenced [46].  

According to Jackson Lab (The Jackson Laboratory, Bar Harbor, Maine, USA) for 

the C57BL/6J the average litter size is 5 to 6, SJL is around 6 to 7 and the CD1 is around 

11 to 12. This in accordance with our data in that the male founders (SJL/BL6, hybrids of 

the first two) paired with wild type CD1 females delivered between 8 (M5) to 14,3 (M14), 

and the female founders (SJL/BL6) paired with wild type CD1 males delivered 6,8 (F29) to 

9,5 (F45). Also the F1 generation of F29 and F45 delivered more pups than the founders 

because this time the males were paired with wild type CD1 females.  

The only exception is the M14 line in which the fertility was substantially lower in F1, 

although the number of positives obtained remained the same. Interestingly in the M13 

line the percentage of positives that were obtained in F2 was higher and all of them were 

males. This result means that the transgene has been incorporated in the Y chromosome, 

but unfortunately also means that the probability of the transgene being expressed is low. 

Y chromosome consists predominantly of highly repeated DNA sequences with no 

obvious function [47]. Additionally, because of its extremely late replication during mitosis, 

characteristic of heterochromatic segments, an optimal expression of transgenes on the 

mouse Y chromosome may not be expected [48]. Moreover in F1 only some males were 
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transgene positive. The only explanation could be a mosaic of spermatozoa genotypes in 

this founder line, with ones carrying the transgene in the Y chromosome whereas others 

not. This will happen when the transgene integration occurred after the first cell division.  

The same case could be explained regarding the F29 founder line where the 

percentage of transgene positives was also lower than the Mendelian pattern. In this case 

some positives of the second generation should recover to the Mendelian pattern. If we 

check each pair of breeders of F1, we can see that two were low (33% and 12%) like the 

founder but one was closed (42%) to the normal Mendelian pattern. In the F45 founder 

line of hPPP1R2P3, the percentage of transgenic positives in F1 was higher than the 

Mendelian pattern (68%), which is explained by the multiple locus integration of the 

transgene. In F2 the percentage fall down to a value closer to the Mendelian pattern 

(42%). 

 

Protein expression and phenotyping 

Protein expression of the transgene was accessed by Western blot in testis and 

sperm extracts. Also lung, liver and spleen tissues were used, to check if the transgene 

expression under the control of the hPGK2 promoter was restricted to testis as expected. 

All these tissues have expression of the wild type mPPP1R2, with exception of spleen. 

Since the transgenic proteins are carrying a HA-tag, two antibodies were used to fulfill this 

task. Results show that only HA-tag hybridome antibody, and not PPP1R2 antibody, was 

able to detect a band that could be the transgenic hPPP1R2/hPPP1R2P3 in testis (Figure 

II.C. 5, A and D first blot). 

Other commercial available HA-tag antibodies were also tested with no positive 

results (data not shown) even using 100μg testis extracts. Unfortunately no protein was 

detected in sperm extracts of lines M14, F29 and F45, using 4-5x106 sperm (Figure II.C. 5, 

A second blot, C and D, first blot). These results show that protein was probably kicked 

out of the sperm in the final steps of spermiation where the cytoplasmic droplet containing 

all the unnecessary material is released [49]. 
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Figure II.C. 5: (previous page): Western blotting data of all founder lines. A. A male from the 
M14 F1 generation was sacrificed along with a wild type CD1 of the same age. Testis, liver, lung, 
spleen and sperm extracts were prepared in HB+ as described in materials and methods. For the 
Western blot, HA and PPP1R2 antibodies were used in separate membranes. The arrow points to 
a band (38-40kDa) that only appears in testis extracts from M14 line. All other tissues are negative 
for this band. B. Two males from F10 and one from M5 founder lines from the F1 generation were 
sacrificed along with negative littermates. Only testis extracts were prepared in HB+. A male from 
F45 line was used has positive control. Results show that genotype positives of F10 line do not 
produce the transgenic protein hPPP1R2 in detectable amounts. By contrary the male from M5 line 
produced a band with the same molecular weight as the positive control, F45 (arrow). C. A male 
from the F29 F1 generation was sacrificed along with a wild type CD1 of the same age. Testis, liver 
and sperm extracts were prepared in HB+. Pellet fraction was also loaded. HA antibody was used 
to detect the transgenic protein hPPP1R2P3. Results show the specific 38-40kDa band only in the 
testis of the F29 male (arrow). D. A male from the F45 F1 generation was sacrificed along with a 
wild type CD1 of the same age. Testis, liver, spleen and sperm extracts were prepared in 1%SDS. 
Pellet fraction was also loaded for sperm. HA antibody was used to detect the transgenic protein 
hPPP1R2P3. Results show the specific 38-40kDa band only in the testis of the F45 male (arrow). 
Anti-actin was used as loading control. WB, Western blot; ab, antibody; Wt, wild type; S, 
supernatant; P, pellet; +, positive; -, negative; HB+, homogenization buffer with protease inhibitors; 
MW, molecular weight. 

 

The M5 line was the only line that presence of hPPP1R2 transgene was not 

accessed in sperm extracts. 

Transgenic positive lines expressed a band around 38-40kDa that is not present in the wild 
type or littermate controls. This band is only seen in 30-100μg soluble extracts and only 
with HA hybridome antibody (Figure II.C. 5, A first blot, B, C and D second blot, Fig.IV.6). 
M13 and F10 lines of hPPP1R2 did not produce sufficient amount of protein to be detected 
even with 100μg testis extracts (Figure II.C. 5, B and  

Figure II.C. 6). M13 line, was the one in which the transgene was integrated in the Y 

chromosome. Both founder lines, M13 and F10 were subsequently discarded. 

 

 

Figure II.C. 6: Western blot showing 
the positives of both mice orders that 
produced a band with the first set of 
primers. Testis extracts of several 
positives were prepared in HB+ or 
1%SDS. Wild type CD1 mouse was used 
as negative control. For M14 line a 
positive from F1 and two positives from 
F2 were used. For F45 both positives are 
from F1 generation. Both HA and 
PPP1R2 antibodies were used in 
separate blots. Results show that all 
positives have a band at the expected 
size except for M13. Anti-actin was used 
as loading control. 
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Also other tissues, such as liver, lung and spleen, were used to show that 

expression was only driven in testis (Figure II.C. 5, A third blot, C and D second blot). 

Since PPP1R2 is a heat stable protein, the testis supernatant extracts were boiled to 

check if the 38-40kDa band remained unaltered. Results for the M5 line using 2 positives 

show that protein was still present in these extracts further confirming that the 38-40kDa 

should be indeed the transgenic hPPP1R2 (Figure II.C. 7). 

 

Figure II.C. 7: Western blotting of heat 
stable extracts. Two positive males from 
M5 F2 and one from M13 F1 were 
sacrificed along with negative 
littermates. Testis heat stable extracts 
were prepared from the supernatant of HB+ 
as described before. HA antibody was used 
in the Western blot. Results show that the 
38-40kDa protein is present in the M5 
positives as expected and is heat stable. 
SF, soluble fraction; HS, heat stable 
fraction. 

 

 

The phenotyping of each founder line was also performed during the establishment 

of the lines and the analysis of protein expression. Results for testis weight, sperm 

number and motility are stated in Table II.C. 5 for all mice opened. In each sacrifice a 

littermate negative or wild type CD1 mice were also opened and testis weight, sperm 

number and motility were recorded (these results are not present in the Table II.C. 5). 

Regarding testis weight all mice were normal (see wild type CD1 inTable II.C. 5). Values 

lower than 120mg are explained due to the younger age of the mice opened (51 to 

71days). The only exception was observed for the 86days older mouse from M14 line F1 

generation, where the testis showed a different size and weight.  

The sperm number observed was in the limits established as normal, and is very 

similar to the normal sperm number of wild type CD1 males. Motility was accessed in 

caput and cauda sperm by visual observation as described in material and methods. 

Other methodology more accurate is to use a light microscope with a camera coupled to a 

computer that runs CASA (computer assisted sperm analyzer) software. Although visual 

observation is a roughly measure, it permits a first approach in accessing sperm motility. 

All observed spermatozoa seemed to be normal with no motility in caput epididymis and 

forward motility in cauda of epididymis and vas deferens. 
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Table II.C. 5: Data showing the age, testis weight and sperm number, motility and morphology of 
each mouse sacrificed for Western blotting. 

Animal 
Age 

(days) 
Testis 

Weight (mg) 
Sperm 

Number/mL 
Motility 

Morphology 
(DIC) 

M5 F1 

58 115.5/122 - - - 

116 130.2/129.8 - - - 

116 134.6/143 - - - 

M13 F1 
71 101.8/110.3 -

 Cauda sperm more 
hyperactive 

- 

145 122.6/123.2 - - - 

M14 F1 

51 115/112.5 1.7x10
7 

Normal Normal 

86 104.2/134.5 2.5x10
7 

Normal Normal 

86 121.5/115.7 1.7x10
7 

Normal Normal 

106 120.9/122.1 2.5x10
7 

Normal Normal 

F10 F1 
59 127.5/123.1 - - - 

107 140.7/145.1 - - - 

F29 F1 122 148.5/160.5 4.4x10
7 

Normal Normal 

F45 F1 
60 109/117.9 1.9x10

7 
Cauda sperm more 

hyperactive. Caput sperm 
30% vigorous 

Normal 

176 134.6/131.3 3.5x10
7
 Normal Normal 

F45 F2 54 113.2/112.9 2.3x10
7
 Normal Normal 

Wt CD1 
 

~120-160 ~2.4x10
7 

- - 

 

The only exceptions were for the M13 and F45 lines. These differences observed in 

testis weight and sperm motility were not present in the rest of the mice from the same 

lines, which indicates that they were isolated cases. Also M13 line did not show 

expression of the transgenic protein so the results cannot be correlated. 

Morphology of sperm was also accessed by differential interference contrast (DIC). 

Images representative of each line are presented in Figure II.C. 8. As expected no major 

abnormalities were found and the morphology seemed to be similar to littermate negatives 

and wild type CD1 of the same age. 
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Figure II.C. 8: DIC images of 
representative cauda sperm from each 
founder. Cauda sperm slides were 
prepared for each founder line. Slides 
were then observed under the 
microscope and DIC images were 
obtained. Results show that the vast 
majority of the total cauda sperm 
observed in all positives were 
morphologically normal.  

 

 
 
 

 

In relation to testis histology and if normal spermatogenesis is occurring, generally a 

haematoxylin staining is used as a first approach. Haematoxylin stains the nuclei of the 

cells and permits to see if normal mitosis and meiosis is occurring. The haematoxylin 

staining was not accessed in this study, although paraffin blocks of all positive opened 

were stored for posterior analysis. In spite of that, sperm morphology and number, and 

also fertility suggest that normal spermatogenesis seems to be occurring in all founder 

lines. Also in a first approach, HA and PPP1R2 antibodies were used in 

immunohistochemistry of a male from M14 line, with no conclusive results because of the 

high background of the secondary antibodies and the reactivity of HA antibody in wild type 

mice (Figure II.C. 9). However the testes of this male seemed to be normal compared with 

the wild type CD1. Further, testicular sperm was observed in the lumen also supporting 

that normal spermatogenesis is occurring. 
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Figure II.C. 9: Testes immunohistochemistry of M14 line using PPP1R2 and HA antibodies. 
Testis slices for immunohistochemistry were prepared as described in material and methods 
section. Pictures were taken in a confocal microscope. Panels A. and B. Unspecific PPP1R2 
antibody staining is due to the secondary antibody, Cy3. Panels C. and D. Same staining is shown 
in M14 Line and wild type CD1 mice using HA antibody. Seminiferous tubules are normal and 
testicular sperm is produced. 

Message expression data, either by Northern blot or by RT-PCR was not performed 

since the first goal and final aim were always to detect the protein and achieve a good 

expression. However since this objective was not accomplished, the message pattern can 

be accessed in order correlate message versus protein. Also by gaining insight on the 

correct temporal transcription of the normal wild type PPP1R2 message we can choose a 

better promoter to mimic the natural protein. If the message is being made in high 

amounts and we do not see enough protein this may suggest a tight control from the 

testis. However, if low amount of message is being transcribed we can interpret this as a 

problem in the integration of the transgene or the stability of the message. This can be 

overcome with more positives, using site-direct integration of the transgene, correct 

spatial and temporal transcription of the message, adding an internal intron or finally with 

a different polyadenylation signal.  
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Conclusion 

Standard transgenic technique was used to overexpress hPPP1R2 and 

hPPP1R2P3 in mouse testis. PPP1R2P3 differs between PPP1R2 mainly in the Thr72 

and Ser85 amino acids that are extremely important for the PPP1R2/PPP1C holoenzyme 

function. Since Thr72 is absent from PPP1R2P3 it is possible that phosphorylation by 

GSK3β is prevented in PPP1R2P3/PPP1C complex and PPP1C remains permanently 

inactive. This could mean that PPP1R2P3 is an irreversible inhibitor of PPP1C. Previous 

results have shown that PPP1CC2 is extremely important for sperm motility [50, 51]. 

When it is active the sperm is immotile and when it is inactivated by specific PPP1C 

inhibitors, sperm becomes motile. The increase (overexpression) of hPPP1R2 in mouse 

testis could lead to a concomitant increase in PPP1CC2 inhibition. The expectation was 

that this could be overcame for instance by increasing the amount or activity of GSK3β. 

However, by overexpressing hPPP1R2P3 the phenotype would be different, since GSK3β 

would not reverse the phenotype. Without a way to surpass the inhibition of PPP1CC2, 

the sperm would start to acquire motility as soon as it reached caput or even earlier. 

Whether the ATP production factories, mitochondria, will follow this increased early 

demand and will be able to sustain it is a question that remains unsolved.  

Thus this work was extremely relevant in the way it provided the molecular tools to 

initiate the characterization of the mechanisms behind PPP1R2/PPP1CC2 and 

PPP1R2P3/PPP1CC2 role in spermatozoa. 

From the F0 generation received from CWRU only 4 and 2 founder mice were 

selected by genotyping for hPPP1R2 and hPPP1R2P3, respectively. From these only 

M14 and M5 for hPPP1R2 and F29 and F45 for hPPP1R2P3 showed protein expression, 

but only in testis and at low levels. No phenotype was observed in testis weight, sperm 

number or in morphology. These results are discouraging and clearly indicate that: more 

founders are needed to surpass the random integration of the transgene and achieve a 

founder line in which the expression of the protein is in good levels or use a different 

method to integrate the transgene (ex. Knock-in), albeit more costly; a correct 

spatio/temporal transcription of the transgene is needed by using a promoter more closely 

related and the use of an internal intron that will force the message to get out of the 

nucleus and to be spliced increasing therefore its stability. Parallel results from our 

collaborator (Prof. Srinivasan Vijayaraghavan) [52] suggest that mPPP1R2 message 

starts to be made in later spermatogenic cells, more specifically in round spermatids. This 

means that maybe the correct promoter to use is the mProtamine promoter instead of 

hPGK2 promoter. Thus we have already started making novel constructs with this 
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promoter for microinjection hoping this time to overcome these issues and unravel the role 

of these proteins in mammalian sperm motility.  
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Chapter III 

 

Introduction 

Phosphoprotein phosphatase 1 (PPP1), one of the major eukaryotic Ser/Thr-PPs, 

has exquisite specificities in vivo, both in terms of substrates and cellular localization. 

Over the past two decades, it has become apparent that PPP1 versatility is achieved by 

its ability to interact with multiple targeting/regulatory subunits known as PPP1 interacting 

proteins - PIPs [1, 2]. Several PPP1-PIP complexes have been involved in cytoskeleton 

functions [3-5], placing PPP1 in the regulation of cytoskeleton dynamics not only at the 

actin plane but also at the tubulin level [6, 7]. 

In this Chapter we confirmed a novel PIP of PPP1CC2, the t-complex testis 

expressed protein 1 domain containing 4, Tctex1d4, using a yeast two-hybrid screen from 

a human testis cDNA library [7]. In Chapter III.A is described the binding of Tctex1d4 to 

PPP1C and the co-localization of the holoenzyme in culture cells. Further, we addressed 

Tctex1d4 tissue expression and localization in testis and sperm. We also showed the 

importance of the PPP1 binding motif (PPP1BM) in the complex formation. We pursued 

the PPP1BM motif relevance by analyzing Pika (Ochotona genus) aberrant motif (Chapter 

III.B). Mutation screening was followed to analyze in detail the PPP1BM and surrounding 

region. These findings were applied to understand the evolutionary mechanisms that were 

behind these dramatic amino acid changes in Pika. 

The results described in Chapter III open new avenues to the possible roles of this 

dynein light chain, together with PPP1, in microtubule dynamics, sperm function, 

acrosome reaction and in the regulation of the blood testis barrier. 
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Abstract  

Reversible phosphorylation plays an important role as a mechanism of intracellular 

control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its 

specificity by interacting with different protein regulators, also known as PPP1 interacting 

proteins (PIPs). In this work we characterized a physiologically relevant PIP in testis. 

Using a yeast two-hybrid screen from a human testis cDNA library, we identified a novel 

PIP of PPP1CC2, the T-complex testis expressed protein 1 domain containing 4 

(TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family 

member. The results conclusively confirm that TCTEX1D4 interacts with the different 

spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminal, where a 

consensus PPP1 binding motif (PPP1BM) RVSF is present. TCTEX1D4 distribution in 

testis is consistent with it being involved in distinct functions, from a potentially important 

player in the TGFbeta signaling at the blood testis barrier to a role in microtubule 

dynamics in sperm. Immunofluorescence in sperm shows that TCTEX1D4 is present in 

the tail and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-

localize in the microtubule organizing center (MTOC) and microtubules in cultured cells. 

Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for 

PPP1 retention in the MTOC and movement along microtubules. 

These novel results open new avenues to possible roles of this dynein, together with 

PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule 

dynamics, sperm motility, acrosome reaction and in the regulation of the blood testis 

barrier. 
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Introduction 

Reversible protein phosphorylation is a post-transcriptional event, regulated by both 

protein kinases and phosphatases (PPs), which play an important role as a mechanism of 

intracellular control in eukaryotes, being involved in almost all cellular functions, from 

metabolism to signal transduction and cell division [1]. Phosphoprotein phosphatase 1 

(PPP1), one of the major eukaryotic Ser/Thr-PPs, has exquisite specificities in vivo, both 

in terms of substrates and cellular localization. Over the past two decades, it has become 

apparent that PPP1 versatility is achieved by its ability to interact with multiple 

targeting/regulatory subunits known as PPP1 interacting proteins - PIPs [1, 2]. PPP1 

catalytic subunit (PPP1C) is encoded by three different genes giving rise to α/A, β/B, and 

γ/C isoforms. After transcription, PPP1CC undergoes tissue-specific splicing, originating a 

ubiquitously expressed isoform, PPP1CC1 and a testis-enriched and sperm-specific 

isoform, PPPCC2 [3]. 

To date, more than 200 PIPs have been identified, most of them having the 

consensus PPP1 binding motif (PPP1BM) RVxF, that binds to the catalytic subunit of 

PPP1, determining its function and specific cellular location [4, 5]. Several PPP1-PIP 

complexes are involved in cytoskeleton functions. For instance, PPP1-Phostensin 

holoenzyme has been implicated in actin rearrangements [6]. Phostensin targets PPP1 to 

F-actin, being an actin filament pointed end-capping protein that is capable of modulating 

actin dynamics [7]. The protein family PHACTR (all members 1-4) is involved in synaptic 

activity through the control of the actin cytoskeleton and regulate PPP1 and actin [8]. The 

above mentioned PIPs bind actin through the amino acids – RPEL - and may direct PPP1 

to a panoply of actin-associated substrates. Thus, several lines of evidence place PPP1 in 

the regulation of cytoskeleton dynamics, together with various PIPs. This occurs not only 

at the actin plane but also at the tubulin level. PPP1 has been shown to be anchored to 

Chlamydomonas central pair apparatus axoneme, associated with the C1 microtubule, 

and to a lesser extent to the outer doublet microtubules, suggesting that PPP1 can control 

both dynein arms and thereby flagellar motility [9]. Also, recent data from our laboratory 

showed that PPP1 co-immunoprecipitates with tubulin from human sperm [10]. 

Clearly the key to characterizing the diverse roles of PPP1 relies on the identification 

of novel PIPs, and in understanding the specific functions of PPP1/PIP complexes. 

Therefore, we focused on identifying novel PIPs, through yeast two-hybrid screens where 

PPP1CC isoforms were used as baits [10-14]. In this study, we present a novel partner of 

PPP1, the T-complex testis expressed protein 1 domain containing 4 

(TCTEX1D4/Tctex2β), which has recently been described as a novel Tctex1 dynein light 
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chain family member [15]. Further the TCTEX1D4/PPP1CC subcellular co-localization and 

its dependence on TCTEX1D4-PPP1CC binding, support functions for the complex in 

microtubules dynamics. Simultaneously, the data also contributes to our understanding of 

the molecular basis of sperm motility as well as the dynamic and varied functional nature 

of PPP1. 
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Materials and Methods 

 

Plasmid constructs 

Construction of plasmids was carried out as previously described [14]. The following 

plasmids were prepared: 

pAS2-PPP1CC1 – PPP1CC1 cDNA was directionally subcloned into SalI/SmaI 

digested pAS2-1 (Clontech, Saint Germain-en-Laye, France) to produce pAS2-PPP1CC1. 

pAS2-PPP1CC2/pAS2-PPP1CC2end - The 200bp PPP1CC2-specific C-terminal-

containing PstI fragment was transferred from pTacTac-PPP1CC2 into PstI digested pAS-

PPP1CC1 to produce pAS-PPP1CC2 or into PstI digested pAS2-1 to produce pAS-

PPP1CC2end [12]. The pAS2-PPP1CC constructs were used in the yeast two-hybrid 

screening. pET-TCTEX1D4 - TCTEX1D4 cDNA was PCR-amplified forward (5’-

gcgaattcatggccagcaggcctc-3’) and reverse (5’-ccgctcggtcactcgcagtagagc-3’) from clone 

IMAGE 30531412 and inserted into pET-28a vector (Novagen, Madison, Wisconsin, 

USA). pET-TCTEX1D4-NT/CT – The N-terminal portion of the TCTEX1D4 cDNA was 

PCR amplified with pET forward primer and an internal reverse primer (5’-

ccgctcgagtcaggcgggcgccaggg-3’). The pET-TCTEX1D4-NT construct comprises amino 

acids 1 to 101. Likewise, the C-terminal portion of the TCTEX1D4 cDNA was PCR 

amplified with an internal forward primer (5’-gcgaattccgttgggtggcgcc-3’) and pET reverse 

primer. The pET-TCTEX1D4-CT construct comprises amino acids 102 to 221. The pET-

TCTEX1D4 and NT and CT constructs were used in the overlay assay for PPP1C binding. 

Myc-TCTEX1D4 - TCTEX1D4 cDNA was PCR-amplified from pET-TCTEX1D4 with 

primers forward (5’-gcgaattccgatggccagcaggcctc-3’) and reverse (5’-

ccgctcggtcactcgcagtagagc-3’), and inserted into EcoRI/XhoI sites of pCMV-Myc vector 

(Clontech, Saint Germain-en-Laye, France). This construct was used in 

immunoprecipitation and in immunofluorescence. pACT-TCTEX1D4 - TCTEX1D4 cDNA 

was digested from Myc-TCTEX1D4 with EcoRI/XhoI, and inserted into EcoRI/XhoI 

digested pACT-2 (Clontech, Saint Germain-en-Laye, France), using standard molecular 

biology procedures. The pACT-TCTEX1D4 and pAS2-PPP1CC constructs were used in 

the co-transformation assay. The pAS2-1/pACT-2 and the pVA3/pTD1 vectors (Clontech, 

Saint Germain-en-Laye, France) were used as co-transformation controls. pET-

TCTEX1D4-AAAA/Myc-TCTEX1D4-RVSA - Mutagenesis of PPP1BM RVSF in 

TCTEX1D4 cDNA was performed using the QuikChange Site-Directed Mutagenesis Kit 

(Stratagene now Agilent Technologies UK Ltd, Edinburgh, UK) by mutating just the last or 

all the four amino acids to alanine in order to disrupt the PPP1BM. The pET-TCTEX1D4-
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AAAA was used in the overlay assay, whereas, Myc-TCTEX1D4-RVSA construct was 

used in immunofluorescence studies. 

 

Antibodies 

The mouse anti-Myc·tag (Cell Signaling, Danvers, Massachusetts, USA), the mouse 

acetylated anti-α-tubulin (Zymed Laboratories Inc., Cambridge, UK), the mouse anti-β-

tubulin (Zymed Laboratories Inc., Cambridge, UK) and the rabbit anti-TCTEX1D4N (N-

terminal, RP11269F19.9, Sigma-Aldrich Química, S.A., Sintra, Portugal) antibodies were 

purchased from the respective companies. The antibodies CBC3C (against the C-terminal 

of PPP1CC, detects both isoforms [3]), CBC502 (specific for the C-terminal of PPP1CC2) 

and CBC8C (against the C-terminal of TCTEX1D4) were raised in rabbit. 

 

Yeast two-hybrid screening 

The methods for yeast two-hybrid screening of a human testis cDNA library using 

human PPP1 have been described previously [10, 12, 13]. 

 

Bioinformatics analysis 

Full protein sequences of intermediate chains (ICs), light intermediate chains (LICs) 

and light chains (LCs) were obtained from Ensembl database to check for PPP1 binding 

motifs. The ICs human homologues are: the axonemal inner arm IC1 

(ENSP00000242317) and IC2 (ENSP00000308312), axonemal outer arm IC138 

(ENSP00000360065) and IC140 (ENSP00000294664), and cytoplasmic DYNC1I1 

(ENSP00000320130), DYNC1I2 (ENSP00000380308). The LICs human homologues are 

the cytoplasmic DYNC1LI1 (ENSP00000273130), DYNC1LI2 (ENSP00000258198) and 

cytoplasmic from intraflagellar transport DYNC2LI1 (ENSP00000330752). The LCs 

human homologues are the DYNLRB1/LC7/Roadblock (NP_054902.1), 

DYNLRB2/LC7/Roadblock (ENSP00000302936), DYNLL1/LC8 (ENSP00000376297), 

DYNLL2/LC8 (ENSP00000240343), TXNDC3/LC5 (ENSP00000199447), TXNDC6/LC5 

(ENSP00000372667), DNAL1/LC1 (ENSP00000310360), DNAL4/LC6 

(ENSP00000216068) DYNLT1/Tctex1, DYNLT3/RP3, TCTEX1D1, TCTEX1D2/Tctex2b, 

TCTEX1D3/Tctex2/Tcte3, and TCTEX1D4/Tctex2β. The last 6 comprise the Tctex1 family 

and the respective Ensembl IDs are depicted in the alignment (Figure III.A. 2A). 

Eukaryotic Linear Motif (ELM) [16], Psipred [17], ScanProsite (EXPASy Proteomics 

Server), NetPhos, and NetNGlyc1.0 (CBS Prediction Servers) search engines were used 
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to further characterize relevant motifs and post-translational modifications. For homology 

and evolutionary purposes, ClustalW2 and MEGA programs were used [18, 19].  

 

Yeast Co-transformation 

Yeast competent AH109 cells were co-transformed with pACT-TCTEX1D4 and 

pAS2-PPP1CC1, pAS2-PPP1CC2 or pAS2-PPP1CC2end, by the lithium acetate method 

[10, 12, 20]. Afterwards, the transformation mixture was plated on selective media 

containing X--Gal and incubated at 30ºC to check for MEL1 expression as indicated by 

the appearance of a blue color (Clontech, Saint Germain-en-Laye, France). 

 

Co-Immunoprecipitation and TCTEX1D4 tissue expression screening 

COS-7 cells were grown in the appropriate medium (DMEM) and transfected with 

Myc-TCTEX1D4, harvested and lysed in lysis buffer (50mM Tris-HCl, 120mM NaCl, 4% 

CHAPS, 0,1mg/ml Pepstatin A, 0,03mM Leupeptin, 145mM Benzamidine, 0,37mg/ml 

Aprotinin and 4,4mM PMSF in isopropanol). The lysates were pre-cleared with protein A 

sepharose slurry (Pharmacia, LKB Biotechnology, Bromma, Sweden) during 1hr at 4ºC 

with shaking. After centrifugation, protein sepharose and CBC3C (2μg) were added to the 

supernatant, followed by overnight incubation at 4ºC with shaking. Subsequently, the 

beads were washed three times with 50mM Tris-HCl, 120mM NaCl and resuspended in 

loading buffer. Samples were loaded in SDS-PAGE gel, and transferred to a nitrocellulose 

membrane. Immunodetection was performed using anti-Myc antibody (1:5000). For the 

tissue screening, tissues from rat and human testis were lysed using a homogenizer in 

1%SDS. Both CBC8C (1:100) and anti-TCTEX1D4N (1:1000) antibodies were used in 

separate blots for immunodetection of protein expression. Immunoreactive bands were 

detected by enhanced chemiluminescence (ECL, GE Healthcare, Amersham Biosciences 

Europe GmbH, Freiburg, Germany) [21]. 

 

Overlay assays 

A single Rosetta (DE3) (Novagen, Madison, Wisconsin, USA) colony expressing 

His-tagged TCTEX1D4 was selected and grown overnight in 3 ml Luria Bertani medium 

containing ampicillin (50 μg/mL) at 37ºC. Expression was induced with 0,1mM isopropyl--

D-thio-galactopyranoside at 37ºC. Samples were then treated as described elsewhere 

[13]. The same procedure was also performed for TCTEX1D4-AAAA, TCTEX1D4-NT and 
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TCTEX1D4-CT. Blots were overlaid with purified PPP1CC1 or PPP1CC2 (25pmol/mL) 

and detected with CBC3C (1:5000) [13]. 

 

Immunohistochemistry 

For fluorescence microscopy analysis, cryosections were prepared. C57/Bl6 mice 

testes were fixed by perfusion with 4% paraformaldehyde, 0.1M HEPES, pH 7.4 and 

subsequently immersed in 10%, 20% and 25% (w/v) sucrose solution, each for about 

4hrs. The tissue was frozen in isopentane at -30°C and stored at -80°C. Cryosections of 

about 10-14µm were cut using a Microm HM5000 (Zeiss, Wetzlar, Germany). For 

immunohistochemistry, tissue sections were incubated with 10% (v/v) Roti-Block (Roth, 

Karlsruhe, Germany) in PBS for 1hr to reduce non-specific binding of antibodies. Sections 

were further incubated with primary antibodies against TCTEX1D4 (CBC8C, 1:100) in 

10% (v/v) Roti-Block in PBS for 1hr at room temperature. After extensive washing with 

PBS, tissue sections were incubated with a secondary antibody (Cy3-conjugated goat anti 

rabbit IgG, diluted 1:300, Sigma, Taufkirchen, Germany) suspended in PBS, for 1hr, to 

visualize immune complexes. For DNA labeling, the sections were incubated in PBS 

supplemented with 1 µg/ml 4',6-Diamidino-2-phenylindole (DAPI, Gibco BRL) for 1hr at 

room temperature. Sections were washed in PBS and mounted with 50% glycerol in PBS 

containing 1.5% (w/v) n-propyl gallate. Specimens were analyzed using a Leica DMRE 

fluorescence microscope with standard filters for detection of Cy3 and DAPI. Digital 

images were obtained with a Nikon DXM1200F digital camera using the Nikon ACT-1 

software. 

 

Immunocytochemistry 

GC1-spg and COS-7 cell lines were grown using previously established conditions 

[22]. Cells were then transfected with Myc-TCTEX1D4 or Myc-TCTEX1D4-RVSA with 

Lipofectamine 2000 (Invitrogen, Life Technologies S.A., Madrid, Spain), using standard 

procedures [14, 23]. Preparation of cells for immunocytochemistry was achieved by cold 

methanol fixation as previously described [21]. Human ejaculated sperm were first 

washed three times in PBS, diluted and applied to coated coverslips. Subsequent steps 

were similar to those applied for the COS-7 cells. Anti-Myc (1:5000), CBC3C (1:1000), 

CBC8C (1:100) and CBC502 (1:1000) primary antibodies were used to detect the 

respective proteins. Fluorescent secondary antibodies anti-mouse Texas-Red (1:300) and 

anti-rabbit Alexa488 (1:300) were subsequently used. Nuclei were stained with Hoechst 

33258 (1:2000, Polysciences Europe GmbH, Eppelheim, Germany) or DAPI (1:200, 
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Vectashield, Vector Laboratories Burlingame, California, USA). Fluorescence images 

were acquired in an Olympus IX-81 inverted epifluorescence microscope (Olympus 

Portugal - Opto-Digital Tecnologias, S.A., Lisboa, Portugal) using an x100 objective, or on 

a Zeiss LSM-510 confocal microscope (Carl Zeiss Ltd., Wetzlar, Germany). For confocal 

microscopy, quantitative correlation analysis of PPP1CC and wild type and mutant 

TCTEX1D4 was carried out with the Zeiss LSM 510 4.0 software [23], using images of 

delimited TCTEX1D4 transfected single cells. The co-localization coefficients were 

determined as the percentage of PPP1CC/TCTEX1D4 co-localizing pixels relatively to the 

number of pixels in the PPP1CC and in the TCTEX1D4 channels. 

 

Statistical analysis 

SigmaPlot statistical package (SigmaPlot v.11, Systat Software Inc.) was used for 

statistical analysis. The Kolmogorov–Smirnov test was employed to test normality of 

distribution of the data. Significant differences between co-localization coefficients were 

evaluated with the unpaired Student's t-test (p<0.001, alpha=0.050). 
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Results 

 

Identification and in silico characterization of TCTEX1D4, a novel PPP1CC 

binding protein 

A yeast two-hybrid screen using as bait the C-terminal portion of PPP1CC2 was 

performed against a human testis cDNA library [20]. Four clones were obtained encoding 

the T-complex testis expressed protein 1 domain 4 (TCTEX1D4). TCTEX1D4 is a novel 

member of the dynein LC Tctex1 family, and was recently identified as a binding partner 

of endoglin, a transmembranar glycoprotein involved in the transforming growth factor 

beta (TGFβ) signaling [15]. TCTEX1D4 has 221 amino acids, with an expected molecular 

mass of 23352 Da. The gene maps to chromosome 1p34.1 and has 2 exons [15]. 

In order to identify physiologically relevant motifs and phosphorylation sites from the 

signaling perspective, we undertook a bioinformatic search using the human TCTEX1D4 

protein sequence in ELM [16], PsiPred [17], ScanProsite, NetPhos and NetNGlyc1.0 

servers. The conservation of motifs identified was analyzed by comparing with other 

mammals, and only results with high scores are shown (score 0,9 in NetPhos). Based in 

ELM and Psipred, the TCTEX1D4 sequence was first divided in two domains: the 

disordered domain (residues 1 to 120) and the globular domain (residues 121 to 221) 

(Figure III.A. 1). 

 

Figure III.A. 1: Schematic representation of the human TCTEX1D4. The human protein 
sequence of TCTEX1D4 (ENSP00000361274) was obtained from Ensembl database and 
submitted to ELM to appoint relevant motifs. TCTEX1D4 disordered (amino acids 1-120) and 
globular (amino acids 121-221) domains are shown. Putative conserved motifs and 
phosphorylation sites for specific kinases are indicated. 

 

Secondary structure prediction of the globular domain shows two alpha helixes, 

followed by four beta strands resembling that of DYNLT1. Since amino acids from the 

disordered domain should be more accessible to kinases and phosphatases, only the 

putatively phosphorylatable motifs of the disordered domain are shown in Figure III.A. 1. 

The bioinformatic approach revealed that the TCTEX1D4 disordered domain contains 
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many putative Ser phosphorylation sites, such as consensus sites for protein kinase A 

(PKA, Ser24/53/66/92), B (PKB, Ser53/66) and C (PKC, Ser49), cyclin dependent kinase 

1 (CDK1, Ser24), casein kinase 1 (CK1, Ser92) and 2 (CK2, Ser34), mitogen-activated 

protein kinase (MAPK, Ser24), and glycogen synthase kinase 3 (GSK3, Ser49). 

Remarkably, no potential Thr and Tyr phosphorylation sites were found.  

The NetNGlyc1.0 server indicated a putative N-glycosylation motif in the extreme C-

terminus (residues 205 to 210). Putative binding domains were also identified for the motif 

“anaphase-promoting complex (APC/C) binding site through the destruction box” 

(residues 77 to 85), for cyclins (residues 161 to 165), for MAPK (residues 167 to 176) and 

for PPP1 (residues 90 to 93) (Figure III.A. 1). Additionally and particularly relevant to PIPs, 

the canonical PPP1BM RVxF was detected in the bioinformatics analysis, 90RVSF93, and 

reinforces the fact that TCTEX1D4 is a PPP1 binding partner (Figure III.A. 1). 

TCTEX1D4 belongs to the Tctex1 family of dynein LCs that share the Tctex1 

globular domain, a region of high homology present among the different family members 

(Figure III.A. 1and Figure III,A. 2)  

 

Figure III.A. 2: Alignment and schematic representation of TCTEX1D4 and its family 
members. The human sequences of Tctex1 family proteins were obtained from Ensembl 
database. A. Sequences were submitted to ClustalW2 and the resulting aligning output file shaded 
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with BOXSHADE. Open squares indicate the PPP1BM RVSF of TCTEX1D4 and the KVLF motif of 
TCTEX1D3. B. Schematic representation of human Tctex1 family members with their respective 
TCTEX1 globular domains (dark grey). The black squares show the position of the PPP1BM of 
TCTEX1D4 and TCTEX1D3. 
 

The human Tctex1 family comprises 6 members, DYNLT1 (Tctex1), DYNLT3 (RP3), 

TCTEX1D1, TCTEX1D2 (Tctex2b), TCTEX1D3 (Tctex2/Tcte3), and TCTEX1D4 

(Tctex2β). A ClustalW2 protein alignment with the full protein sequences (Figure III.A. 2A) 

revealed that the Tctex1 domain is common to all the proteins studied. Subsequently for 

an alignment using only the TCTEX1 globular domain, a score of 57% was obtained 

between DYNLT1 and DYNLT3, and for the other four family members of the Tctex1 

domain containing proteins, the score varied between 25% and 33% (alignment not 

shown). This implies the formation of two distinct groups, one containing DYNLT1 and 

DYNLT3 and the other the Tctex1 domain containing proteins. These results are in 

accordance with the work of DiBella and Meng [15, 24]. 

Since reversible protein phosphorylation is an important mechanism in the control of 

dynein function [25, 26], a bioinformatics analyses using ScanProsite to search for all the 

PPP1 binding motifs known to date in all dynein LCs, light intermediate chains (LICs), and 

intermediate chains (ICs) was carried out [27]. Interestingly, from all LCs, besides 

TCTEX1D4, only TCTEX1D3 possesses a consensus PPP1BM (Figure III.A. 2A, B). 

Between the ICs and LICs, the IC2, DYNC1LI1 and DYNC1LI2 proteins also have a 

canonical PPP1BM. 

In order to evaluate the evolutionary conservation of the phosphorylation sites and 

motifs described above (Figure III.A. 1), a ClustalW2 alignment was performed using 

representative orthologs of TCTEX1D4 (Figure III.A. 3A). 

Results show that phosphorylation sites Ser34/49/53/66, consensus sites for CK2, 

GSK3, PKA, PKB and PKC, are conserved in all mammals, while the Ser92 is present in 

all mammals with the exception of pig (Sus scrofa) and kangaroo rat (Dipodomys ordii), 

and Ser24 in all Primates (except Microcebus murinus representative of the lower 

primates Stepsirrhini, lemurs), Artiodactyla, Carnivora (except dog, Canis familiaris) and 

Chiroptera. The N-glycosylation motif is highly conserved in mammals with the exception 

of Murinae. In addition, the APC/C binding site is conserved in all mammals with the 

exception of Cavia porcellus, the cyclins binding site is present in all mammals with the 

exception of Felis catus, Insectivora and Rodentia (excluding Dipodomys ordii), and the 

MAPK binding site is conserved in all mammals, fish and birds. Finally, the PPP1BM is 

conserved in all placental mammals, with the exception of Pteropus vampyrus from the 

order Chiroptera (Figure III.A. 3A).  
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A phylogenetic tree was further constructed using the Neighbour-Joining method in 

MEGA program, revealing that TCTEX1D4 follows the modern mammal taxonomy (Figure 

III.A. 3B). Besides being present in placental mammals, TCTEX1D4 is also present in 

marsupials (Monodelphis domestica) and monotremes mammals (Ornithorhynchus 

anatinus), birds (Gallus gallus) and fishes (Danio rerio, outgroup of the evolutionary tree). 
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Figure III.A. 3 (previous page): Alignment and phylogenetic relationship between human 
TCTEX1D4 and its homologues. The protein sequences of TCTEX1D4 homologues were 
obtained from the Ensembl database, by performing a Blastp search through the metazoans group 
using the human TCTEX1D4 sequence. A. The chosen sequences were submitted to a ClustalW2 
alignment. Open box indicate conservation of the RVSF motif across the placental mammals. B. 
The resulting phylogenetic tree output was obtained by employing a Neighbor-Joining method with 
bootstrap test in MEGA program. D. rerio (zebrafish) was chosen as out-group. Scale bar of 0,05 
substitutions per residue.  

 

Validation of the TCTEX1D4 - PPP1 interaction 

To demonstrate and validate the interaction between TCTEX1D4 and PPP1C 

isoforms, AH109 yeast strain was co-transformed with pACT-2-TCTEX1D4 and with 

PPP1CA, PPP1CC1, PPP1CC2 or the PPP1CC2end in pAS2-1 [12, 20]. After growing in 

selective media, colonies were transferred to plates with X-α-Gal, and all colonies turned 

blue, indicating that TCTEX1D4 interacts with the PPP1C isoforms (Figure III.A. 4A). 

 

 

Figure III.A. 4: TCTEX1D4 binds to PPP1. A. Yeast co-transformation of pACT-2-TCTEX1D4 with 
PPP1CA, PPP1CC1, PPP1CC2 or PPP1CC2end in pAS2-1 vector, using the Li-Ac method. For 
negative and positive controls pAS2-1/pACT-2 and pVA3/pTD1 vectors were used, respectively. B. 
Western blot showing that TCTEX1D4 binds to and co-immunoprecipitates PPP1CC in COS-7 cells 
transfected with Myc-TCTEX1D4. Non-transfected and transfected COS-7 cells were used as 
negative and positive controls, respectively. C. Bacterial extracts expressing pET-TCTEX1D4, pET-
TCTEX1D4-AAAA, pET-TCTEX1D4-NT (NT) and pET-TCTEX1D4-CT (CT) were run in a SDS-
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PAGE gel and overlaid with purified PPP1CC isoforms. pET vector alone was used as negative 
control and pET-NEK2C, a known PIP, was used as positive control. 
 

The existence of TCTEX1D4-PPP1 complexes in vivo was shown by co-

immunoprecipitation of the latter from cell lysates of COS-7, previously transfected with 

Myc-TCTEX1D4 (Figure III.A. 4B). Indeed, when PPP1CC was immunoprecipitated from 

cells transfected with Myc-TCTEX1D4, this protein was highly co-immunoprecipitated, as 

denoted by the intense Myc-immunopositive band appearing in the western blot (Figure 

III.A. 4B).  

In order to test if the interaction between TCTEX1D4 and PPP1 was direct, an 

overlay was performed in blots of bacterial cell lysates expressing recombinant 

TCTEX1D4 (Figure III.A. 4C). Results show that TCTEX1D4 binds directly to both 

PPP1CC1 (upper panel) and PPP1CC2 (lower panel) purified proteins.  

Several papers demonstrate that, mutation of the PPP1BM either to AAxA [28], 

RAxA  or to RVxA  abolish the PPP1/PIP interaction, although some cases exist where 

interaction still occurs at less extent [29-32]. We also tested by overlay, if mutation of the 

TCTEX1D4 PPP1BM was important to complex formation. Results show that, mutation of 

the TCTEX1D4 PPP1BM RVSF to AAAA only partially decreases the binding by 35% 

(pET-TCTEX1D4-AAAA lanes), with the same being true when RVSF is mutated to RVSA 

(data not shown). Furthermore, when using TCTEX1D4 N-terminal (NT) and C-terminal 

(CT) truncated forms in the overlay assay (Figure III.A. 4C, right panel), it was clearly 

shown that the important motifs for PPP1C binding, such as the RVSF, were present in 

the N-terminal portion of the TCTEX1D4 protein, although it cannot be excluded that the 

C-terminus might be important for the binding stabilization. 

 

TCTEX1D4 profile in different tissues 

An exhaustive NCBI EST database analysis with TCTEX1D4 mRNA 

(NM_001013632.2) permitted the identification of a total of 42 hits in Sus scrofa, Rattus 

norvegicus, Mus musculus, Homo sapiens and Danio rerio. From the total ESTs identified, 

45% corresponded to female reproductive tract related tissues (ovary, oviduct, placenta, 

uterus and embryonic tissue). Head related tissues (head, hypothalamus, brain, corpus 

striatum and tongue) corresponded to 21% and lung to 17% of the total ESTs 

encountered. Moreover, in these public databases no ESTs were found in testis, although 

previous work has already described the message in this tissue by northern blot [15]. 
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A tissue screen of TCTEX1D4 protein expression was consequently performed on 

several rat tissues and human testis (Figure III.A. 5). 

 

 

Figure III.A. 5: TCTEX1D4 protein expression profile. Rat tissues and human testis extracts 
were prepared as described in material and methods. A tissue protein expression profile (100μg) of 
TCTEX1D4 was performed by western blot using CBC8C (anti-TCTEX1D4C) and anti-
TCTEX1D4N antibodies. The negative control consisted of bacterial extract expressing the pET 
vector alone, and the positive control of a bacterial extract expressing pET-TCTEX1D4. A loading 
control, β-tubulin, was also performed. 

 

 

 The results show that TCTEX1D4 is highly expressed in ovary, spleen, lung, 

placenta and kidney. It is also expressed in the other tissues tested, but in lower amounts. 

Interestingly, both antibodies, recognizing the N- or the C-terminus of TCTEX1D4, 

revealed the same immunoreactive profile, meaning that the two bands detected with 

each of the antibodies (24.9 and 28.4 kDa) correspond to the full-length TCTEX1D4. 

While the protein predicted molecular weight is of 23.4 kDa, the band shifts observed in 

the immunoblots (Figure III.A. 5) most probably result from post-translational 

modifications, such as phosphorylations and/or glycosylations, sites for which have been 

predicted (Figure III.A. 1). 

 

Cellular localization of TCTEX1D4 in mouse testis and human spermatozoa  

The cellular and subcellular localization of TCTEX1D4 was analyzed by 

immunohistochemistry in mouse testis (Figure III.A. 6). 
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Figure III.A. 6: TCTEX1D4 cellular localization in testis. Mouse testis sections were stained with 
DAPI (nucleus, grey in A-G), and an anti-TCTEX1D4 antibody (CBC8C), and visualized by Cy3-
labelled secondary antibody (red in A-G). A. Control staining with only Cy3-labelled secondary 
antibody (1:300). Image obtained at 20x magnification. B. Sections stained with CBC8C (20x 
magnification). bv, blood vessel; SMT, seminiferous tubule; ITC, intertubular compartment. C. 
Sections stained with CBC8C (63X magnification). Stars indicate microtubular like structures, 
arrowheads indicate spots that resemble microtubule organizing center (MTOC) and thin arrows 
the blood testis barrier (BTB). sp, spermatogonia; sc, spermatocyte; rsd, round spermatid; esd, 
elongate spermatid; srt, Sertoli cell; ldg, Leydig cell; pmc, peritubular myoid cell D. ROI (region of 
interest), showing the principal germ cells. E. ROI, showing the microtubular structures. F. ROI, 
showing the MTOC resembling spots. G. ROI, showing the BTB. 
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TCTEX1D4 was observed in the cytoplasm of most cells of the seminiferous 

tubules, including germ cells and Sertoli cells. The immunoreactivity was also present in 

Leydig cells of the interstitial compartment, but could not be detected in the peritubular 

myoid cells (Figure III.A. 6, panels B and C). Three distinct patterns of subcellular 

distribution were evident (Figure III.A. 6, panel C). The immunoreactivity was most intense 

near the cell-cell junctions (Figure III.A. 6, panel C, arrows and panel E) that are 

consistent with the blood testis barrier (BTB). TCTEX1D4 immunoreactivity was also 

observed to be highly intense in spots that resemble the microtubule organizing center 

(MTOC) structure in late stage germ cells (Figure III.A. 6, panel C, arrowheads and panel 

F). In addition, the subcellular localization of TCTEX1D4 acquires a characteristic pattern 

of microtubular like structures in late stage spermatids (Figure III.A. 6, panel C, asterisks 

and panel G). 

Given the presence of TCTEX1D4 in late stage germ cells, we further analyzed its 

subcellular localization in mature human sperm ejaculate (Figure III.A. 7). 
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Figure III.A. 7: TCTEX1D4 subcellular localization in human sperm. A. Human ejaculate sperm 
was stained with α-tubulin (anti-acetylated-α-tubulin, red), TCTEX1D4 (CBC8C, green) and nucleus 
(DAPI, blue), and subjected to confocal microscopy analysis. ROI image on the right is shown for 
an easier visualization of the co-localization in the axoneme (white arrowheads) and in the 
acrosome (white asterisks) B. Spermatozoa were stained for mitochondria (TOM20, red), 
TCTEX1D4 (CBC8C, green) and nucleus (DAPI, blue). ROI image on the right is shown for an 
easier visualization of the co-localization in the midpiece (white arrowheads) and in the acrosome 
(white asterisks) C. Spermatozoa were stained for PPP1CC2 (CBC502, green) and nucleus (DAPI, 
blue). ROI image on the bottom is shown for a closer visualization of the PPP1CC2 localization. All 
images were obtained at 100X magnification and the scale bar is shown. 

 

Results show that TCTEX1D4 is present along the entire length of the spermatozoa 

tail, including principal and endpiece, and more predominantly in the midpiece region, 
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where mitochondria are concentrated (Figure III.A. 7A). TCTEX1D4 is also present in 

head, particularly in the acrosome, but this pattern is only visible in some spermatozoa 

(Figure III.A. 7A and B, asterisks). Of note, this subcellular localization pattern is similar 

when using either the N- or the C-terminal anti-TCTEX1D4 antibodies (data not shown). 

To confirm and further characterize TCTEX1D4 subcellular localization, antibodies against 

the axonemal component tubulin (anti-acetylated-α-tubulin) and mitochondria (TOM20) 

were used (Figure III.A. 7A and B, respectively). Merged images clearly show that 

TCTEX1D4 co-localizes with axoneme and mitochondria. The co-localization pattern 

obtained for α-tubulin supports the previous observations of TCTEX1D4 microtubular like 

structures in mouse testis (Figure III.A. 6C). Relatively to the potential subcellular sites of 

PPP1CC2-TCTEX1D4 co-localization in human sperm, PPP1CC2 was observed in the 

posterior, equatorial and acrosomal regions of the head and along the entire flagellum, 

including the mid-piece, upon sperm staining with the CBC502 antibody (Figure III.A. 7, 

panel C). This is the expected PPP1CC2 sperm distribution and, indeed, past work from 

our laboratory has shown the interaction of PPP1CC2 with β-tubulin by mass 

spectrometry in human sperm [10]. 

 

TCTEX1D4 and PPP1 co-localize at MTOC/microtubules in mammalian cells 

A Myc-TCTEX1D4 construct and mouse anti-Myc antibodies were used to confirm 

TCTEX1D4 subcellular localization and address TCTEX1D4-PPP1 co-localization in 

mammalian cells. The subcellular localization of transfected TCTEX1D4 was first 

analyzed in a spermatogonia cell line, the GC1-spg cells, where TCTEX1D4 was 

observed to be present in the cell nucleus and cytoplasm, being enriched in the MTOC 

and in the emergent microtubules, as confirmed by its co-localization with specific 

subcellular markers: centrin, that specifically stains the centrioles present in MTOC, and 

β-tubulin, to stain microtubules (Figure III.A. 8A).  
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Figure III.A. 8: TCTEX1D4-PPP1 binding regulates the localization of the holoenzyme at 
microtubules and MTOC. A. GC1-spg cells (top) and COS-7 cells (bottom) were transfected with 
Myc-TCTEX1D4, labeled with anti-Myc and Texas-Red anti-mouse antibodies. GC1-spg cells were 
also immunostained with anti-β-tubulin antibody to visualize microtubules (confocal microscopy 
analysis), while COS-7 cells were immunostained with anti-centrin antibody to label the microtubule 
organizing center (MTOC) (epifluorescence microscopy analysis). All images are at 100X 
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magnification. Scale bar is shown at bottom left. B. COS-7 cells were transfected with wild type 
Myc-TCTEX1D4 or the Myc-TCTEX1D4-RVSA mutant, which has reduced ability to bind PPP1C. 
Arrowhead indicates MTOC. All images are at 100X magnification and were visualized in a 
confocal microscope. Scale bar is shown at bottom left. White arrows indicate the profiles 
localization. C. Fluorescence intensity profiles representing the voxels through the white arrowed 
lines indicated in B. D. Co-localization coefficients were determined for the percentage of PPP1CC 
co-localizing with TCTEX1D4 (black columns), and the percentage of TCTEX1D4 co-localizing with 
PPP1CC (grey columns), in cells transfected either with wild type (Myc-TCTEX1D4) or mutated 
(Myc-TCTEX1D4-RVSA) TCTEX1D4. Results were plotted and significant differences were found 
(*, p<0,001; n=15). 
 

To further characterize the TCTEX1D4-PPP1 holoenzyme, COS-7 cells were 

transfected with Myc-TCTEX1D4 and stained with anti-Myc (TCTEX1D4 detection, red) 

and CBC3C (endogenous PPP1 detection, green) antibodies (Figure III.A. 8B). Again, 

TCTEX1D4 was observed in the cell nucleus and cytoplasm, where it was present in 

microtubules and enriched in the MTOC (Figure III.A. 8B). PPP1CC co-localizes with 

TCTEX1D4 mainly in these regions: inside the nucleus and in the MTOC (Figure III.A. 

8B). Interestingly, PPP1CC also accompanies TCTEX1D4 in the microtubules emerging 

from the MTOC, strongly suggesting that TCTEX1D4-PPP1CC binding might be important 

for PPP1CC microtubular localization. In order to address this hypothesis we used the 

Myc-TCTEX1D4-RVSA mutant, where TCTEX1D4-PPP1CC binding decreased by 35% 

(Figure III.A. 4C). Remarkably, PPP1CC/TCTEX1D4-RVSA co-localized to a much lower 

extent in the MTOC and along the microtubules emerging from the MTOC (Figure III.A. 

8B), as clearly indicated by the fluorescence intensity profiles (Figure III.A. 8C) 

representing the voxels through the white arrows indicated in Figure III.A. 8B 

microphotographs. Of note, the PPP1CC signal was particularly decreased in both the 

MTOC and in microtubules, suggesting that TCTEX1D4 is at least partially responsible for 

PPP1C MTOC/microtubular localization/transport. Results were further confirmed by 

quantitative correlation analysis of PPP1CC/TCTEX1D4 co-localization percentages in the 

cytoplasm of TCTEX1D4 transfected cells (Figure III.A. 8D). While the percentage of 

cytoplasmic PPP1CC co-localizing with TCTEX1D4 decreased by ~34% (from 41.5±2.5 to 

27.5±2.7%), when the RVSF motif was mutated to RVSA the percentage of the 

TCTEX1D4 cytoplasmic pool co-localizing with PPP1CC decreased by ~27% (85.9±1.3 to 

62.7±2.2%). Further, the percentage of transfected cells where PPP1CC/TCTEX1D4 co-

localize decreased 3-fold for the TCTEX1D4-RVSA mutant. In essence, both PPP1CC 

localization at MTOC and its microtubular transport appear to be dependent on PPP1CC 

binding to the dynein LC TCTEX1D4. 
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Discussion 

The work here described revealed that TCTEX1D4, a new dynein LC present in 

sperm and testis, forms a complex with PPP1CC2, a phosphatase with an established 

role in sperm motility [33-36]. The PPP1-TCTEX1D4 interaction was first identified by a 

yeast two-hybrid approach, being further confirmed by overlay and co-

immunoprecipitation techniques (Figure III.A. 4). TCTEX1D4 has a PPP1BM, 

evolutionarily conserved among species (Figure III.A. 3), and studies with TCTEX1D4 

PPP1-binding mutants strengthened the importance of this PPP1 interaction motif for the 

complex formation (Figure III.A. 4C). TCTEX1D3 is the only dynein light chain, besides 

TCTEX1D4 that possesses a putative motif (150KVLF153), but the motif is mapped to the 

globular domain Tctex1, raising the possibility that it might be masked and not as easily 

accessible for PPP1 binding (Figure III.A. 2). Functionally, while the ICs/LCs form the 

cargo complex, the LC confer specificity to this binding [37, 38], regulate other molecules 

or stabilize the assembly of the motor dynein complex [39]. PPP1CC is known to bind to 

and dephosphorylate the IC [40], and most probably PPP1 binding to TCTEX1D4 would 

facilitate its access and binding to the IC. Furthermore, PPP1 may additionally 

dephosphorylate TCTEX1D4 itself, and therefore regulate its function. Of note, 

TCTEX1D4 has a comparatively longer disordered N-terminus (Figure III.A. 2), giving it a 

more flexible and exposed arm to bind different cargo and diverse regulatory proteins, as 

well as being regulated by reversible phosphorylation. 

Serine phosphorylation appears to be the most relevant post-translational 

modification for TCTEX1D4, with several putative target kinases being identified, and 

supporting the relevance of its binding to the Ser/Thr phosphatase PPP1 (Figure III.A. 1). 

Also, the results of the putative binding sites for cyclins and MAPK reinforce the Ser24 

phosphorylation site predicted for cyclin/CDK complex and MAPK, sustaining a possible 

role for TCTEX1D4 in the cell cycle, proliferation and differentiation processes, also 

controlled by the TGFβ signaling pathway [41]. However, the binding sites for cyclins and 

MAPK are localized in the globular domain, and so the motifs’ availability, for instance in 

loops within the globular domain, still requires further confirmation (Figure III.A. 1). 

Moreover, TCTEX1D4, in contrast to TCTEX1, TCTEX1D2 and TCTEX1D3 that have 

orthologs in Chlamydomonas genus [24, 42, 43], emerged only in the vertebrates, maybe 

by duplication, which may suggest the gain of novel and specialized functions for this 

protein in this phylum (Figure III.A. 3). One of these functions might have been the binding 

to PPP1 since the PPP1BM appeared in the placental mammals, interestingly, at the 

same time as PPP1CC2.  
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Tctex1d4 binding mutants show a decrease in the binding but not a complete 

ablation. This fact may be explained by the unusual sequence surrounding the 

TCTEX1D4 RVSF motif, which is similar to a palindrome with a high percentage of 

prolines – PSLGPVPPLGSRVSFSGLPLAPARWVAP (bold, prolines, italic, palindrome, 

underlined, PPP1BM). This sequence is likely to form a structured arm forcing towards the 

RVSF motif, even when this is mutated to AAAA, to enter the PPP1 hydrophobic pocket to 

which the RVxF motif is known to bind. It is possible that RVSF ablation leads to the 

destruction of the arm, and consequently to the ablation of TCTEX1D4-PPP1 binding, but 

this needs further proof. Also, another possible hypothesis explaining the observed partial 

reduction in binding is that other important binding sites, not yet described, could also be 

present. 

TCTEX1D4 tissue expression profile indicated that this protein is expressed in 

several tissues, but to a higher extent in ovary, spleen, lung and placenta, where PPP1 is 

also present [3] (Figure III.A. 5). These results are in agreement with the EST TCTEX1D4 

profile, and also with previous results, describing TCTEX1D4 in a human placenta cDNA 

library by yeast two-hybrid and by RT-PCR in human testis and placenta [15]. 

Immunofluorescence studies additionally revealed that, in mouse testis, TCTEX1D4 

is present at all germ cells stages, as well as in Sertoli and Leydig cells, being enriched at 

the cell-cell junctions of BTB and in the late germ cells in a distinctive microtubular/MTOC 

pattern (Figure III.A. 6). TCTEX1D4 interacts with endoglin and TGFβRII receptors, and 

inhibits both TGFβ1/3 signaling by increasing the retention time of both receptors at the 

cell surface and blocking their internalization [15]. TGFβ signaling has also been shown to 

participate in the regulation of the BTB physiology [44, 45]. BTB, although being one of 

the tightest blood tissue barriers, has some permeability during the stages VIII to IX of the 

germ cell cycle to allow for the migration of preleptotene/leptotene spermatocytes towards 

the adluminal compartment. The current hypothesis is that the internalization 

(endocytosis) and recycling events are evenly balanced. However, during the stages VIII 

to IX the internalization event is increased leading to an imbalance and a permissive BTB 

[44]. Cytokines, TGFβ3 and TNFα, were already shown to be involved in these 

phenomenon by increasing endocytosis of the membrane receptors [44, 46-48]. 

Therefore, TCTEX1D4 might have an important role in the regulation of the BTB, either by 

preventing higher levels of receptor internalization and thereby maintaining the balance 

before the stages VIII to IX, or by stopping the effect of the cytokines and re-establishing 

the balance after the preleptotene/leptotene spermatocytes migration. Further, 

immunocytochemistry analysis confirmed that TCTEX1D4 is present in mature 
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spermatozoa, particularly in the tail, being enriched in the midpiece region (Figure III.A. 7A 

and B). This type of expression (testis and sperm) is consistent with a role for TCTEX1D4 

as a dynein LC that is present in both cytoplasm and axoneme. Therefore, TCTEX1D4 

could be involved in both organelle rearrangements and protein transport (cytoplasmic 

functions) and in ciliar/flagellar motility (axonemal functions), similarly to its family member 

DYNLT1, which is both axonemal and cytoplasmic [43, 49]. In sperm tail 

immunofluorescence microphotographs it is difficult to distinguish different structures, thus 

it remains unclear whether TCTEX1D4 will function in the axoneme apparatus flagellar 

motility (for sperm motility) or as a minus-end cytoplasmic dynein motor in the 

intraflagellar transport (IFT) [50] (Figure III.A. 7A). IFT is a motility event in flagella, 

unrelated to dynein-based motility, which has been observed as a bidirectional 

transportation of granule-like particles along the length of flagella [51]. According to both 

PPP1C and TCTEX1D4 distribution in sperm, the localization of the 

TCTEX1D4/PPP1CC2 complex appears to be primarily restricted to the flagellum and to a 

lesser extent in the head (Figure III.A. 7). This suggests a putative role for the 

TCTEX1D4-PPP1CC2 holoenzyme in sperm motility, where TCTEX1D4 could have its 

dynein functions altered by PPP1CC2 dephosphorylation and/or would function to 

transport PPP1CC2 to other possible motility-related PPP1C targets. In the head, the 

complex might have an important role in the acrosome reaction. Studies in rainbow trout 

and chum salmon sperm have shown that a TCTEX1D3 homologue (LC2) of the outer 

dynein arm is phosphorylated when sperm is activated [52] and that dephosphorylation by 

PPP2 induces immotility in sperm [53]. This model could be similar to what happens in 

human sperm with TCTEX1D4 and PPP1CC2 (Figure III.A. 9). 
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Figure III.A. 9: Schematic representation of TCTEX1D4 and TCTEX1D4-PPP1CC2 localization 
in sperm. TCTEX1D4 is present in the head and along the tail of human mature spermatozoa. 
PPP1CC2 is present in the posterior, equatorial and acrosome regions of the head, as well as, in 
the entire tail, including midpiece. PPP1 was shown to be present in the central pair apparatus 
axoneme, associated with the C1 microtubule, and to a lesser extent in the outer doublet 
microtubules, in Chlamydomonas. The diagram shows the putative roles that could be assigned to 
TCTEX1D4 (and the TCTEX1D4-PPP1CC2 complex) at these locations. In the head, TCTEX1D4 
may have a role in the acrosome reaction, while along the tail it could have a function in sperm 
flagellar motility and/or in vesicular intraflagellar transport (IFT). In the midpiece, where 
mitochondria are concentrated, and TCTEX1D4 is highly enriched, TCTEX1D4 may be involved in 
the energy production necessary for the flagellar motility. Rsp, radial spoke; C1, central pair 
microtubule 1; B, tubule B; A, tubule A; IDA, inner dynein arm; ODA, outer dynein arm. 

 

Since mammalian sperm contains a different isoform of PPP1C, the sperm-specific 

PPP1CC2, and TCTEX1D4 only appeared in the vertebrate branch, this dynein light chain 

could be the effector of PPP1CC2 activity in mammals, inducing sperm immotility. Figure 

III.A. 9 is depicts other possible functions of the complex TCTEX1D4/PPP1CC2 in sperm 

physiology. 

Furthermore, PPP1 and TCTEX1D4 were confirmed to co-localize in the MTOC and 

microtubules, and TCTEX1D4 appears to be at least partially responsible for PPP1 

transport along microtubules and PPP1 targeting to MTOC (Figure III.A. 8). This 

localization is consistent with TCTEX1D4 role as a dynein LC thus linked to microtubules 

and responsible for PPP1C microtubule-dependent retrograde transport. In this way, 

TCTEX1D4 may regulate PPP1 functions since PPP1 localization at microtubules is 

important to regulate microtubule dynamics (e.g. in mitosis [54]) and to regulate cargo 

transport, by mediating cargo dissociation from the kinesin motor unit [55, 56]. Of note, 

only part of the TCTEX1D4 cytoplasmic pool is associated with microtubules, as was also 

reported to occur for TCTEX1, suggesting several distinct roles for these proteins [57]. 
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The presence of TCTEX1D4 in the microtubules and MTOC agrees with the previous 

immunohistochemistry observations, and strongly suggests a role for TCTEX1D4 in 

microtubules organization and dynamics. Indeed, dyneins were previously shown to have 

an important role in MTOC cellular positioning, re-orientation throughout the cell cycle and 

migration, and in microtubule dynamics [58-60]. 

Interestingly, the testis protein TLRR (lrrc67), found in the MTOC of germ cells and 

in culture cells [61], binds to PPP1CC2, β-tubulin, KIF5B (Kinesin-1B), DYNC1I1, and was 

suggested to have a role in sperm tail formation [61]. The authors further proposed that 

the TLRR-PPP1CC2 complex regulates the activity of the (plus end) kinesin-1B motor unit 

in testis. In light of our studies, we suggest that the TCTEX1D4-PPP1CC2 complex may 

function in the opposite direction, regulating the (minus end) motor unit dynein that 

comprises TCTEX1D4 as its LC. Additional questions regarding the specific role of this 

complex in spermatogenesis and sperm physiology will require further work, but will 

definitely provide new answers to the biology of human reproduction 
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Abstract 

T-complex testis expressed protein 1 domain containing 4 (Tctex1d4) contains the 

canonical phosphoprotein phosphatase 1 (PPP1) binding motif (PPP1BM), composed by 

the amino acid sequence, RVSF [1]. We identified and validate the binding of Tctex1d4 to 

PPP1 and demonstrated that indeed this protein is a novel PPP1 Interacting Protein [2]. 

The analyses of twenty-eight mammalian species showed that the PPP1BM 90RVSF93 is 

present in all and is flanked by a palindromic sequence, PLGS, except in the three 

Ochotona species (O. princeps, O. daurica and O. pusilla). Furthermore, for the Ochotona 

species an extra glycosylation site, motif 96NLS98, and the loss of the palindromic 

sequence were observed. The comparison with other Lagomorphs suggests that this 

event happened before the Ochotona radiation. The dN/dS for the sequence region 

comprising the PPP1BM and the flanking palindrome highly supports the hypothesis that 

for Ochotona species this sequence has been evolving under positive selection. Besides 

this, mutational screening shows that the ability to bind to PPP1 is maintained in Tctex1d4 

from Pika, although the PPP1BM being absent, and the N- and C-terminal surrounding 

residues being also abrogated. These observations converted Pika into an ideal model to 

study novel PPP1/PIPs regulatory mechanisms. 
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Introduction 

Phosphoprotein phosphatase 1 (PPP1), one of the major eukaryotic 

serine/threonine protein phosphatase, has exquisite specificities in vivo, both in terms of 

substrates and cellular localization. Over the past two decades, it has become apparent 

that PPP1 versatility is achieved by its ability to interact with multiple targeting/regulatory 

subunits known as PPP1 Interacting Proteins (PIPs) [3, 4]. To date, more than 200 PIPs 

have been identified, most of them having the consensus PPP1 binding motif (PPP1BM), 

RVxF that binds to the catalytic subunit of PPP1, determining its targeting thus specifying 

cellular location and ultimately determining its function [5, 6]. Therefore, the key to 

characterizing the diverse roles of PPP1 relies on the identification of novel PIPs and in 

understanding the PPP1/PIP complex specific functions. Thus, several novel PIPs were 

identified, through a yeast two-hybrid system, using PPP1 as bait [2, 7-10]. 

A novel partner of PPP1 was thus identified, recently described as a novel Tctex1 

dynein light chain family member, the t-complex testis expressed protein 1 domain 

containing 4, Tctex1d4 (Tctex2β) [2, 11]. Our results show that Tctex1d4 is evolutionarily 

conserved among mammals and ubiquitously expressed, particularly in ovary, spleen, 

lung and placenta, where PPP1 is also present [2, 12]. Moreover Tctex1d4 interacts 

directly with PPP1 catalytic subunit (PPP1CC) and possesses a canonical PPP1BM, 

commonly referred as RVxF [2, 13-16]. We have also demonstrated that Tctex1d4 and 

PPP1C co-localize in the microtubule organizing center and in microtubules having a 

probable role in the cytoplasmic transport of the cell [2]. Other groups have also shown 

that Tctex1d4 interacts with membrane receptors, inhibiting TGFβ signaling [11] and 

suggested its involvement in peripheral inflammation [17]. 

Cytoplasmic dyneins are responsible for the retrograde transport, the minus-end 

directed trafficking in the cytoskeletal microtubules [18]. More specifically, light chains 

might confer specificity to the cargo binding [19, 20], regulate other molecules [21] or 

stabilize the assembly of the motor dynein complex [22].  

The RVxF motif is present in about 70% of all PIPs [5]. This motif is usually 

surrounded by basic residues in the N-terminal and by acidic residues in the C-terminal. 

The binding of this motif to a hydrophobic groove in PPP1C does not alter PPP1C 

conformation, but anchors the PIP to PPP1C [13, 14, 23, 24]. Nevertheless, the initial 

binding of this motif to PPP1C is essential to bring PIPs into PPP1C proximity, allowing for 

secondary interactions that strength holoenzyme binding, and determining substrate 

specificity, enzyme activity and PPP1 isoform selectivity [25].  
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It is expected that proteins with relevant biological functions, like dyneins, will be 

present in all mammals and probably evolved under different pressure levels. Following 

an extensive search in NCBI and ENSEMBL databases, the Tctex1d4 PPP1 binding motif, 

90RVSF93 (amino acid 90 to 93, according to Homo sapiens sequence), was shown to be 

present in all mammals except in the Lagomorpha species, Ochotona princeps (subgenus 

Pika). 

The order Lagomorpha is divided into the families Ochotonidae (pikas) and 

Leporidae (rabbits and hares). Ochotonidae has a single genus (Ochotona sp.), which is 

divided in three subgenera (Conothoa, Ochotona and Pika) [26]. The leporids, 

encompassing eleven genera, which include the Oryctolagus, Lepus and Sylvilagus [27, 

28]. In spite of the studies performed in the past few years, using fossil and molecular 

data, the divergence time between these two families remains vague. According to 

Matthee et al. [29], the leporid-ochotonid split was around 31 my ago. On the other hand, 

McKenna and Bell [30] and Asher et al. [31] suggested that the families’ separation 

occurred around 37 my ago. Three other authors [32-34] suggested 65 my ago as the 

leporid-ochotonid divergence time. 

These different molecular dating models of leporid-ochotonid separation were used 

by Lanier and Olson [35] to infer a common ancestor for pikas, however the Ochotona 

genus taxonomy still is one of the poorly resolved [35-38]. Lanier and Olson [35] 

suggested radiation time estimations for the Ochotona subgenera Pika (between 6 and 13 

my ago), Conothoa (between 7 and 16 my ago) and Ochotona (between 10 and 20 my 

ago). 

In this work we compared different lagomorphs, namely Ochotona species 

belonging to the subgenus Ochotona, in order to validate the observation that Tctex1d4 

PPP1BM is absent in O. princeps. Also different mutants mimicking Pika PPP1BM and 

surrounding amino acids were produced and the binding efficiency was determined by the 

overlay technique. Further, these findings were applied to understand the evolutionary 

mechanisms that are behind these dramatic amino acid changes. 
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Materials and Methods 

 

Analyses of Tctex1d4 evolution 

Twenty-one different mammal protein sequences from Tctex1d4 were retrieved from 

NCBI GenBank (http://www.ncbi.nlm.nih.gov/) and from Ensembl 

(http://www.ensembl.org/index.html/). Table III.B. 1 contains the denominations, GenBank 

accession numbers and Ensembl scaffolds for all the acquired sequences. Additionally, 

two other Tctex1d4 protein sequences from Ochotona species, three sequences from 

Lepus species and two from Sylvilagus species were also included in this study. 

Tissue samples from Ochotona dauurica (Ocda) and Ochotona pusilla (Ocpu), 

belonging to the subgenus Ochotona, were used. These samples were provided by the 

Zoological Museum of Moscow State University, Russia. Genomic DNA was extracted 

using the E.Z.N.A. ® Tissue DNA Kit (Omega Bio-Tek, Norcross, Georgia, USA) according 

to manufactures’ instructions.  A pair of primers were designed according to the available 

sequence for Ochotona princeps (subgenus Pika) available in Ensembl (forward 5’-

ATGGCTGGCAGGCCTCTGCC-3’ and reverse 5’-CTCGCAGTAGAGCCCGTGGA-3’) 

generating a PCR fragment of 657bp. A touchdown PCR was performed and the thermal 

profile used was the following: initial denaturation (95ºC for 15min.); 5 cycles of 

denaturation (95ºC for 30sec.), annealing (66ºC for 30sec., 1ºC decrease/cycle) and 

extension (72ºC for 45sec.); 30 cycles of denaturation (95 ºC for 30sec.), annealing (62ºC 

for 30sec.) and extension (72ºC for 45sec.); and a final extension (72ºC for 20min). 

Sequencing was performed on an ABI PRISM 310 Genetic Analyzer (PE Applied 

Biosystems), where the ABI PRISM BigDye Terminator Cycle sequencing protocols were 

followed. PCR products were sequenced in both directions.  

Genomic DNA samples identified as Jackrabbit (Lepus genus; Jack) and Cottontail 

(Sylvilagus genus; Cott) were provided by the Department of Microbiology and 

Immunology of Loyola University Chicago, USA. Lepus europaeus (Leeu) and Lepus 

granatensis (Legr) tissue samples were supplied by CIBIO, Vairão, Portugal and 

Sylvilagus bachmani (Syba) tissue samples were provided by the Blue Oak Ranch 

Reserve of the University of California, USA. Total RNA isolation from tissues 

(guanidinium thiocyanate-phenol-chloroform extraction) and cDNA synthesis were 

performed. A set of primers was designed according to the available sequence for 

Oryctolagus cuniculus existent in Ensembl (forward 5’ TGCCAGGAGGAGGAGACTG 3’ 
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and reverse 5’ CACGCTGCACACCAGCTTG 3’) generating a PCR fragment of 

approximately 500bp. The PCR thermal profile used was the following: initial denaturation  

 (95ºC for 3min.); 40 cycles of denaturation (95ºC for 45sec.), annealing (57ºC for 

1min.) and extension (72ºC for 1min.) and a final extension (72ºC for 10min.). 

The nucleotide sequences were translated and aligned using ClustalW [39] and 

adjusted by visual examination (data not shown). The sequences obtained in this work 

have been deposited into NCBI GenBank under the accession numbers xxxx,xxxx (7 

sequences). Phylogenetic and molecular evolutionary analyses were conducted using the 

software package MEGA4.1 [40]. 

 

Table III.B. 1: List of the mammalian species in which the coding sequence of Tctex1d4 was 
retrieved from NCBI or ENSEMBL and used in this study.Tctex1d4 mutant constructs. 

Species name Common name Database ID Database Source 

Bos taurus (Bota) Cow XM_594476 NCBI GenBank 

Callithrix jacchus (Caja) Marmoset 
Chromosome 7: 

79,571,655-79,572,320 
Ensembl 

Canis familiaris (Cafa) Dog 
Chromosome 15: 

18,523,787-18,524,446 
Ensembl 

Cavia porcellus (Capo) Guinea Pig 
scaffold_165: 1,051,684-

1,052,355 
Ensembl 

Dasypus novemcinctus (Dano) Armadillo 
GeneScaffold_5913: 

7,015-7,671 
Ensembl 

Echinops telfairi (Ecte) 
Lesser Hedgehog 

Tenrec 
GeneScaffold_7046: 

35,805-36,470 
Ensembl 

Felis catus (Feca) Cat 
GeneScaffold_2486: 

79,592-80,251 
Ensembl 

Gorilla gorilla (Gogo) Gorilla 
Chromosome 1: 

46,433,826-46,434,515 
Ensembl 

Homo sapiens (Hosa) Human NM_001013632 NCBI GenBank 

Loxodonta africana (Loaf) Elephant 
SuperContig scaffold_34: 
24,862,938-24,863,606 

Ensembl 

Macaca mulatta (Mamu) Rhesus Monkey XM_001099595 NCBI GenBank 

Microcebus murinus (Mimu) Mouse Lemur 
GeneScaffold_1367: 

59,896-60,555 
Ensembl 

Mus musculus (Mumu) Mouse NM_175030 NCBI GenBank 

Ochotona princeps (Ocpr) American Pika 
GeneScaffold_4323: 

138,892-139,548 
Ensembl 

Oryctolagus cuniculus (Orcu) European Rabbit 
scaffold_0: 101,766,508-

101,767,167 
Ensembl 

Otolemur garnetti (Otga) Bushbaby 
GeneScaffold_2671: 

80,377-81,036 
Ensembl 

Pan troglodytes (Patr) Chimpanzee 
Chromosome 1: 

45,543,578-45,544,952 
Ensembl 

Pongo pygmaeus (Popy) Orangutan 
Chromosome 1: 

185,125,020-185,125,685 
Ensembl 

Procavia capensis (Prca) Hyrax 
GeneScaffold_6128: 

11,550-12,212 
Ensembl 

Rattus norvegicus (Rano) Rat XM_233427 NCBI GenBank 

Sus scrofa (Susc) Pig NM_001032356 NCBI GenBank 

http://www.ensembl.org/Callithrix_jacchus/Info/Index
http://www.ensembl.org/Cavia_porcellus/Info/Index
http://www.ensembl.org/Homo_sapiens/Search/Details?_C=eJwFwWEKgCAMBtDvKOEFTCiIDtAF6r!ILgqGszGj4*deZFBFfCsKnamzIT6wbPSFMg1ZtIkmI29KtLpDmt!layZP8!IQr9u2zoww4genQxhA&_c=%2b13839964057159149480
http://www.ensembl.org/Echinops_telfairi/Info/Index
http://www.ensembl.org/Echinops_telfairi/Info/Index
http://www.ensembl.org/Pongo_pygmaeus/Info/Index


An intriguing switch in the novel PPP1C binding partner Tctex1d4 Chapter III.B 

 

Centre for Cell Biology  181 
University of Aveiro   

Mutagenic primers were designed according to the sequence of human Tctex1d4 

(NCBI: NM_001013632.2) and were used to obtain the desired mutations (Table III.B. 2). 

Starting with pET-Tctex1d4 plasmid as template, and along with appropriate mutagenic 

primers, the mutants HA+INL+WS, HA+WS, HA+INL, INL+WS, HA, INL and WS were 

created using the QuikChange® Site-Directed Mutagenesis Kit (Stratagene, Agilent 

Technologies UK Ltd, Edinburgh, UK). PCR conditions for site-directed mutagenesis were 

as followed: initial denaturation (95ºC for 1min.); 18 cycles of denaturation (95ºC for 

30sec.), annealing (55ºC for 1min.) and extension (68ºC for 7min.), using KOD 

polymerase (Novagen, Madison, Wisconsin, USA). DNA was then digested by DpnI 

restriction enzyme and transformed into E. coli XL1-Blue strain (Stratagene Agilent 

Technologies UK Ltd, Edinburgh, UK). Sequencing was performed on an ABI PRISM 310 

Genetic Analyzer (Perkin-Elmer, Applied Biosystems, Barcelona, Spain), where the ABI 

PRISM BigDye Terminator Cycle sequencing protocols were followed. Positive clones 

were sequenced in both directions using universal T7 promoter and T7 terminator primers. 

 

Table III.B. 2: Human and Pika PPP1BM and surrounding sequences are shown on the top. 
Mutation sites are highlighted in bold and underlined. On the bottom, oligonucleotides used for site 
direct mutagenesis are shown. 

Homo sapiens (Humans) Ochotona princeps (Pika) 

85PPLGSRVSFSGLP97 83HALGSRINLSGWS95 

Mutation 
Primer 

Name 
Sequence 

85PP86 to 85HA86 

HA-FW 5’-GGGCCCGGTGCACGCTCTGGGCTCAAG-3’ 

HA-RV 5’-CTTGAGCCCAGAGCGTGCACCGGGCCC-3’ 

91VSF93 to 91INL93 

INL-FW 5’-CTCTGGGCTCAAGGATCAACTTATCAGGGTTGCCCC-3’ 

INL-RV 5’-GGGGCAACCCTGATAAGTTGATCCTTGAGCCCAGAG-3’ 

97LP98 to 97WS98 

WS-FW 5’-GCTTCTCAGGGTGGTCCCTGGCGCCCG-3’ 

WS-RV 5’-CGGGCGCCAGGGACCACCCTGAGAAGC-3’ 

97LP98 to 97WS98 

L..WS-FW 5’-CAACTTATCAGGGTGGTCCCTGGCGCCCGCC-3’ 

L..WS-RV 5’-GGCGGGCGCCAGGGACCACCCTGATAAGTTG-3’ 
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Protein expression and Overlay assay 

Each His-tagged mutant was transformed into E. coli Rosetta strain (Novagen, 

Madison, Wisconsin, USA). A single colony was selected and grown overnight at 37ºC in 

the appropriate media until the optic density of 0.6-0.7 was reached. Expression was 

induced using 1M IPTG (isopropyl-β-D-thio-galactopyranoside), at 37ºC with shaking, for 

3hrs. Culture cells were recovered by centrifugation and treated as described in (Browne 

et al., 2007). Lysates were then mass normalized using a BCA® assay (Fisher Scientific, 

Loures, Portugal) and 10μg of each extract was loaded in a 12% SDS-PAGE gel. The 

proteins were subsequently transferred to a nitrocellulose membrane and then overlaid 

with 25pmol/mL of purified PPP1CC1 for one 1hr. Membranes were incubated with either 

mouse anti-His monoclonal (1:1000, Novagen, Madison, Wisconsin, USA) or rabbit 

CBC3C (anti-PPP1CC, 1:1000) antibodies, followed by the respective anti-mouse and 

anti-rabbit infrared secondary antibodies (1:5000, Li-Cor Biosciences UK Ltd, Cambridge, 

UK) and bands developed in Odyssey infrared-imaging system and quantified using 

Odyssey v1.2 software (Li-Cor Biosciences UK Ltd, Cambridge, UK). The same procedure 

was also performed for pET-Tctex1d4 (positive control) and pET vector (negative control). 

 

Statistical analysis 

SigmaPlot statistical package (SigmaPlot v.11, Systat Software Inc.) was used for 

statistical analysis. Data were tested for normal distribution and homogeneity of variances. 

Student’s t-test (p<0.05, alpha=0.050) was used to detect the differences between each 

mutation by comparison to the control, pET-Tctex1d4. 
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Results 

 

Analyses of Tctex1d4 evolution 

When comparing the Tctex1d4 PPP1BM, 90RVSF93, in twenty-one mammalian 

species we observed that it was present in all except in Ochotona princeps creating an 

extra glycosylation site (motif 90NLS92). To confirm if this was not an artifact of the 

database, Ochotona dauurica and Ochotona pusilla Tctex1d4 were sequenced. For other 

five lagomorphs (Lepus and Sylvilagus genera), the Tctex1d4 coding region was partially 

sequenced. These sequences were confirmed through BLAST, compared with other 

mammalian sequences and translated into amino acids (Table III.B. 3). The nucleotide 

substitution in the Ochotona species generated amino acid changes that confirmed the 

elimination of the consensus PPP1BM, 90RVSF93, and the appearance of a glycosylation 

site. Lepus and Sylvilagus genera maintained the canonical PPP1BM. 

The alignment between the sequences acquired in this work and the twenty-one 

sequences available for the different mammals (data not shown) allowed the construction 

of a Neighbor-Joining phylogenetic tree (Figure III.B. 1a). The topology obtained was in 

accordance with the mammalian taxonomy proposed and actually accepted [41], 

suggesting that Tctex1d4 has been evolving under neutral selection. A new Neighbor-

Joining tree using amino acid p-distance (Figure III.B. 1b) was constructed using only the 

twelve amino acids, four upstream and four downstream of the motif 90RVSF93. This 

choice of amino acids was related with PPP1BM being flanked by an unusual palindromic 

sequence, 86PLGS89, according to Homo sapiens sequence alignment with other 

mammals. As expected, the obtained tree revealed that the three Ochotona species 

formed an independent cluster, highly supported by a bootstrap value of 99 (see Figure 

III.B. 1b). 
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Table III.B. 3: Amino acids and nucleotides sequences, corresponding to the 12 amino acids 
region (numbered according to human Tctex1d4 CDS), for the 28 mammals used in this 
study. Shadowed region: RVSF motif; Underlined region: novel glycosylation site in Ochotona 
species; Bolded region: non-synonymous substitutions; Italic region: nucleotide sequence 
corresponding to the novel glycosylation site in Ochotona species. CDS, codifying sequence 
 
                    

     8-88899999999 

     6-78901234567 

222 --- 222 222 222 222 222 222 222 222 222 222 222 

555 --- 566 666 666 667 777 777 777 888 888 888 899 

678 --- 901 234 567 890 123 456 789 012 345 678 901 

Hosa P-LGSRVSFSGLP 

Caja .-...Q....... 

Gogo .-........... 

Mamu .-........... 

Mimu .-.A......... 

Otga L-.A......... 

Patr .-........... 

Popy .-........... 

Cafa .-........... 

Feca L-........... 

Dano .-....I...... 

Ecte .P........... 

Loaf .-.S......... 

Capo .-.A..I...... 

Mumu .-........... 

Rano .-........... 

Prca A-.........S. 

Ocda A-....LNL..WS 

Ocpr A-....INL..WS 

Ocpu A-....INL..WS 

Jack .-.....G..... 

Leeu .-.....G..... 

Legr .-.....G..... 

Orcu .-.....G..... 

Cott .-.....G..... 

Syba .-.....G..... 

Bota .-........... 

Susc .-..W........ 

CCT --- CTG GGC TCA AGG GTC AGC TTC TCA GGG TTG CCC 

... --- ... ... ... CA. ... ... ... ..G ... ... ... 

... --- ... ... ... ... ... ... ... ... ... ... ... 

... --- ... ... ... C.. ... ... ... ... ... ... ..T 

... --- ..A .C. ..G C.. ... ..T ... ..T ... ... ... 

.T. --- ... .C. ..G ..A ... ..T ... ..T ... ... ... 

... --- ... ... ... ... ... ... ... ... ... ... ... 

... --- ... ... ... C.. ... ... ... ... ... ... ... 

..C --- ..A ... ..G ... ..T ... ... ..G ... ... ... 

.T. --- T.. ... ... ... ..T ... ... ..T ... ... ... 

... --- ... ..A ... ... A.. ... ... ..G ... ... ... 

... CCT ..T ... ... C.A ... ... ... ..G ... ... ... 

... --- ..A A.T ..C C.. ... ... ... ... ... C.. ... 

... --- ..A .CT ..T ... A.. ..T ... ... ... ... ... 

... --- ..A ..T ... C.A ..T ..T ..T ..T ... C.. ... 

... --- ..A ..T ... C.A ..T ..T ... ..T ... C.A ... 

G.C --- ... ..T ..C C.. ... ..T ... ... ... .C. ... 

G.. --- ... ... ... C.. C.T .A. ..A ..C ... .G. T.T 

G.. --- ... ... ... C.. A.T .AT ..A ..C ..A .G. T.T 

G.. --- ... ... ... C.. A.T .A. ..A ..T ..A .G. T.T 

... --- ..C ... ... C.. ..T G.. ... ..T ... ... ..T 

... --- ..C ... ... C.. ..T G.. ... ..T ... ... ..T 

... --- ..C ... ... C.. ..T G.. ... ..T ... ... ..T 

... --- ..C ... ... C.. ..T G.. ... ..C ... ... ..T 

... --- ..C ... ... C.. ..T G.. ... ..C ... ... ..T 

... --- ..C ... ... C.. ..T G.. ... ..C ... ... ..T 

... --- ..A ... ..G C.A ... ... ... ..T ..C ... ... 

..G --- ... ... .GG C.. ... ... ... ..G ..C C.. ... 
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Figure III.B. 1: Neighbor-Joining tree A. resulting from the alignment of the 28 mammalians 
species coding region of Tctex1d4, and B. using only 12 amino acids, four upstream and four 

downstream of the motif 90RVSF93. 

 

Tctex1d4 RVSF-palindrome studies 

To further study the significance of the Bioinformatic studies, mutants based on the 

Pika sequence (83HALGSRINLSGWS95) corresponding to the human Tctex1d4 PPP1BM 

and flanking regions (85PPLGSRVSFSGLP97) were generated by directed mutagenesis 

followed by bacterial expression of those mutants and PPP1C binding screening by 

overlay (Fig. 2).  The band intensities indicate the amount of PPP1CC that is bound to the 

bacterial expressed Tctex1d4 recombinant mutant proteins. Since all proteins were 

expressed with a N-terminal His-tag, anti-His antibody was used to normalize the amount 

of recombinant protein loaded in each lane. Subsequently band intensities were 

normalized according to the amount of recombinant protein loaded and compared to the 

pET-Tctex1d4 control. Negative controls include Rosetta cell extract and Rosetta cell 

extract expressing pET vector alone. Controls have not shown any binding to PPP1CC.  

Results show that HA+INL+WS mutant has a binding profile similar to the wild type 

human Tctex1d4 since there was no statistical difference in the binding capacity. The 
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results of the other mutations, single or double, also show no statistical difference when 

comparing to the control, pET-Tctex1d4 (Figure III.B. 2). 

 

 

Figure III.B. 2: Tctex1d4 PPP1BM mutants and PPP1C binding analysis. A. Bacterial cell 
cultures expressing each construct were loaded in a SDS-PAGE gel (10μg). Membranes were then 
overlaid with purified PPP1CC and detected using CBC3C antibody. Total amount of recombinant 
protein was accessed using an anti-His antibody. B. Alignment of Human and Pika Tctex1d4 
PPP1BM and surrounding palindromic sequences. Mutations are underlined C. Subsequent 
analysis of band intensities versus total amount of recombinant protein was performed and the 
results plotted in a graph by comparison with the pET-Tctex1d4 control. Results show that Pika 
Tctex1d4 aberrant RVxF motif, RINL, and respective non-palindromic surrounding region were 
sufficient for the PPP1CC binding. Negative controls include Rosetta cell extract and Rosetta cell 
extract expressing pET vector alone. Error bars represent the standard error of the mean of 
triplicates. WB, Western blot. 
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Discussion 

The identification of Tctex1d4 as a new PIP has already been described [2]. This 

new interaction was supported by the yeast two-hybrid approach, co-immunoprecipitation 

and overlay techniques. Results from our laboratory showed that the N-terminal domain, 

where the PPP1BM is present, is essential for the binding. Furthermore, in vitro studies 

with Tctex1d4 PPP1 binding mutants strengths the importance of the PPP1BM to 

Tctex1d4/PPP1C interaction. Indeed, the mutation of the motif RVSF to AAAA decreases 

the binding by 35%. This was not in accordance with our expectations, since the mutation 

of the PPP1BM either to AAxA [42], RAxA [14, 43] or to RVxA [44] usually abrogates 

PPP1/PIP interaction. Nevertheless, some cases exist where interaction still occurs but at 

less extent [45-48]. Also, there are some PIPs that still bind PPP1C in the presence of an 

excess of a synthetic RVxF peptide [47], that usually disrupts the PPP1/PIP complex [9, 

49]. The explanation might be that other motifs besides RVxF are present in these 

proteins and are also important for the binding. 

Tctex1d4 possesses an unusual bizarre sequence surrounding the RVSF motif. The 

twelve amino acid sequences contain a palindrome – PLGSRVSFSGLP. The PPP1BM 

binds to PPP1 in a hydrophobic pocket [50]. This palindrome may form a structured arm 

forcing the RVSF motif, even when it is mutated into AAAA, to enter the PPP1 pocket, 

since the palindrome contains several rigid prolines. Perhaps, if the RVSF is completely 

removed, and the arm destroyed, Tctex1d4 will no longer bind PPP1C. 

When the twelve amino acids Neighbor-Joining tree was constructed the three 

Ochotona species formed an independent cluster and this observation raised two 

explanatory hypotheses: or the new motif present in the Ochotona species resulted from 

gene conversion with adjacent genes or a pattern of nucleotide substitution in this specific 

motif happened. Furthermore, the palindrome is also highly conserved among mammals 

but is completely lost in Pika sequences (Figure III.B. 1 and Table III.B. 2). 

Gene conversion has been reported in other mammalian genes. For example, in 

leporids a gene conversion event was observed between the two chromosomally adjacent 

genes CCR2 and CCR5, where the sequence motif 194QTLKMT199 of the CCR5 protein 

was replaced by the HTIMRN motif, which is characteristic of CCR2 [51, 52]. In the 

present study, none of the genes chromosomally adjacent showed a clear evidence of 

gene conversion with Tctex1d4, being this event an unlikely hypothesis. Furthermore, no 

significant BLAST was obtained when compared with mammalian NCBI database. 

Under neutrality, the expected ratio of non-synonymous (dN) to synonymous (dS) 

substitutions in a gene is one and significant deviations from this value can be interpreted 
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as evidence of either positive selection (ω>1) or purifying selection (ω<1). To consider a 

specific pattern of nucleotide substitution, synonymous and non-synonymous substitution 

rates were estimated using the Nei-Gojobori method [53] and a non-synonymous to 

synonymous substitution ratio was calculated for the previously referred twelve amino 

acidic positions. Comparing dN/dS between all analysed mammals, but excluding the 

three Ochotona species, the presented values were on average lower than 0.3, 

suggesting a strong purifying selection. However, when comparing dN/dS between the 

three Ochotona species and each of the mammalian sequences, on average, the obtained 

value was 1.6, suggesting that for Ochotona species this fragment lost the mutations 

constrains imposed by purifying selection or/and evolved under Darwinian or positive 

selection. When focusing the analysis on the Superorder Glires (Order Rodentia and 

Order Lagomorpha), the main representatives of rodents (mouse and rat) showed a ratio 

of zero, meaning that Tctex1d4 was under purifying selection for this group. While 

comparing the rodents sequences nucleotide corresponding to the twelve amino acids 

region with the one from human, a total of ten substitutions caused no amino acid 

changes (Table III.B. 2). On the other hand, for the Ochotona species, a total of twelve 

substitutions caused six amino acid alterations. Furthermore, when comparing all species 

from the three Lagomorpha genera, Lepus, Oryctolagus and Sylvilagus, with the three 

Ochotona species, the dN/dS ratio ranged between 1.7 and 7.0. This obtained dN/dS 

ratio, clearly higher than 1, and the fact that amino acid alterations created a new putative 

glycosylation site, highly support the hypothesis that for Ochotona sp. this sequence 

fragment has been evolving under positive selection. The occurrence of this nucleotide 

pattern in the three Ochotona species studied in this work and its absence in the other 

lagomorphs, suggests that this evolutionary event happened before the radiation of the 

Ochotona genus (between 6 and 20 Million years) [35] and after the split of Ochotonidae 

and Leporidae families (between 31 and 65 Million years) [32-34]. 

The creation of a novel putative glycosylation site in the three Ochotona species by 

positive selection clearly indicates a physiological important function. The amino acidic 

sequence, 96NLS98, suggests a N-linked glycosylation attached to the nitrogen of the 

asparagine [54, 55]. The probability of Pika Tctex1d4 being glycosylated is increased by 

the fact of this motif to be located more than sixty amino acids upstream of the C-terminal 

[56]. The remaining unsolved question is the acquired function of Tctex1d4 in Ochotona 

sp. This new putative glycosylation site in the protein may increase the half-life of the 

protein, which in turn will stay longer in the membrane attached to endoglin [11] being a 

stronger inhibitor of TGF in Ochotona sp. than in other mammals. Also, Tctex1d4 in 
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Ochotona sp. lost the PPP1BM. Further, it also lost the palindromic sequence, PLGS, 

probably important for the binding of Tctex1d4 to PPP1. Thus, it would be expected that it 

would no longer bind to PPP1 directly. Evolutionarily, it is not clear what happened first, 

the lost of the palindrome with subsequent mutation of the PPP1BM to a glycosylation site 

or the acquisition of a glycosylation site by positive selection followed by loss of the 

palindrome. 

These bioinformatic results suggest that an alternative mechanism may exist in 

Ochotona sp. for Tctex1d4 binding to PPP1. Thus, we employed an overlay screening 

with different binding mutants to test this hypothesis. Results show that Pika Tctex1d4 

aberrant RVxF motif and respective non-palindromic surrounding region, 

83HALGSRINLSGWS95, mutant were sufficient to sustain the binding of the Tctex1d4 

mutant to PPP1CC, at the same levels by comparison to the wild type human Tctex1d4 

(Figure III.B. 2). Moreover, in single and double mutants, the binding capacity was also 

maintained, which clearly shows that although substantial differences were found in Pika 

RVxF and surrounding regions, these differences alone and together do not contribute to 

a binding disruption. Our earlier results have shown that a mutation of the RVSF motif to 

AAAA it only decreases the overall binding efficiency in 35% [2]. Furthermore, we have 

also shown that important regions for this binding are concentrated in the N-terminal, 

where the RVxF is also present. This means that, or the RVxF motif is not the only point of 

contact, or the RVxF surrounding region is also important for this binding. Here, using 

Pika aberrant motif we clearly show that the second hypothesis does not explain why the 

binding is not abolished when we mutate the RVxF motif. However, we cannot exclude the 

possibility that both surrounding regions, the Pika and the rest of the mammals, support 

the binding and are important for it.   

PPP1BM RVxF motif is usually surrounded by basic residues (arginine, lysine and 

histidine) in the N-terminal and by acidic residues (aspartate and glutamate) in the C-

terminal [14, 16]. Analysis of 143 RVxF motifs in known and novel PIPs revealed that five 

to six of these flanking basic and acidic residues are relatively common among PIPs [5]. 

Human Tctex1d4 RVSF motif is a strong motif according to this analysis but the 

palindromic region that surrounds it does not follow this pattern, since no basic or acidic 

amino acids are present. Even so, all the flaking residues are present at some extent in 

other PIPs. By comparing the above results with ours, the PP to HA mutation would not 

lead to any difference because some PIPs also have these amino acids in these positions 

(P 11%, P 4% comparing to H 4%, A 10%). In what concerns to the VSF to INL mutation 

(V 94%, S 21%, F 83% comparing to I 6%, N 5% and L 0%) we can infer that the binding 
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would be potentially abrogated, but our results show that it is maintained. Finally, relatively 

to the LP to WS mutation (L 3%, P 7% comparing to W 0%, S 7%) the outcome is quit 

unknown but our results show that this mutation does not alter the binding. So, we have 

shown that the strange palindromic sequence, evolutionarily conserved, appears to be 

irrelevant for the binding, since the HA and WS mutations, single or double, resulted in the 

same binding capacity, and that the strange RVxF motif, RINL, seems to sustain the 

binding. This is surprising because looking evolutionarily one might say that in Pika 

Tcted1d4 had lost the ability to bind to PPP1C, but our results show undoubtedly that 

even with the motif and flanking regions evolving under positive selection, both regions 

seem to still sustain the binding. The hypothesis of another N-terminal region being 

important for the binding arises and might explain why the RVxF motif seems to be 

another point of contact that helps to stabilize the complex. 

In conclusion, Tctex1d4 evolutionary analysis revealed that in Pika the PPP1BM 

was lost and replaced by a new putative glycosylation site. Furthermore, we also 

observed, in Ochotona sp., the lost of a highly conserved palindrome present among 

mammals. Also, the presence of the HA, INL and WS substitutions in Ochotona sp, does 

not alter the binding capacity. The combination of these factors in Pika species makes it a 

perfect model to study the biology of PPP1/Tctex1d4 complex and can be expanded to 

understand PPP1/PIPs interactions, increasing the number of PIPs previously expected to 

exist based on the consensus RVxF motif. 
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Chapter IV. 

 

Conclusion 

The main objective of this thesis was to study novel PPP1 interacting proteins (PIPs) 

in testis and sperm, in order to further characterize the complexes these proteins make 

with PPP1 in mammalian reproduction. 

To fulfill this aim we addressed the presence, localization and putative roles of 

PPP1R2, a previously well known PIP, in testis and sperm, and two novel PPP1CC2 

testis/sperm-specific PIPs, PPP1R2P3 and Tctex1d4, that were first identified in a Yeast 

Two Hybrid (YTH) screen using a human testis cDNA library [1]. 

In Chapter II.A we showed for the first time and unequivocally the presence of 

PPP1R2 and PPP1R2P3 in human ejaculated sperm by mass spectrometry. PPP1R2P3 

is a heat stable protein that binds to PPP1CC in vitro. Moreover, PPP1R2P3 is an inhibitor 

of PPP1CC that cannot be phosphorylated by GSK3. Also, we showed that PPP1R2P3 

was phosphorylated by CK2 in vitro, probably in residues 121 and 122, as shown by mass 

spectrometry. Finally, PPP1R2 and/or PPP1R2P3 are serine phosphorylated, in vivo, in 

human sperm. Co-localization of PPP1R2/PPP1R2P3-PPP1CC2 holoenzymes in the 

head and tail of sperm and in both soluble and insoluble fractions was demonstrated by 

immunocytochemistry and Western blot. Our current hypothesis is that the holoenzymes 

localized in the head may have an important role in the acrosome reaction while the 

axoneme bound holoenzymes are clearly important for the control of flagellar motility. This 

results help to unravel one more piece of the epididymal sperm motility initiation puzzle 

involving the PPP1R2/PPP1R2P3-PPP1CC2 complexes. 

To further address the PPP1R2 significance, we described in Chapter II.B, for the 

first time, and in great detail its pseudogenes. Recent evidence suggests that 

pseudogenes are functionally active, and therefore studying their evolution and 

conservation might support a functional role and give insight into their potential 

mechanism of action [2-7]. PPP1R2 pseudogenes were analyzed in terms of evolutionary 

history and putative functions. In humans, PPP1R2 has nine processed pseudogenes and 

one duplicated. By phylogenetic analysis the most ancient one is PPP1R2P9 (163.9-167.4 

Mya) that was originated before the great radiation of mammals. The other processed 

pseudogenes are primate specific, with the exception of PPP1R2P7, and were originated 

in waves similarly to the Alu repeats explosion that occurred 40-50 Mya after the 

divergence of simian ancestors from the prosimians [8]. Evidences for pseudogene 
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duplication in humans, PPP1R2P4, and chimpanzee, PPP1R2P1, show that 

pseudogenization is still an active process. 

Bioinformatic studies and database mining showed that PPP1R2P1, PPP1R2P2, 

PPP1R2P3 and PPP1R2P9 are the pseudogenes with more probability of being 

transcribed. Our studies indicate that indeed PPP1R2P3 and PPP1R2P9 are present in 

human sperm, being therefore translated and having a putative function in sperm 

maturation [1, 9, 10]. Also, pseudogenes altered expression seems to be involved in 

cancer, like for instance PPP1R2P1 in breast carcinoma [11] and in ganglioglioma [12] 

and PPP1R2P9 in germ cell tumors  [13] and in STAT5-induced tumors  [14]. 

Pseudogenes can also regulate their parental counterparts at the message level, 

leading to an alteration of the parental mRNA levels [15]. This could be what happens with 

PPP1R2P2, since its translation is very unlikely and it was already found to be 

deregulated in prostate adenocarcinomas [16]. 

The fact that several pseudogenes are associated with physiological and 

pathological states, indicate that this evolution process may be in part related with the 

formation of new genes or in the control of their parental PPP1R2 message. This work 

shows the importance of pseudogene studies in unraveling their possible biological 

functions to reverse the current thought that they are non-functional relics. Therefore, their 

names should also be revised. 

In Chapter II.C a standard transgenic technique was used to overexpress hPPP1R2 

and hPPP1R2P3 in mouse testis under the control of a spermatocyte specific promoter 

(PGK2). This work was extremely relevant in the way that it provided the molecular tools 

to initiate the characterization of the mechanisms behind PPP1R2/PPP1CC2 and 

PPP1R2P3/PPP1CC2 role in spermatozoa. The hypothesis was to test if an increase 

(overexpression) of hPPP1R2 in mouse testis leads to a concomitant increase in 

PPP1CC2 inhibition and initiation of sperm motility. Also, if this inhibition could be 

overcame by increasing the amounts or activity of GSK3β. Concerning hPPP1R2P3 the 

phenotype would be different, since GSK3β would not reverse the inhibition given the fact 

that Thr72 is absent. However, very few founders were obtained and no relevant 

phenotype was observed in the testis weight, sperm number or in morphology of these 

lines. Thus, no feedback was obtained from these lines and new lines expressing these 

transgenes under the control of a different promoter (Protamine, spermatid specific) are 

underway since parallel results from our collaborator (Prof. Srinivasan Vijayaraghavan) 

[17] suggest that mPPP1R2 message appears in round spermatids. 
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In Chapter III.A a novel PIP of PPP1CC2 isoform was identified, termed t-complex 

testis expressed protein 1 domain containing 4 (Tctex1d4), a dynein light chain. The 

binding results supported by YTH [1], overlay and co-immunoprecipitation approaches 

showed that Tctex1d4 interacts with the different spliced isoforms of PPP1CC. It was also 

shown that Tctex1d4 is localized in Sertoli, Leydig and germ cells of mouse testis and 

showed to be highly enriched in the cell-cell junctions of blood testis barrier and in the 

microtubules and MTOC of late stage germ cells. Further, Tctex1d4 is present in the 

entire tail and in the acrosome of human mature sperm. Using cell culture it was shown 

that Tctex1d4 and PPP1 co-localize in the MTOC structure and microtubules and that the 

Tctex1d4 PPP1BM seems to be important for the complex formation. Tctex1d4 PPP1BM 

is essential to retain PPP1 in the MTOC, and also to disrupt or delay its movement along 

microtubules. Furthermore, these results open new avenues to the possible roles of this 

dynein light chain, together with PPP1 in microtubule dynamics, sperm motility, acrosome 

reaction and in the regulation of the blood testis barrier possibly via TGFß signaling [18, 

19]. 

Continuing the Tctex1d4 work, PPP1BM and its surrounding palindromic region 

were analyzed. Chapter III.B describes the conservation of the PPP1BM and respective 

palindromic region in all mammals with the exception of Ochotona species (O. princeps, 

O. daurica and O. pusilla). This work suggests that this event happened before the 

Ochotona radiation between 6 and 20 Million years ago. The dN/dS for this region highly 

supports the hypothesis that for Ochotona species it has been evolving under positive 

selection. Also, mutational screening showed that the ability of Tctex1d4 to bind to PPP1 

is maintained in Pika, although both the PPP1BM and palindromic region were absent. 

Concluding, the work described in this thesis characterizes four PIPs, PPP1R2, 

PPP1R2P3, PPP1R2P9 and Tctex1d4, in view of their importance in mammalian male 

reproduction. Also, by describing four new complexes in testis and sperm, this thesis 

opens doors to new findings in this area and to unravel the role of PPP1CC2 in 

spermatogenesis and sperm physiology (Figure IV. 1). 
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Figure IV. 1: Diagram representing the PIP-PPP1C holoenzymes characterized in the work 
presented in this thesis. Respective holoenzymes localizations in spermatozoa were gathered 
from the immunofluorescence studies, except for PPP1R2P9. Putative functions discussed in each 
chapter are also presented. 
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Appendix 

 

Culture medium and solutions 

 

LB (Luria-Bertani) Medium 

To 950 mL of deionised H2O add: 

LB 25 g 

Agar 20 g (for plates only) 

Shake until the solutes have dissolved. Adjust the volume of the solution to 1 liter with 

deionised H2O. Sterilize by autoclaving. 

 

SOB Medium 

To 950 mL of deionised H2O add: 

25,5 g SOB Broth 

Shake until the solutes have dissolved. Add 10mL of a 250mM KCl (prepared by 

dissolving 1.86g of KCl in 100 mL of deionised H2O). Adjust the pH to 7.0 with 5N NaOH. 

Adjust the volume of the solution to 1 liter with deionised H2O. Sterilize by autoclaving. 

Just prior to use add 5 mL of a sterile solution of 2M MgCl2 (prepared by dissolving 19 g of 

MgCl2 in 90 mL of deionised H2O; adjust the volume of the solution to 1000 mL with 

deionised H2O and sterilize by autoclaving). 

 

SOC Medium 

SOC is identical to SOB except that it contains 20 mM glucose. After the SOB medium 

has been autoclaved, allow it to cool to 60ºC and add 20mL of a sterile 1M glucose (this 

solution is made by dissolving 18 g of glucose in 90 mL of deionised H2O; after the sugar 

has dissolved, adjust the volume of the solution to 1 L with deionised H2O and sterilize by 

filtration through a 0.22-micron filter). 

 

Yeast Media 

YPD medium 

To 950mL of deionised H2O add:  

50 g YPD 

20 g Agar (for plates only) 

Shake until the solutes have dissolved. Adjust the volume to 1 L with deionised H2O and 

sterilize by autoclaving. Allow medium to cool to 60ºC and add glucose to 2% (50mL of a 

sterile 40% stock solution).  

 

SD synthetic medium 

To 800mL of deionised H2O add:  

6.7g Yeast nitrogen base without amino acids (DIFCO)  

20g Agar (for plates only) 

Shake until the solutes have dissolved. Adjust the volume to 850mL with deionised H2O 

and sterilize by autoclaving. Allow medium to cool to 60ºC and add glucose to 2% (50mL 

of a sterile 40% stock solution) and 100mL of the appropriate 10X dropout solution. 
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2X YPDA 

Prepare YPD as above. After the autoclaved medium has cooled to 55ºC add 15mL of a 

0.2% adenine hemisulfate solution per liter of medium (final concentration is 0.003%). 

 

Competent Cell Solutions 

 

Solution I (1L) 

9.9 g MnCl2.4H2O 

1.5 g CaCl2.2H2O 

150 g glycerol 

30 mL KHAc 1M; 

adjust pH to 5.8 with HAc, filter through a 0.2μm filter and store at 4ºC 

 

Solution II (1L) 

20 mL 0.5M MOPS (pH 6.8) 

1.2 g RbCl 

11g CaCl2.2H2O 

150 g glycerol;  

filter through a 0.2μm filter and store at 4ºC 

 

DNA Solutions 

 

50X TAE Buffer 

242 g Tris base 

57.1 mL glacial acetic acid 

100 mL 0.5M EDTA (pH 8.0) 

 

Loading Buffer (LB) 

0.25% bromophenol blue 

30% glycerol 

 

STET 

8% Sucrose 

5% Triton X-100 

50 mM Tris-HCl (pH 8,5) 

50 mM EDTA 

 

Miniprep Solutions 

 

Solution I 

50 mM glucose 

25 mM Tris.HCl (pH 8.0) 

10 mM EDTA 
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Solution II 

0.2 N NaOH 

1% SDS  

 

Solution III 

3 M potassium acetate 

2 M glacial acetic acid 

 

Midiprep Solutions 

 

Cell Resuspension Solution 

50 mM Tris-HCl (pH 7.5) 

10 mM EDTA 

100 µg/mL RNAase A  

 

Cell Lysis Solution  

0.2 M NaOH 

1% SDS 

 

Neutralization Solution 

4.09 M Guanidine hydrochloride (pH 4.8) 

759 mM potassium acetate  

2.12 M Glacial acetic acid 

 

Column Wash Solution 

60 mM potassium acetate 

8.3 mM Tris-HCl (pH 7.5) 

0.04 mM EDTA 

60 % ethanol 

 

SDS-PAGE and Immunobloting Solutions  

 

Stock Solution 30% Acrylamide/8% Bisacrylamide 

Acrylamide 150g  

Bisacrylamide 4g 

Adjust volume with ddH2O 

Keep at 4°C protected from light in aluminium foil      

 

Stock Solution 4xLGB 

1.5M Tris-HCl 

4% SDS  

Adjust volume with ddH2O 

Adjust the pH to 8.9 dissolve the SDS and keep at 4°C     
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Stock Solution 5xUGB 

0,6M Tris-HCl  

Adjust the pH to 6.8 and adjust volume with ddH2O. 

Keep at 4°C 

    

Ammonium Persulfate (APS) 

10% APS 

Adjust volume with ddH2O 

Keep at 4°C      

 

 

Sodium Dodecyl Sulfate (SDS) 

10% SDS 

Adjust volume with ddH2O 

Keep at RT    

 

10x Running Buffer 

0,25M Tris-HCl 

1,92M Glycine 

1% SDS  

You can heat to help dissolving the SDS  

Adjust the pH to 8.3 and adjust volume with ddH2O. 

Keep at RT 

 

1x Transfer Buffer 

25mM Tris-HCl 

192M Glycine 

Adjust volume with ddH2O 

Add 20% Methanol before the transfer  

The pH should be between 8.2-8.4 

Keep at 4°C some time before doing the transfer 

 

4x Protein Sample Buffer 

40% Glycerol 

250mM Tris-HCl pH 6.8  

8% SDS  

2% β-Mercaptoethanol 

Adjust volume with ddH2O  

Bromophenol Blue  

Keep at RT for short period or 4°C for longer periods 

You can keep at -20°C but without adding the β-Mercaptoethanol 

 

TBS (1x)  

10 mM Tris-HCl (pH 8.0) 

150 mM NaCl 
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TBST (1x) 

10 mM Tris-HCl (pH 8.0) 

150 mM NaCl 

0.05% Tween 

 

Blocking and antibody solution 

TBST (1x) in 3% of low-fat milk 

 

ECL Solution Reagent A (USA) 

100uM Luminol  

2mM 4-iodophenol 

50mM Tris-HCl pH 9.35  

This solution is mixed with reagent B (hidrogen peroxide 3% or 20V) in a proportion of 

100:1 (ex. 2mL A + 20uL B) 

 

Membrane Stripping Solution 

2% SDS 

62.5 mM Tris-Hcl (pH= 6.7) 

100 mM  β-Mercaptoethanol 

 

Coomassie blue staining solutions  

 

Fixation solution 

40% Methanol 

10% SDS 

ddH2O 

Keep at RT 

 

Staining solution 

20% Methanol 

0.12% Coomassie Blue G250 

ddH2O 

Keep at RT 

 

Distaining solution 

25% Methanol 

Keep at RT 

 

Immunoprecipitation solutions 

 

RIPA Lysis Buffer (10x) 

0.5M Tris- HCl (pH 7.4)  

1.5M NaCl 

10mM EDTA 

10% NP-40 

2.5%  sodium deoxycholate  
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RIPA Lysis Buffer + Protease inhibitors 

Add to RIPA buffer the following concentrations: 

5 µM Pepstatin A  

2 µM Leupeptin  

10mM Benzamidine 

1.5 µM Aprotinin  

1 mM PMSF 

 

Washing solution 

1xPBS in 3%BSA 

 

Solutions for the 2-D gel electrophoresis 

 

Lysis buffer 

9M Urea 

4% CHAPS 

 

Equilibration buffer 

50mM Tris (pH8.8) 

6M Urea 

30% Glycerol 

2% SDS 

0.002% Bromophenol blue 

 

Rehydratation solution  

8M Urea 

2M Thiurea 

2% CHAPS  

0.002% of bromophenol blue 

Supplemented with 2.5μl of IPG buffer (in the 4-7 pH range) and 14mg of DTT 

 

Cell Culture Solutions and Immunocytochemistry  

 

Complete DMEM  

For a final volume of 500 mL, add:  

50 mL (10% v/v) Fetal Bovine Serum (FBS) (Gibco BRL, Invitrogen)  

Antibiotics (5 mL) 

100 U/mL penicillin 

100 mg/mL streptomycin 

 

PBS (1x) 

For a final volume of 500 mL, dissolve one pack of BupH Modified Dulbecco’s Phosphate 

Buffered Saline Pack (Pierce) in deionised H2O. Final composition: 

8 mM Sodium Phosphate   

2 mM Potassium Phosphate  

40 mM NaCl  
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10 mM KCl  

Sterilize by filtering through a 0.2 m filter and store at 4 ºC 

 

1 mg/mL Poly-L-ornithine solution (10x) 

To a final volume of 100 mL, dissolve in deionised H2O 100 mg of poly-L-ornithine (Sigma-

Aldrich, Portugal).  

 

4% Paraformaldehyde Fixative solution 

For a final volume of 100 mL, add 4 g of paraformaldehyde to 25 mL deionised H2O. 

Dissolve by heating the mixture at 58 ºC while stirring. Add 1-2 drops of 1 M NaOH to 

clarify the solution and filter (0.2 m).  

Add 50 mL of 2X PBS and adjust the volume to 100 mL with deionised H2O.  

 

Immunohistochemistry 

 

Citrate buffer 

Buffer A: 1mM C6H8O7H2O 

Buffer B: 50 mM C6H5Na3O72H2O 

Citrate buffer: 0.15 mM Buffer A, 8.5 mM Buffer B, pH 6.0 

 

Blocked solution 

5% goat serum 

1% bovine serum albumin 

1x PBS 

 

Permeabilization solution 

0.2% Triton X-100 

1x PBS 

 

Primer Hybridization 

 

Tris annealing buffer 

10mM Tris  

Adjust the pH to 8.0 and adjust the volume with ddH2O. 

 

Genomic DNA extraction 

 

Alkaline lysis buffer 

25mM NaOH   

2mM EDTA  

Adjust the pH to 12.0 and adjust the volume with ddH2O. 

 

Neutralization buffer 

40mM Tris-HCl 

Adjust the pH to 5.0 and adjust the volume with ddH2O. 
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Sperm proteins extracts 

 

Homogenization buffer plus 

10mM Tris-HCl (pH 7.0) 

1mM EGTA 

0.1mM EDTA 

 

Protease inhibitors 

10mM Benzamidine,  

1mM PMSF 

0.1mM TPCK 
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BACTERIA AND YEAST STRAINS 

 

 E. coli XL1- blue: recA endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F’ proAB 

lacZM15 Tn10(Tetr)] 

 Rosetta(DE3)pLysS : F- ompT hsdSB(RB
- mB

-) gal dcm λ(DE3 [lacI lacUV5-T7 gene 1 

ind1 sam7 nin5]) pLysSRARE (CamR) 

 S. cerevisiae AH109: MATa, trp1-901, leu2-3, 112  ura3-52, his3-200, gal4, gal 80, 

LYS2:: GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-

lacZ, MEL1 

 S. cerevisiae Y187: MAT  ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, 

gal4, met-, gal 80, URA3:: GAL1UAS-GAL1TATA-lacZ, MEL1 
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Plasmids 
 

 

 

 

The pBluescript II phagemids (Stratagene) are cloning vectors designed to simplify 

commonly used cloning and sequencing procedures, including the construction of nested 

deletions for DNA sequencing, generation of RNA transcripts in vitro and site-specific 

mutagenesis and gene mapping. The pBluescript II phagemids have an extensive 

polylinker with 21 unique restriction enzyme recognition sites. Flanking the polylinker are 

T7 and T3 RNA polymerase promoters that can be used to synthesize RNA in vitro.1, 2 

The choice of promoter used to initiate transcription determines which strand of the insert 

cloned into the polylinker will be transcribed. 

pBluescript II (+) and (–) are available with two polylinker orientations designated as 

either KS or SK using the following convention: (1) in the KS orientation, the Kpn I 

restriction site is nearest the lacZ promoter and the Sac I restriction site is farthest from 

the lacZ promoter; and (2) in the SK orientation, the Sac I site is the closest restriction site 

to the lacZ promoter and the Kpn I site is the farthest. 
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The pET-28a-c(+) vectors (Novagen) are appropriate for bacterial expression and 

carry an N-terminal His•Tag®/thrombin/T7•Tag® configuration plus an optional C-terminal 

His•Tag sequence. Unique sites are shown on the circle map. The cloning/expression 

region of the coding strand transcribed by T7 RNA polymerase is shown below. The f1 

origin is oriented so that infection with helper phage will produce virions containing single-

stranded DNA that corresponds to the coding strand. Therefore, singlestranded 

sequencing should be performed using the T7 terminator primer. 
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pACT2 (Clontech) map and MCS. pACT2 is used to generate a hybrid containing 

the GAL4 AD, an epitope tag and a protein encoded by a cDNA in a fusion library. The 

hybrid protein is expressed at medium levels in yeast host cells from an enhanced, 

truncated ADH1 promoter and is target to the nucleus by the SV40 T-antigen nuclear 

localization sequence. pACT2 contains the LEU2 gene for selection in Leu- auxotrophic 

yeast strains. 
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pAS2-1 (Clontech) map and MCS. Unique sites are coloured blue. pAS2-1 is a 

cloning vector used to generate fusions of a bait protein with the GAL4 DNA-BD. The 

hybrid protein is expressed at high levels in yeast host cells from the full-length ADH1 

promoter. The hybrid protein is target to the yeast nucleus by nuclear localization 

sequences. pAS2-1 contains the TRP1 gene for selection in Trp- auxotrophic yeast 

strains. 
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 The pCMV-Myc Mammalian Expression Vector (Clontech) expresses proteins 

containing the N-terminal c-Myc epitope tag. The c-Myc epitope tag is well-characterized 

and highly immunoreactive. High-level expression in mammalian cells is driven from the 

human cytomegalovirus immediate early promoter/enhancer (PCMV IE). The vector 

contains an intron (splice donor/splice acceptor); the epitope tag; an MCS; and a 

polyadenylation signal from SV40. This vector also possesses the ampicillin resistance 

gene for selection in E. coli. 
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Primers 
 

Primer Sequence (5’:::: 3’) Nt No. 

GAL4 AD TACCACTACAATGGATG 17 

GAL4 BD TCATCGGAAGAGAGTAG 17 

T7 Promotor AATACGACTCACTATAGG 18 

T7 Terminator GCTAGTTATTGCTCAGCGG 19 

3HA Forward 

ATTCATGTACCCATACGATGTTCCAGATTACGCTACC

GGATACCCATACGATGTTCCAGATTACGCTACCGGA

TACCCATACGATGTTCCAGATTACGCTACCGGAG 

108 

3HA Reverse 

AATTCTCCGGTAGCGTAATCTGGAACATCGTATGGG

TATCCGGTAGCGTAATCTGGAACATCGTATGGGTAT

CCGGTAGCGTAATCTGGAACATCGTATGGGTACATG 

108 

PGK2 Forward GCGCACACCTCAGGACTATT 20 

SV40 Reverse CTTGGCGTAATCATGGTGGTACC 23 

PPP1R2 Internal Forward ACTGCAGATGGAGAAAGCATGAATAC 26 

 

 


