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Resumo 
 

 

O cancro da mama é a principal causa de morte por cancro nas mulheres. 
Alterações nas funções celulares de células cancerígenas levam a um 
crescimento celular descontrolado e mudanças morfológicas nestas. 
Membranas celulares estão intimamente envolvidas na regulação da 
sinalização celular; no entanto ainda muito está por compreender. Fosfolípidos 
são os principais constituintes das membranas biológicas e possuem um papel 
importante a nível funcional, estrutural e metabólico. O objectivo deste trabalho 
foi compreender se os perfis fosfolípidos de células epiteliais e de cancro da 
mama de ratinho e humanas diferem em relação a morfologia e grau de 
agressividade das células. Para este objectivo os fosfolípidos de linhas 
celulares foram analisados usando uma abordagem lipidómica.  
Brevemente, os fosfolípidos foram extraídos de seis linhas celulares diferentes 
(três de ratinho e três humanas) usando o método de Bligh and Dyer, seguida 
de uma separação das classes de fosfolípidos por cromatografia em camada 
fina. As diferentes classes de fosfolípidos foram quantificadas pela 
quantificação de fósforo e analisadas por espectrometria de massa.  
Diferenças e semelhanças importantes foram encontradas n entre células de 
ratinho e humanas, entre células não tumorais e células cancerígenas e entre 
células do cancro da mama com diferentes graus de malignidade. A 
espectrometria de massa e a análise por quantificação mostraram alterações 
no perfil das classes esfingomielina, cardiolipina e fosfatidilinositol. Alterações 
nas células mais agressivas foram observadas nas classes lisofosfatidilcolina, 
fosfatidiletanolamina e ácido fosfatídico.  
Concluindo, os resultados indicam que as diferenças no perfil fosfolipídico 
tanto em células de ratinho como células humanas, podem ser associadas a 
morfologia, comportamento e expressão genética da célula, directamente 
relacionado com actividades enzimáticas e metabólicas que são conhecidas de 
estarem alteradas no cancro. Assim, a identificação das classes de fosfolípidos 
e sua estrutura abrem novas possibilidades para a exploração destas 
características no cancro e providenciam potenciais biomarcadores divulgando 
vias metabólicas com potencial para a terapia. 
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abstract 

 
Breast cancer is the leading cause of cancer-related death in women. Altered 
cellular functions of cancer cells lead to uncontrolled cellular growth and 
morphological changes. Cellular biomembranes are intimately involved in the 
regulation of cell signaling; however, they remain largely understudied. 
Phospholipids are the main constituents of biological membranes and play 
important functional, structural and metabolic role. The aim of this work was to 
establish if phospholipids profiles of mouse and human mammary epithelial 
cells and breast cancer cells differ in relation to morphology and degree of 
differentiation. For this purpose, phospholipids of cell lines were analyzed using 
a lipidomic approach.  
Briefly phospholipids were extracted from six different cell lines (three from 
mouse and three from human) using Bligh and Dyer method, followed by a 
separation of phospholipid classes by thin layer chromatography. Phospholipid 
classes were quantified by phosphorus assay and analyzed by mass 
spectrometry.  
Important differences and similarities were found in the relative phospholipid 
content between mouse and human cells, between non-tumorigenic and cancer 
cells and between breast cancer cells with different levels of aggressiveness. 
Mass spectrometry and quantification analysis showed substantial alterations in 
the profile of sphingomyelin, cardiolipin and phosphatidylinositol classes 
comparing non-tumorigenic with cancer cells. Alterations in the most 
aggressive cell lines were observed in lysophosphatidylcholine, 
phosphatidylethanolamine and phosphatidic acid classes.  
Taken together, the results indicate that changes in phospholipid profile, either 
from mouse and human cell lines, can be associated to the difference in cell 
morphology, behavior and genetic expression, directly related to enzymatic and 
metabolic activities known to be altered in cancer. Thus, identification of 
phospholipid classes and their structure open new possibilities for exploration 
of such characteristics in cancer and provide novel biomarkers and disclose 
metabolic pathways with potential for therapy. 
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I. Introduction  

1. Cancer  

 

The human body is constituted by trillions of cells which reproduce by cell division. 

Under normal conditions this is an orderly and controlled process, responsible for the 

formation, growth and regeneration of healthy tissues in the body. Sometimes, however, 

the cells lose the ability to limit and control their own growth, thereby dividing and 

multiplying themselves very quickly and randomly [1]. As a consequence of this cellular 

dysfunction, an imbalance occurs in the formation of body tissues, originating what is 

known as a tumor. If the cells of the tumor have the ability to disseminate and invade, the 

malignant tumor is known as cancer. Cancer cells, receive signals which are transmitted 

inside the cell and nucleus to activate genes associated with the increase of angiogenesis, 

cell survival, proliferation and aggressiveness [2].  

During metastasis, cancer cells invade the endothelium to reach the bloodstream 

and travel to other organs, being the metastasis process the fundamental step for cancer 

progression.  

Is in this simplified scenario of the cancer cell physiology (i.e. proliferation, 

invasion and migration) that cells undergo major morphological and functional changes.  

 

 

1.1. Breast cancer  

 

Breast cancer is a disease with high incidence and, although it is not the cancer 

with higher mortality rate, is the leading cause of cancer-related death in women 

worldwide. Therefore, the study of this disease is very important [3]. Despite significant 

advances in diagnosis and treatment of breast cancer, several major unresolved clinical 

and scientific problems remain. These problems are related to prevention, diagnosis, 

tumor progression and recurrence, treatment and therapeutic resistance [1]. Resolving all 

these problems is complicated because breast cancer is not a single disease but is a highly 



PHOSPHOLIPID PROFILE OF DIFFERENT BREAST CANCER CELL LINES
 ________________________________________________________________________  

4 
 

heterogeneous collection of different diseases with different risk factors, clinical 

presentations, pathological features, response to therapy and outcomes, which affect the 

same anatomical organ and is originated in the same anatomical structure, the terminal 

duct-lobular unit [4].  

Cancer may be caused by several factors, including genetic and environmental 

factors. The various risk factors that modulate the development of breast cancer can be: 

age, country, socioeconomic status, reproductive events, exogenous hormones (hormone 

reposition therapy and contraceptives), life style risk factors (alcohol, diets, obesity and 

physical activity), familial history of breast cancer and mammographic density [5].  

 

Breast cancer can be classified taking into consideration different aspects. The 

four characteristics most widely used are [4, 6]: stage of the tumor (based on tumor size: 

the greater the number of the stage, the worse prognosis), grade of the tumor (based on 

the loss of differentiation capacity: the higher grade, the worse prognosis), 

histopathology (ductal carcinoma when it is in the ducts or lobular carcinoma when it is in 

the lobules) and protein and gene expression. Each aspect influences the prognosis and 

the type of treatment selected.  

Four main molecular classes of breast cancer have been distinguished by protein 

and gene-expression profiling [7] (Figure 1): basal like breast cancers, which mostly 

represent estrogen receptor (ER)-negative, progesterone-receptor (PR)–negative, and 

human epidermal growth factor receptor 2 (HER2)-negative tumors (also known as 

“triple-negative” tumors); luminal-A cancers, which are mostly ER-positive and 

histologically low-grade; luminal-B cancers, which are also mostly ER-positive but may 

express low levels of hormone receptors and are often high-grade; and HER2-positive 

cancers, which show amplification and high expression of the erbb2 gene and several 

other genes connected with this tyrosine kinase receptor [7].  

There is a fifth type, recently cataloged as claudin-low, which is mostly triple 

negative but distinguished by having less cell – cell adhesion proteins and frequent 

infiltration of lymphocytes [4].  

 



  Introduction 
 ________________________________________________________________________  

5 
 

 

Figure 1: Relation between molecular classes and clinical-pathologic characteristics of breast 
cancer [7] 

 

 

More than 70 % of primary breast cancers in women are ER – positive, showing 

estrogen-dependent growth, and undergo regression when deprived of hormones (i.e. 

estrogens) that support the tumor [8] or when treated with ER antagonists [9]. Patients 

with this type of tumor have a better prognosis.  
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1.2. Metastasis  

 

Metastasis is a fundamental step in cancer progression and, in 90% of the cases, is 

the death cause in women with breast cancer [10].  

Much of metastasis research has focused on properties of the tumor cells with an 

increasing recognition of the importance of cell – cell and cell – extracellular matrix (ECM) 

interactions in the control of progression and differentiation of tumor cells [10]. Cell – cell 

and cell – ECM interactions are mediated by proteins known as cell adhesion molecules 

(CAMs; Figure 2). These proteins are important in cancer because abnormal subcellular 

localization and / or activity has been found in many types of cancer including breast 

cancer, and is associated to malignant progression and metastasis [11]. 

CAMs are transmembrane glycoproteins located on the cell surface and they are 

involved in binding to other cells or to the ECM in a process called cell adhesion. These 

receptor proteins are composed by three domains: an intracellular domain which 

interacts with the cytoskeleton, a transmembrane domain and an extracellular domain 

that interact with other CAMs or the ECM. The majority of CAMs belong to five families: 

immunoglobulin superfamily (IgSF CAMs), integrins, cadherins, selectins and lymphocyte 

T receptors [12]. In the literature the CAMs with more importance in cancer cell 

proliferation and invasion are cadherins and integrins [13, 14] and invasive cells undergo 

dramatic changes in the CAM´s level and affinity for substrates / ligands of the ECM.  

 

 

Figure 2: Schematic overview of the types of molecules that bind cells to each other and 
to the extracellular matrix - Cell-adhesion molecules 

http://tainano.com/chin/Molecular%20Biology%20Glossary.htm 
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In order to become activated, cadherins and integrins need to form clusters [15]. 

The cluster formation begins with the grouping of many CAM molecules in the plasmatic 

membrane, thus being able to bind their ligands with higher strength.  

Clusters of integrins bound to the ECM and cytosqueleton are called focal 

adhesion (FAs). In the case of clusters of cadherins, these points of contacts are known as 

adherens junctions (AJs). Formation of clusters and CAM activation will activate 

intracellular signaling pathways that communicate to the cell the characteristics of 

extracellular space (outside – in signaling) [13]. Both FAs and AJs are dinamic molecular 

complexes regulated not only by binding to a substrate or partner but by the CAM 

availability at the membrane wich depends on the rate of protein uptake and recycling 

[16].  

Therefore, FA and AJ formation and thus cell adhesion and intracellular signaling 

may be directly affected by the fluidity of cell membrane.  

 

The cell membrane constitutes a meeting point between proteins and lipids and 

both molecular species have important roles in cellular processes. Lipids constitute at 

least 50% of the total mass of the membrane [17]. In this way, the cell responds to 

external stimuli, not only by regulating the expression of proteins but also by modulating 

the levels of lipids and phospholipids in the membrane. Thus changes in lipid environment 

of the cell can regulate function and availability of intrinsic membrane proteins, thus 

affecting inside out and outside in cell signaling (i.e. membrane transport). Therefore, 

adhesion and migration, two processes leading to metastasis converge at the cell 

membrane. 

 

 

2. Lipids in the cell membrane  

 

Living cells contain thousands rather than dozens of different lipids with different 

functions. The various functions of lipids make them essential to the survival of the cell 
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[18]. First, ligand – receptor interactions, endocytosis and vesicle recycling are controlled, 

at least in part, by membrane fluidity and by membrane specialized microdomains. This 

membrane fluidity and microdomains formation depend on lipid–lipid and lipid–protein 

interactions. In addition the cells have to synthesize huge amounts of lipids during 

replication to build more membranes. Second, lipids play an important role in various 

cellular functions by acting as signaling molecules (ceramide and phosphoinositides) or as 

precursors for second messengers (araquidonic acid, diacylglycerol-DAG). Thirdly, lipids 

can act as energy source, since fatty acids are the most reduced form of chemical energy 

[2].  

Most of these cell functions occur in or around membranes. Membranes not only 

define the cell’s boundary but they also create cellular compartments into which certain 

activities can be segregated to make them more efficient [17].  

Singer and Nicolson were the first to propose that membranes were formed by a 

fluid bilayer in which proteins and lipids could move freely – the fluid mosaic model – 

contributing greatly to our concept of a cell membrane [18, 19]. Most biological 

membranes are asymmetrical, both laterally and in cross-section and their lipids 

participate in dynamic interactions that facilitate changes in their relative position in 

membranes, membrane thickness, surface packing, lateral and rotational mobility and 

other properties that complicate the study of membrane structure. Recent studies show 

that lipid modifications and the surrounding amino acids are not only involved in the 

interaction with membranes but that they also regulate membrane lipid structure, the 

formation of lipid domains in membranes and clustering of some proteins. 

The basic structural constituent of biological membranes such as plasma 

membranes and cell membranes of intracellular organelles, are the phospholipids (PL; 

Figure 3), where phosphatidylethanolamine (PE), phosphatidylserine (PS) and 

phosphatidylinositol (PI) are found predominantly in the cytoplasmic leaflet of the 

membrane, and phosphatidylcholine (PC) is found predominantly on external leaflet of 

the membrane [17]. The PCs constitute more than 50% of phospholipids in eukaryotic 

membranes [20]. 
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Figure 3: Schematic representation of plasmatic membrane and the percentage of its different 
compounds  

 

The PL are amphipathic molecules, i.e., have a head constituted by a phosphate 

group linked to other specific group, depending on the class of lipid, which is polar or 

hydrophilic and a tail consisting of the fatty acid chains that are nonpolar or hydrophobic, 

both linked by a glycerol molecule. These characteristics make phospholipids singular 

molecules, which establish the organized structure of cell membranes [21].  

Sphingomyelin (SM) and other related molecules, like ceramide and sphingosine, 

are another important class of membrane lipids, the sphingolipids. Cholesterol, another 

important component in the cell membrane, fills the spaces along the molecules of SM. 

These results in membrane regions with large concentrations of SM and cholesterol called 

lipid rafts [20]. These regions are very important because some protein components of 

signaling transduction (including MAP kinases and ER) have a great affinity for these lipid 

rafts [22]. The presence of SM and therefore lipid rafts suggests that sphingomyelin plays 

an important structural role in the cell membrane and participates in signal transduction 

pathways.  

PLs can also be found in other parts of the cell besides plasmatic membrane, such 

as in the membrane of organelles and where they are synthesized. PE and cardiolipin (CL) 

are mainly synthesized in mitochondria, and PC, PI, PS and some PE are synthesized in the 

endoplasmatic reticulum while SM and some PC are synthesized in Golgi complex [23].  

Many lipids in the plasma membrane are involved in signaling cascades, being vital 

for signal transduction pathways in the cell. Lipid signaling is an essential part of cellular 
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functions and refers to any event involving a signaling lipid messenger that binds to a 

target protein, such as receptors, kinases or phosphatases, which translate the message 

from the lipids into a specific cellular response [24]. Different lipid categories have been 

identified as signaling molecules and cellular messengers. These lipids include: 

sphingosine-1-phosphate (S1P), a sphingolipid derivative of ceramide which is a potent 

messenger involved in regulating calcium mobilization, cell growth and apoptosis; 

prostaglandins, which are derived from arachidonic acid involved in inflammation and 

immune process; DAG and phosphatidylinositol phosphate (PIP), the latter two being 

involved in calcium-mediated activation of protein kinase C and PI3K-AKT survival 

pathway, among others [24-27].  

 

All of the lipid functions (membrane dynamics, energy homeostasis, and molecular 

machinery regulation) are critical aspects of cell proliferation, inflammation, immunity, 

apoptosis and invasion. An unbalance in cellular lipid composition and quantity seems to 

lead to variations in these cellular functions, and can be involved in uncontrolled cell 

growth which contribute to the onset of cancer and its progression [2, 22] 

 

3. Lipids and cancer 

 

There is some knowledge regarding specific lipids that may be involved in cancer 

(in [2, 28]), however, research in this area is far from being complete. In the following text 

we will present a brief review of the most important lipids that are thought to be involved 

in this complex disease, cancer.  

High levels of PC, the most abundant PL in membrane, and PE were detected in 

breast cancer cells. Some mechanisms behind the increase in PC levels observed in cancer 

cells include an increase of choline kinases expression and activity and a higher rate of 

choline transport. Choline kinase is an enzyme responsible for PC formation from choline, 

and its overexpression was also detected in several human cell lines of breast cancer [29].  

PIs, their metabolites such as phosphatidic acid (PA) and DAG and PI derivatives 

like PIP are very important contributors to cellular signaling cascades that activate 
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proliferation, maintain survival and promote migration [27]. Imbalances in their relative 

levels lead to changes in cellular functions that may contribute to the onset of cancer. 

Products of PI´s phosphorylation, as PIPs, are precursors of second messengers and 

regulate various cellular responses such as cell growth, proliferation, and motility via 

specific interactions of proteins that bind to their phosphorylated polar heads. For 

example, phosphatidylinositol 3 kinase (PI3K) phosphorylates phosphatidylinositol 4,5 

bisphosphate (PIP2) resulting in phosphatidylinositol 3,4,5 trisphosphate (PIP3), which 

acts as second messenger and controls cell growth, survival, proliferation, motility and 

morphology [30]. Dual specificity of the protein phosphatase (PTEN - Phosphatase and 

tensin homologue), has PIP3 as main targets, the opposite function of PI3K [31]. 

Overexpression of PI3Ks and inactivation by genetic and epigenetic mutations of Pten 

gene results in accumulation of PIP3 and play a crucial role in the development of 

different tumors. High PIP3 levels lead to a cytoskeleton rearrangement that is 

subsequently stimulated, increasing migration and metastasis. This hyperactivation of 

PI3K with mutations in Pten are associated with the development of resistance to 

hormonal therapy with ER antagonists [32].  

Lysophosphatidic acid (LPA), structurally similar to sphingosine – 1 – phosphate 

(S1P), appears to be important in the metastases process and high levels of LPA were 

observed in plasma samples of patients with ovarian cancer [33]. LPA activates PI3K 

leading to increase of PIP3 and induction of cell proliferation and cell survival. Therefore 

the LPA signaling pathway regulates cell proliferation, invasion and angiogenesis in cancer 

cells [34].  

Sphingolipids and their metabolites are molecules involved in the regulation of 

various aspects of cancer pathology and its therapy, including apoptosis, cell proliferation, 

cell migration, inflammation or senescence [35]. As an example, ceramides and 

sphingosines are lipids with pro-apoptotic and anti-proliferative activities. When these 

lipids are converted in ceramide – 1 – phosphate (C1P) and S1P respectively, they 

promote cell growth and proliferation and revert the apoptotic stimuli [35, 36]. Recently 

it was reported that changes in the sphingolipid metabolism by ceramide transfer protein, 

CERT, could confer survival advantages to cancer cells and be therefore implicated in 
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cancer biology. High levels of S1P promote proliferation and survival in cancer cells and 

S1P receptors (S1PR) were recently discovered and are consider as a requirement for 

tumor angiogenesis [37].  

There is a subset of lipid rafts domains that is enriched in ceramides and 

sphingomyelin and generally promotes apoptosis. These domains rich in ceramides allow 

to amplify a weak primary signal, for example death receptors that transmit a strong 

signal to the cell and thus trigger apoptosis. When ceramide in these domains is replaced 

by cholesterol, these domains become involved in normal cell signaling. The deregulation 

of these domains rich in colesterol promotes cell transformation and tumor progression 

[22, 38].  

 

 

4. Lipids and metastases  

 

There is an important relationship between lipid domains in the membrane, such 

as lipid rafts, and the proteins involved in metastases process, the CAM´s. Sphingolipids, 

represented by SM, are one of the main phospholipid classes in membrane [39], mostly 

due to their high content in raft domains. Studies have emphasized that sphingolipids are 

associated with integrins and can modulate their activity and functions. Binding of cells to 

proteins of the ECM is deficient when cells are totally deprived of sphingolipids [40]. 

Integrin clustering is regulated by their recruitment to membrane lipid rafts, the 

microdomains rich in sphingolipids and cholesterol. These two compounds have specific 

roles in regulation of integrin activation and function [40]. Reduction of cholesterol 

concentration in plasmatic membrane can lead to the loss of lipid raft signaling function, 

being important for signal transduction and cellular adhesion.  

The association of cadherins with lipid rafts promotes cell – cell adhesion [41] as 

N-cadherin (highly expressed in migratory cells) can be trapped and immobilized in lipid 

rafts. The effect of lipid rafts disruption in the cadherin mobility can be explained by the 

structural organization of lipid rafts that can act as a brake on the plasma membrane 

proteins movement that must pass through or around this structure [42]. This indicates 
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that lipid rafts have an important role in organizing signal transduction pathways in a 

specific area of the membrane [22].  

 

 

5. Lipidomic approach using Mass spectrometry  

 

The study of lipids and their classes in their natural environment is called 

lipidomic. This is a new field of study that focuses on a large-scale study of lipids functions 

and metabolic pathways in biological systems [43]. Lipidomic approaches extensively 

examine the various lipid classes, both qualitatively and quantitatively, their interactions 

with other lipids, proteins and other molecules in vivo, lipid function and the changes that 

occur during pathophysiological disorders [44]. Lipidomic was an area of intense research 

in the 60´s; however, due to limitations in the analytical techniques, the evolution of this 

research area was much slower relative to the progress made in the areas of molecular 

biology, genomics and proteomics [45]. Thus, although lipidomic was a field already 

known in several studies, this name has only recently become in use [46].  

There is a huge structural diversity of lipids in the biological systems, 

approximately 200 000. There are several approaches to classify lipids, one based on the 

definition of Christie [47], considering two classes: simple lipids, also known as neutral or 

non-polar lipids and polar or complex lipids. Another classification used and described in a 

review by Fahy et al [48] divides the lipids into eight groups: fatty acyls, glycerolipids, 

glycerophospholipids or PLs, sphingolipids, sterol lipids, prenol lipids, saccharolipids and 

polyketides.  

In most mammalian cells, PLs represent approximately 60% of total lipids and 

sphingolipids comprise roughly 10% of total lipids. Due to the importance of these two 

groups, our study focused on them.  

Phospholipids (Figure 4) are almost everywhere in nature and are key components 

in the lipid bilayer of cells, being involved in metabolism and cell signaling. These 

compounds can be divided into different classes, based on the nature of the polar head 
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group: PA, PC, PE, PI, PS, phosphatidylglycerol (PG) and CL. Each class comprise different 

molecular species depending on the fatty acid composition of each phospholipid.  

 

 

Figure 4: Molecular structure of the main types of phospholipids [49] 

 

The second major group of polar lipids corresponds to the sphingolipids, a 

complex group of molecules that share a common structural feature, a sphingoid base 

backbone, which in mammals is known as sphingosine. Based on the covalent bond 

nature between the different possible polar molecules (Figure 5) and sphingosine, the 

sphingolipids can be classified as: the sphingoid bases and their simple derivatives (such 

as the S1P), the sphingoid bases with an amide-linked fatty acid (e.g., ceramides), and 

more complex sphingolipids with head groups that are attached via phosphodiester 

linkages (the phosphosphingolipids as SM), via glycosidic bonds (the simple and complex 

glycosphingolipids such as cerebrosides and gangliosides), and other groups (such as 

phosphono- and arseno-sphingolipids). Within the same class the species can still be 

distinguished through the different fatty acyl composition [50].  
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Figure 5: Molecular structure of the main types of sphingolipids [48] 

 

The strategy underlying the lipidomic methodology (Figure 6) involves, firstly, the 

preparation of the biological sample, which in our case was non-tumor and breast cancer 

cells in culture. Secondly, the extraction of lipids in a fraction free of proteins and other 

components. Once extracted, the lipids are then fractionated, which usually requires a 

step of chromatography for identification and quantification of each molecular class. 

Finally these various classes of lipid extracts are then analyzed by mass spectrometry, 

thereby creating a lipid profile [51]. 

 

 

 

Figure 6: Schematic representation of a lipidomic approach 
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5.1. Extraction  

 

Lipids can be extracted from biological samples by a vast number of organic 

solvents, and these extractions can be adapted for a specific class of lipids (for example 

phospholipids, sphingolipids, etc) [50]. Since this analysis is centered in phospholipids, 

extraction is focused in this lipid class. The chemistry of PL molecules require the 

presence of a more polar solvent, like alcohol, followed by a non-polar solvent, like 

chloroform, for a complete extraction.  

The mixture of chloroform, methanol and water in different proportions is 

efficient for phospholipid extractions. This approach was developed in the 50´s by Folch 

[52] that used chloroform / methanol 2:1 and a high amount of water to wash the non-

lipid components. Although this extraction procedure is efficient, the formation of 

emulsions is a big disadvantage, despite Folch´s attempts to tackle this issue by the 

addiction of salts.  

The Bligh and Dyer method [53] is a variation of Folch´s extraction and is 

advantageous for tissues with a high percentage of water content because it calculates 

the amount of water in the sample so that the final composition of chloroform / 

methanol / water will be 1:2:0,8, creating a single phase of extraction. The extraction is 

very efficient and quick. After the addition of water and chloroform, the lipids are 

recovered from the bottom phase, rich in chloroform, followed by a wash with water and 

methanol. The non lipidic contaminants can be eliminated in this wash. To augment the 

recovery of phospholipids, the methanol proportion can be increased.  

To minimize the risk of fatty acid oxidation or the lipids hydrolysis during the 

isolation process it is recommended that all extractions be made at low temperature 

(4ºC), as fast as possible after the lipids removal from the tissue or cell culture.  
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5.2. Chromatographic separation method: thin layer chromatography 

 

The chromatographic techniques are very useful in the analysis of lipids extracted 

from biological samples since it allow to separate the different classes of phospholipids. 

Chromatography takes advantage of different affinity of analyte with the mobile phase 

and stationary phases to achieve separation of complex mixtures, i. e., it involves passing 

the mixture dissolved in a "mobile phase" through a stationary phase, which separates 

the analyte to be measured from other molecules in the mixture based on differential 

partitioning between the mobile and stationary phases.  

The most popular techniques of chromatography are: thin-layer chromatography 

(TLC), gas chromatography (GC), liquid chromatography (LC) and high-performance liquid 

chromatography (HPLC) [54]. These techniques can also function as a pre-separation 

when coupled with mass spectrometry (MS), facilitating further analysis and identification 

of lipids, already divided by their families. The techniques more used for PLs analysis are 

TLC and HPLC, but in this study only TLC was used.  

TLC was the first form of chromatography used for analysis of phospholipids. It is 

the simplest method for lipids separation and is widely used today. It is a technique in 

which the stationary phase is a solid phase and the mobile phase is a liquid phase. TLC is 

then a solid – liquid adsorption technique in which the solvent molecules compete with 

the molecules of the sample for binding sites on the stationary phase.  

For phospholipids separation glass plates coated with alumina or silica are used as 

the stationary phase, the latter being most common. In the surface of the silica gel 

particles, there are hydroxyl groups which render the surface of silica gel highly polar. 

Thus, the polar functions of the organic analyte interact strongly with the surface of the 

gel particle and the nonpolar functions interact only weakly. For silica gel 

chromatography, the mobile phase is normally an organic solvent or mixture of them, 

chosen based on the type and class of lipids to separate. As the liquid phase travels along 

the surface of the solid phase it transports the analyte particles along the silica gel 

surface. However, the analyte molecules are only free to move with the solvent if they 

are not bound to that surface. Thus, the fraction of time that the analyte is bound to the 
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surface of the silica gel relative to the time it spends in solution determines the retention 

factor of the analyte.  

Despite being less sensitive than other chromatography methods, TLC is 

commonly used to separate PL classes from total lipid extracts with the advantage of 

being a relatively easy and fast technique. It can separate, the nonpolar lipids 

(triglycerides, free fatty acids, cholesterol and DAGs) from more complex lipids like 

phospholipids, and also achieve separation even within the phospholipids, when using an 

adequate mixture of solvents [55]. After separation in classes, lipids and phospholipids 

are nowadays usually analyzed by mass spectrometry.  

 

 

5.3. Mass spectrometry 

 

Mass spectrometry (MS) is a powerful analytical technique that can be used to 

identify unknown compounds. This technique allows the separation and detection of gas 

phase ions according to their mass / charge (m/z) value. Using this technique it is possible 

to detect compounds at very low concentrations in chemically complex mixtures, since 

the identification can be made from very small quantities.  

All mass spectrometers consist essentially in three basic units (Figure 7) [56]: the 

ionization source, where ions are produced from the sample under study, the mass 

analyzer, which gives the actual separation of ions according to their m/z value and the 

detector, where the separated ions are collected and characterized by producing a signal 

whose intensity is related to the number of detected ions. These detectors are connected 

to a computer that provides mass spectra recording the m/z corresponding to each ion 

and the correspondent relative abundance. An important feature of these instruments is 

the high vacuum present that allows free movement of ions through the spectrometer 

without simultaneous reactions or changes of the ions.  
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Figure 7: Components of a mass spectrometer  

 

 

Ionization methods  

 

Over time, there have been different ionization methods. The first ionization 

method to emerge was the electron impact (EI) and later the chemical ionization (CI), 

which are only applicable to volatile and thermally stable compounds. To overcome this 

limitation the use of ionization by bombardment with fast ions or atoms (FAB) allowed 

analysis of non-volatile and thermally unstable samples by MS. More recently the 

electrospray ionization (ESI) and laser desorption ionization by matrix-assisted (MALDI) 

were developed and are the ionization methods most commonly used today in the 

analysis of biomolecules.  

The development of ionization by FAB allowed the analysis of natural PLs and the 

ability to analyze directly intact PL structures and preserve the information inherent to 

their chemical structure. However there were some associated problems, the 

complications of the spectrum with ions of the matrix and the decomposition of 

molecular ions during ionization [57]. With the advent of electrospray ionization (ESI), a 

softer ionization method than FAB, these problems were solved and the level of 

sensitivity for the detection of phospholipids was increased. The ionization sources 

commonly used in lipidomics are ESI and MALDI [57, 58]. Since PLs have a relatively low 
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molecular weight (600 to 1000 Da), ESI is the most used in PL analysis. Under ESI 

conditions, PLs ionize as single charged ions which facilitates their analysis by ESI-MS.  

ESI was developed in 1989 by John Fenn and his colleagues [59] and involves 

dissolving the sample in a solvent and the formation of spray. The sample is injected in a 

metal needle using a syringe pump and a high voltage is applied in the needle. This high 

voltage will charge the solvent and the sample molecules, creating a spray of electrically 

charged droplets. After release of the droplets, they undergo further division and with the 

assistance of nitrogen gas the solvent will gradually evaporate, until each droplet 

corresponds to a single charged ion after the solvent being completely evaporated (Figure 

8).  

 

 

Figure 8: A schematic representation of an ESI source and the mechanism of ion formation 
(http://www.chm.bris.ac.uk/ms/theory/esi-ionisation.html) 

 

Depending on the chemical properties of the molecules (i. e. the polarity) both 

negative ions (molecules that have lost protons) and positive ions (molecules that have 

gained protons) can be formed. This ionization has the advantage that the molecules are 

not broken apart, instead they remain intact; this is why this ionization is called soft 

ionization. 
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Analyzers  

 

After sample ionization, ions are separated based on their m/z ratio by the 

analyzer. There are three main types of analyzers that are commonly used for 

phospholipids analysis by mass spectrometry: quadrupole (Q), ion trap and time of flight 

(TOF).  

The Qs have many advantages such as being relatively low-cost, easy to use and 

capable of providing accurate results. However their resolution is limited and the 

transmission decrease linearly, being the upper limit of m/z around 3000. A quadrupole 

consists of four parallel rolls, which applies a current that affects the trajectory of ions 

traveling through the central route between the 4 rolls. For certain voltages, only ions of a 

specific m/z ratio can pass through the quadrupole filter, while others are carried away as 

uncharged molecules. By varying the electrical signals from one quadrupole, it is possible 

to vary the range of the m/z transmitted.  

Linear ion trap is an analyzer which consists of a multi-pole, producing a three-

dimensional field where the ions are confined (trapped). For this analyzer there is a 

stability diagram, where the ions whose coordinates are within the diagram, and whose 

kinetic energy do not exceed the potential of the trap, are enclosed in the field until they 

are removed by collision. To make them leave, a radio - frequency of small amplitude 

voltage is applied. This amplitude is then scanned in an ascending way and increasing 

mass ions are sequentially ejected from the trap and detected by a detector to produce a 

mass spectrum.  

A time of flight analyzer (TOF) uses the differences on time that accelerated ions 

leads to reach the detector based on their mass differences. The ions are accelerated by 

pulsed electric field and the accelerated particles pass through a flight tube of varying 

length. The essential principle of flight time analyzer is based on all ions accelerated to 

the same energy, i.e. with equal energy and will travel at speeds inversely proportional to 

the square roots of their masses. So the lighter ions with high-speed reach the detector 

earlier than heavier ions with low speed [60, 61]. 
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Detectors  

 

The signal obtained by the analyzer has to be detected by a detector. The 

detectors can be of two categories: direct measurement detectors that detect the charge 

when it reaches the detector, and multiplier detectors, which use an electron multiplier 

to increase the intensity of the signal generated. The direct detectors include the plate 

detector and the Faraday box detectors. The multiplier detectors include the electron 

multiplier detectors, electronic channel multipliers and the scintillators. From these the 

most widely used are electron multipliers, since they have a lifetime exceeding a limit of 

detectable masses. The operating principle of these detectors is as follows: when an ion 

reaches the first electrode it produces emissions of secondary electrons, which are in turn 

accelerated in direction to the second electrode and so on.  

The detector is connected to a computer that integrates the information received 

and converts it into a mass spectrum, which shows the ion mass / charge ratio on the 

abscissa (values of m/z), and the relative abundance of these same ions after a 

normalization in relation to the ion abundance on the ordinate [60, 61].  

 

 

Tandem mass spectrometry (MS/MS)  

 

The main characteristics of mass spectra obtained with soft ionization method are 

the absence of fragmentation, which allows the accurate determination of molecular 

masses of mixtures of components. However, in these conditions little information is 

obtained about the ion´s molecular structure. To achieve this goal, several analyzers are 

coupled in series to proceed the fragmentation of the desired ion by inducing dissociation 

of the ions formed at the source by collision. However some instruments (linear ion trap) 

with just one analyzer are able to perform multiple MS (MSn), becoming efficient 

instruments in the structural identification of several molecules including the 

phospholipids. Using this technology we can draw several conclusions about the structure 
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of the analyzed molecules and the spectra obtained gives us not only the most frequent 

molecular fragmentation but also as the most favorable [50].  

The type of MS / MS most commonly used in mass spectrometry is called product 

ion scan. In this way the first analyzer selects a specific m/z value (precursor ion) of the 

mixture, ionizes and transmits to the second analyzer, a collision cell, were the ion will be 

fragmented. At last, the fragmented ions are separated based on their m/z value by the 

last analyzer. Analyzing the ion fragments and knowing the mass of the precursor ion, the 

structural information of lipid can be deduced, as the assembly of a puzzle. So, each peak 

corresponding to the phospholipid of interest is subjected to collision-induced 

dissociation and molecular structure of this phospholipid is determined by its spectrum of 

product ion spectra or MS / MS [62].  

Another type of MS / MS is precursor ion scan, which makes use of a characteristic 

fragment produced by certain compounds in the sample. In this type all ionic species are 

separated in the first analyzer and will be sequentially transmitted to the cell collisions. 

However, the third analyzer is set to transmit a single m/z value of a fragment formed in 

the second analyzer, the cell collision. The computer analysis will show the precursors of 

the specific ion formed in the third analyzer.  

Fragmentation in the second analyzer not only gives a single precursor ion, but can 

give a rise of fragments with a characteristic mass loss of a particular class of compounds. 

This type of MS / MS is called a common neutral loss, where the first and third analyzer 

are scored together, separated by an equal amount of a neutral loss mass that occurs in 

the second analyzer. All ions are sequentially separated in the first analyzer and 

transmitted to the second analyzer. The third analyzer separates the ions coming out of 

the second analyzer by the m/z value equal to the neutral loss mass [63].  

 

 

5.4. Phospholipids and mass spectrometry  

 

MS has played a key role in the study of phospholipids, because it allows the 

detection and determination of the structures of these molecules. The combination of 
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sensitivity, specificity, selectivity and speed makes MS an ideal technique for the analysis 

of this type of lipids. 

Information on the molecular weight of each lipid species can be determined from 

a first analysis on the MS spectrum. In a second approach, a certain ion with a specific 

m/z value, corresponding to a single phospholipid, can be further analyzed by MS / MS. 

The fragmentation pattern observed in MS / MS normally contains information about the 

polar head group and fatty acyl composition, which determines not only the class of 

phospholipid but also in particular the phospholipid structure. Other modes of MS / MS, 

precursor ion scan and neutral loss scan, are also useful for detecting characteristic 

phospholipids of each class.  

Almost all PLs are ionizable in ESI, some more in the positive mode, others more in 

the negative mode. The positive mode by ESI-MS can ionize the following classes: PC, PS, 

CL, PE, and SM, which is a sphingolipid analogous to PC containing the same polar head 

attached to a ceramide [50]. The lyso forms of these phospholipids, ie without one of the 

fatty acid chains, can also be detected in this mode. All these classes form [M + H] + ions. 

In this mode, the formation of these ionic species and lipids fragmentation are greatly 

affected by the concentration of ions in solution. Ions that are commonly used to bind to 

phospholipids are: Li +, Na + and K +. 

The classes PI, PS, PG, PA, PE, CL and ceramides, and their lyso forms, can be 

detected in negative mode, all forming ions [M-H] - [64]. The fragmentation patterns of 

these species in negative mode, compared to the positive mode, results in richer 

structural information of the phospholipids. In each case the fragmentation of the polar 

head and the fatty acids is shown, helping in the lipid identification process [57].  

PA is the simplest polar head group, and serves as a precursor and metabolite of 

biosynthetic pathways and catabolism of phospholipids. Although it is possible to observe 

[M + H] + and [M-H] – ions, the most abundant are negative ions [65].  

PC was the first to be analyzed by mass spectrometry due to its high abundance in 

the cell. The PC an SM fragmentation is similar because they share the same polar choline 

head group. The fragmentation of their protonated ions ([MH]+) form a ion with a m/z 

value of 184, characteristic of the choline polar head, as the ion [MH-59]+, corresponding 
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to the neutral loss of (CH3)3N. Precursor ions scan of 184 will allow the identification of all 

PCs in the lipid extract.  

PE constitutes one of the major classes of lipids found in cell membranes. The 

fragmentation of PE protonated in the positive mode produce an abundant ion of [M + H-

141] +, resulting from the neutral loss of ethanolamine polar head. The fragmentation 

pathways of these classes in negative mode ([M-H] -) results in an ion with a m/z value of 

196 related to head of the group with dihydrate glycerol, as well as informative 

carboxylate ions of the fatty acids.  

PG is the less abundant phospholipid class in eukaryotic cells, since they are more 

characteristic of prokaryotic cells. In tandem mass spectrometry, this class produces a 

characteristic ion from the neutral loss of its polar head, the ion [M + H-171] +. 

PI, a very important lipid in the cell signaling, is a phospholipid class containing a 

sugar, inositol, consisting of six carbons as polar head. In the MS / MS spectra PI, when 

deprotonated ([M-H] -), shows a characteristic ion with m/z value of 241 from the 

dihydrate head group, in addition to the carboxylate ions of the fatty acids.  

PS is an important phospholipid with a unique feature: it is predominantly found 

on the inside of the membrane and the appearance of this phospholipid on the outer 

membrane initiates many biological events, such as cell adhesion, and apoptosis. The 

fragmentation of PS in the positive mode produced an ion resulting from neutral loss of 

polar head of serine ([M + H-185] +) in the MS / MS spectrum. In the negative mode this 

class can be identified with a neutral loss of 87 ([M-H-87] -), corresponding to neutral loss 

of the serine head.  

CL is the most complex phospholipid present in eukaryotic cells being involved in 

mitochondrial stability and function. Despite being ionizable in both modes (negative and 

positive) its analysis is easier in the negative mode. Once cardiolipine structure is two 

phosphatidic acids with a glycerol bond, electrospray ionization can generates abundant 

negative ions, including the double charged [M-2H]2- ions. The fragmentation of CL in the 

negative mode ([M-H]– and [M-2H]2-) led to a rich set of information that was consistent 

with the elimination of each fatty acid by a neutral loss [57].  
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The characteristic fragmentation of the most important PL classes is presented in 

Table 1.  

 

Table 1: Characteristic fragmentation pathways of the most important PL classes 

 

Information about PL profiles and the molecular species that belong to each PL 

class in breast cancer is scarce. There has been some evaluation of lipid profiles using 

magnetic nuclear resonance (MNR) which allowed correlation of PL classes with 

histopathology features of human breast surgical tissue specimens. As such, SM and PC 

amounts were inversely correlated to cellular infiltration and linfatic invasion, 

respectively; and PC levels were higher in ER negative tumors [66, 67]. MS has been used 

to analyse PLs in canine cell carcinoma of the urinary bladder [68] and is frequently used 

to study PIs in cancer (in [69]). Recently, identification of PL profiles in urine of patients 

with breast cancer was carried out using LC/MS/MS and showed an increase in PC and PE 

in patients with breast cancer, which after surgery, reverted to the initial pre-surgical 

levels [70, 71]. So far this is the closest methodological approach to our work; no studies 

have focused on the identification of PL profiles in breast cancer cells using MS. This is 

probably because analysis of lipids by MS is time consuming due to lack of bioinformatic 

Class Head group 
Analysis 

Charge / method 

PC 
Phosphatidylcholine 

Choline + / precursor m/z 184 

SM 
Sphingomyelin 

Choline + / precursor m/z 184 

PE 
Phosphatidylethanolamine 

Ethanolamine 
+/ neutral loss 141 Da 
- / precursor m/z 196 

PS 
Phosphatidylserine 

Serine 
- / neutral loss 87 Da 

+ / neutral loss 185 Da 

PA 
Phosphatidic acid 

Acid - / precursor m/z 79 

PG 
Phosphatidylglycerol 

Glycerol 
- / neutral loss 74 Da 

+ / neutral loss 172 Da 

PI 
Phosphatidylinositol 

Inositol - / precursor m/z 241 
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tools for spectra interpretation and requires the individual interpretation of each 

detected PL molecular specie [57].  

 

 

6. Aim  

 

Lipid research in cancer is relatively scarce. Therefore our work focused on the 

analysis of phospholipid profiles using MS. Since lipid roles and classes may influence 

CAMs activation and function, in this work, it is proposed that changes in lipid classes and 

profiles are associated to cancer progression. Thus, the general aim of this work is to 

compare the phospholipid profile between normal mammary cells and breast tumor cells 

with different degrees of malignancy with the help of a lipidomic approach involving TLC 

separation and MS. This work will be separated into three specific aims:  

1) Use of mouse cell lines to analyze differences and similarities in PL profiles of a 

non-tumorigenic cell line and two cancer cell lines with different metastatic 

potential.  

2) Use of human cell lines to analyze differences and similarities in PL profiles of a 

non-tumorigenic cell line and two cancer cell lines with different metastatic 

potential.  

3) Cross comparison of results obtained between mouse and human species. 

 

 

 

 



 

 

 

  



 

 
 

 

 

 

 

 

II. Material and Methods  
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II. Material and Methods  

1. Cell culture and extraction  

 

In this work, we used both human and mouse tumor and non-tumor cell lines. The 

use of different species is valuable as most relevant changes should be conserved across 

species. The mouse cell lines used were: EpH4, MC4-L5 and MC4-L2; and the human cell 

lines used were: MCF10A, T-47D, MDA-MB-231. The characteristics of each cell line are 

summarized in Table 2. 

EpH4 cells are mammary epithelial, non-tumorigenic and derived from normal 

mouse mammary glands [72]. This cell line was used as a control to compare changes in 

PL profile, in MC4-L2 and MC4-L5 mouse cancer cells. All mouse cell lines are derived 

from Balb/c mice and express high levels of ER and PR. MC4-L2 is very migratory and 

metastatic, while the MC4-L5 cell line is more rounded epithelial, poorly migratory and 

rarely metastatic [73]. MCF10A cell line is derived from a mammary gland of a patient 

with cystic fibrosis and has the morphology of normal mammary epithelial cells. Thus, 

although these cells are not malignant, they form cysts. However, this cell line is 

commonly used as a non-malignant control in studies of breast cancer in the human 

model. T-47D is a cancer cell line of the luminal A group, with low metastatic potential. 

This cell line was isolated from the pleural effusion of a woman with breast ductal 

carcinoma. MCF10A and T-47D cells have receptors for a variety of steroids. The MDA-MB 

231 cell line was derived from the mammary gland tissue of patients with metastatic 

breast adenocarcinoma. MDA-MB 231 belong to the triple-negative group which are very 

migratory and highly metastatic.  
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Table 2: Main features of mouse cell lines used.  

 

 

 

 

T-47D, MDA-MB-231 and all mouse cell lines were grown in phenol red Dulbecco’s 

modified Eagle medium (DMEM/F12, Invitrogen) with 10% fetal bovine serum (FBS; Gold, 

PAA) and 5 mg/L gentamicin (Invitrogen). MCF10A were grown in DMEM/F12 with 5% 

horse serum (HS; Invitrogen), epithelial growth factor (EGF, Sigma-Aldrich) 20ng/ml, 

Hydrocortisone (Sigma-Aldrich) 0,5mg/ml, Cholera toxin (Sigma-Aldrich) 100ng/ml, insulin 

(Sigma-Aldrich) 10µg/ml and with Penicillin Streptomycin (Sigma-Aldrich). 

The cells were grown at 37ºC, 5% CO2 changing the medium of the flasks 

whenever necessary. When two 150 cm2 dishes (≈4x107cells) of cells reached 60% density 

they were washed with 10 ml of phosphate buffer saline (PBS) and medium of T-47D, 

MDA-MB-231 and all mouse cell lines was changed to DMEM without phenol red and high 

* When MCF10A cells are confluent, their morphology is polygonal. ND: not detected. HD: hormone 

dependent. 
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glucose (PAA), without FBS and with 5µg/ml insulin (Sigma-Aldrich) for 24h. MCF10A were 

changed to their growth medium but without FBS. Cells were grown in medium without 

serum to be sure that no compounds from serum interfere in the lipid analysis. Three 

different cultures for each cell type were analyzed in order to verify the reproducibility of 

the results.  

After 24h, the process of cell extraction started by the removal of the medium and 

washing of the dishes with 10 ml of PBS, twice. To detach the cells, 5 – 6ml of trypsin 

(Invitrogen) were added and left for ± 3 min at 37ºC. After verifying that all the cells were 

detached, cells were removed and placed in a 50 ml falcon tube to which the same 

volume of PBS (10-12 ml) was added. The dishes were washed with 10 ml of PBS to 

recover some cells that were still in the dishes. 

After mixing, the cell suspension very well, 100 μl were separated to an 

eppendorf, to count the amount of cells, and 1 ml to another eppendorf to make a whole 

cell extract and quantify the amount of proteins. The rest of the suspension was 

centrifuged 10 min at 2000 rpm (Mixtasel centrifuge, Selecta). The supernatant was 

discarded and the pellet ressuspended in 1 ml of PBS, passing to an eppendorf, followed 

by centrifugation at 2000 rpm, 4min (Minispin plus, Eppendorf). This step was repeated 

three times. The final pellet was ressuspended in 1 ml of mili-Q H2O (Millipore).  

 

In order to confirm that lipid content per cell was similar in the different types of 

cells, tripsinized cells were counted in a Neubauer chamber before the lipid extraction.  

 

 

2. Lipid extraction  

 

Total lipids from all cell lines were extracted with the Bligh and Dyer method [53]. 

We used HPLC solvents (chloroform and methanol) and milli-Q purified water. For 1 ml of 

sample, 3,75 ml chloroform /methanol 1:2 (v/v) was added, vortexed well, and incubated 

on ice for 30 min. Then, and additional volume of 1,25 ml chloroform was added and 

finally 1,25 ml mili-Q H2O. Following vigorous vortex, samples were centrifuged at 1000 
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rpm for 5 min at room temperature to obtain a two-phase system: aqueous top phase 

and organic bottom phase with chloroform from which lipids were obtained. The organic 

phase was separated into a new tube, dried in a nitrogen flow and ressuspended in 300 µl 

of chloroform making our extracts ready for the following analysis.  

 

 

3. Thin layer chromatography  

 

PL classes from the total lipid extract were separated by thin layer 

chromatography (TLC) using silica gel plates with concentrating zone 2,5x20cm (Merck). 

Prior to separation, plates were washed in a methanol : chloroform mixture (1:1, v/v) and 

left in the safety hood for 15 min. Plates were then sprinkle with boric acid (2,3% m/v) 

(DHB chemicals) and dried in an oven at 100ºC during 15min. It was applied in the plates 

20 µl of phospholipid solution in chloroform (with a concentration of 150 µg of 

phospholipid per 100 µl). The plates were dried in a nitrogen flow and developed in 

solvent mixture with chloroform, ethanol (Panreac), water and triethylamine (Merck). The 

proportion between chloroform/ethanol/water/triethylamine was 30:35:7:35 (v/v/v/v). 

When the elution was completed, the plates were left in the safety hood until the eluent 

was completely dried. Lipid spots on TLC plates were observed after spraying a primuline 

(Sigma-Aldrich) solution of 50g/100 ml dissolved in a mixture of acetone (Sigma-Aldrich) 

and mili-Q H2O, (acetone : water 80:20, v/v), and visualized with a UV lamp (=254 nm).  

Identification of the different classes of PLs was carried out with the use of 

patterns (LPC, SM, PC, PI, PS, PE, PA, CL) from Avanti Polar Lipids, Inc, run side by side in 

the TLC plate. Then, 5 spots from each classes were scraped off the plates to glass tubes: 

one spot were scraped to quantify amount of phosphorus with a phosphorus assay to 

calculate the percentage of each PL class in the total amount of PL in the sample, and the 

remaining four spots from each class were scraped to extract PL classes for subsequent 

identification by MS.  
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The extraction of lipid classes from silica to further MS analysis was carried out 

with a mixture of chloroform / methanol. First the samples were solubilized in 450 µl of 

chloroform, vortexed well and left to stand for 5 min, in order to be able to extract the 

phospholipids from the silica. Second, the samples were filtered by vacuum and 450 µl of 

chloroform/methanol (2:1, v/v) were added to the tubes, vortexed well and also filtered. 

Finally, the total extracted was passed in a syringe (GASTIGHT 1ml, Sigma-Aldrich) with a 

filter (Syring Driver Filter Unit 0,22 m, Millipore-Millex), in order to obtain a complete 

free – silica extract. The filtered samples were dried under nitrogen stream and were re-

suspended in 100 µl of chloroform to store at -4°C for further analysis.  

For MS analysis in both positive and negative modes, samples were diluted with 

methanol. 

 

 

4. Phospholipid quantification 

 

In order to quantify the total amount of PL as well as amounts of each PL class 

separated by TLC, a phosphorus assay was performed according to Bartlett and Lewis 

[74]. To quantify the total PL extract, 15 µl of sample was used, and dried with a nitrogen 

flow, and to quantify the different classes separated by TLC, the spots were scraped off 

from the plates directly to the quantification tubes. Next, 6,5 ml of perchloric acid (70%) 

(Panreac) was added to samples which were then incubated in a heating block (Stuart) 

45min at 180°C. After cooling, 3,3 ml of mili-Q H2O, 0,5 ml of 2,5% ammonium molybdate 

(Riedel – de Haën) and 0,5 ml of 10% ascorbic acid (VWR BDH Prolabo) were added to all 

samples, vortexing always after each solution, followed by incubation for 5 min at 100°C 

in a water bath. Standards from 0,1 to 2 µg of phosphorous (P), made from a phosphate 

standard solution of dihydrogenphosphate dihydrated (NaH2PO4 . 2H2O) (Riedel – de 

Haën) with 100 µg/ml of P, underwent the same treatment as the samples. The 

absorbance of the samples, after cooling, was measured at 800 nm (Multiskan 90, 

Thermoscientific). In the case of TLC separated lipid classes, prior to spectrophotometric 

determination, samples were centrifuged 5 min at 4000 rpm to separate PLs from silica.  
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The amount of phosphorus present in each sample was calculated by linear 

regression through the graph relating the amount of phosphorus present in the patterns 

(X-axis) with absorbance obtained from duplicates of various concentrations (Y-axis). The 

amount of phospholipid was calculated by multiplying the amount of result phosphorus 

by 25. The percentage of each PL class was calculated by relating the amount of PL in 

each TLC spot to the total amount of PL in the sample, thus giving the relative PL content 

(%) of each PL class.  

 

 

5. Protein quantification by DC assay 

 

The amount of protein in the sample was determined by the DC protein assay 

(BioRad). Protein concentration was used to normalize the data and compare the amount 

of lipids and proteins per cell. The 1ml of sample separated in the cell extraction was 

centrifuged 2 min at 10 000 rpm. The supernatant was discarded and the pellet 

ressuspended in 50 µl of PBS-TDS (PBS with SDS 0,1%, Triton X-100 1% and Na Deoxy 

cholate 0,5%). The sample was again centrifuged 2 min at 10 000 rpm and the 

supernatant was recovered to a new eppendorf. Twenty µl of S reagent from the BioRad 

kit was added to 1 ml of A reagent to make A´ reagent. Then, 10 µl of sample was 

separated to a new eppendorf 50 µl of A´reagent and 400 µl of B reagent was added. 

Standard solutions of bovine serum albumin (BSA) between 0,3 to 5 mg/ml were treated 

in the same way as the samples. At last, the absorbance of all the samples was measured 

at 750 nm.  

 

 

6. Electrospray mass spectrometry conditions 

 

Analysis of PLs, classes and total extract, was carried out by mass spectrometry 

using ESI ionization and three distinct mass spectrometers: linear ion trap 
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(ThermoFinnigan, San Jose, CA, USA), triple quadrupole (QqQ, Walters, Manchester, UK) 

and Q-ToF 2 (Micromass, Manchester, UK).  

ESI conditions in electrospray linear ion trap mass spectrometer were as follows: 

electrospray voltage was 4.7 kV in negative mode and 5 kV in positive mode; capillary 

temperature was 275ºC and the sheath gas flow was 25 U. An isolation width of 0.5 Da 

was used with a 30 ms activation time for MS/MS experiments. Full scan MS spectra and 

MS/MS spectra were acquired with a 50 ms and 200 ms maximum ionization time, 

respectively. Normalized collision energy TM (CE) was varied between 17 and 20 

(arbitrary units) for MS/MS. Data acquisition of this mass spectrometer was carried out 

with an Xcalibur data system (V2.0).  

ESI conditions in electrospray triple quadrupole mass spectrometry were as 

follows: electrospray voltage was 3.5 kV in positive mode; capillary temperature was 

300ºC and the sheath gas flow was 32 U. Full scan MS, neutral loss and parent scan 

spectra were acquired between a 50 ms and 200 ms maximum ionization time. 

Normalized collision energy TM (CE) was varied between 20 and 30V for MS/MS. Data 

acquisition was carried out with a Mass Lynx data system (V4.0). 

ESI conditions in electrospray Q-Tof mass spectrometer were as follows: 

electrospray voltage was 3 kV in the positive mode with a cone voltage of 30V. The 

temperature of the source was 80ºC and the solvation was 150ºC. MS/MS spectra were 

performed using argon as collision gas, with energy between 20 - 35 V. Data acquisition 

was carried out with a Mass Lynx data system (V4.0). 

 

 

 



 

 
 

 

  



 

 
 

 

 

 

 

 

III. Results and Discussion   
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III. Results and Discussion  

 

In this work three different types of cells from two different animal species (three 

from mouse and three from human) were used. First we used mouse mammary epithelial 

cells, using non tumorigenic cells (EpH4) as control, and two cells from a mouse mammary 

adenocarcinoma with different degrees of malignancy (less metastatic MC4-L5 cells and 

more metastatic MC4-L2 cells). In a second stage, we used human mammary epithelial 

cells, MCF10A as control non tumorigenic cells, and two types of breast cancer cells, T-

47D (no metastatic) and MDA-MB-231 (very metastatic).  

 

Using these different cells with distinct metastatic potentials we were able to 

evaluate possible modifications in the lipidome that appear in the cell during cancer 

progress. In addiction the comparison between human and mouse cells is useful in one 

hand to identify how far it is possible to use another animal model to obtain the same 

results. On the other hand, if the same pattern were found in the group of cells from the 

two species, then we can infer that the differences between metastatic and non-

metastatic cells or between cancer and control cells are likely to be conserved among 

species. This will make these results more important and more likely to represent, at least 

in part, the human pathology.  

In this chapter, the lipid profile of control and breast cancer cell lines will be 

characterized using mass spectrometry (MS) with electrospray ionization, and a lipidomic 

approach. Inside this methodology, two complementary strategies were used: a) after 

separation of PL by TLC, each class content was analyzed by quantification of PL content 

with phosphorus assay and b) after TLC separation analysis of each class by MS was 

carried out. Results and discussion are presented in the following three chapters:  

 

1.  Phospholipid profiling of mouse mammary epithelial and breast cancer cell lines  

2.  Phospholipid profiling of human mammary epithelial and breast cancer cell lines  

3. Cross comparison between results of mouse and human species  
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1. Phospholipid profiling of mouse mammary epithelial cell lines  

 

In order to evaluate the possible alterations in PL profile as cell progress in breast 

cancer, PL content and profile of lipid extracts was obtained from non-tumorigenic EpH4 

mammary epithelial cells, MC4-L5 epithelial low-metastatic and MC4-L2 spindle-shaped, 

metastatic mammary cancer cell lines. For this purpose, PL classes were separated by TLC 

and analyzed by MS and MS/MS using ESI ionization and quantified by phosphorus assay.  

To know the approximate amount of PLs and proteins per cell we counted the 

number of cells and quantified the lipid and protein content in each extract (Table 3).  

 

Table 3: Amount of PLs and proteins per cell in µg in all three types of cells 

  PLs per cell (µg) Proteins per cell (µg)  

EpH4 2,79E-05 ± 3,63E-06 7,39E-04 ± 2,27E-04 

MC4-L5 5,99E-06 ± 3,68E-06 2,67E-04 ± 2,93E-05 

MC4-L2 2,62E-05 ± 1,43E-05 3,32E-04 ± 6,95E-05 

 

 

Phospholipid class separation by TLC and quantification 

 

 Separation of PL classes was accomplished by TLC which allowed the fractionation 

of the PL content into the major classes namely LPC, SM, PC, PI, PS and PE (Figure 9).  
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Figure 9: Separation of PL major classes (LPC, SM, PC, PI, PS and PE) by thin layer chromatography 
in the three mouse epithelial cell lines  

 

Synthesis of PL classes occurs from PA and DAG through different pathways (Figure 

10).  

 

Figure 10: Main cellular phospholipid synthesis routes. Note: broken arrows indicate more than 
one step. DAGK: diacylglycerol kinase, PLC: phospholipase C, LPPs: phosphate phosphohydrolases, 
PLD: phospholipase D, PLA2: phospholipase A2, LPCAT1: lysophosphatidylcholine acyltrasferase 1 
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Relative PL content (%) of each PL class in the total lipid extract was evaluated by 

quantifying the amount of PL in each spot using the phosphorus assay, as shown in Figure 

11. 

 

 

Figure 11: Relative phospholipid (PL) content (%) in PL classes separated by thin layer 
chromatography in mouse non – tumorigenic and cancer cell lines. PL content in each spot was 

related to total phosphate content in the sample. Mean +/- SD from three independent 
experiments is shown 

 

The most abundant PL class in all cell lines was PC, followed by PE. Major 

differences were found in the LPC content which was nearly undetectable in EpH4 cells, 

absent in MC4-L5 cells, but dramatically increased in the metastatic MC4-L2 cells. On the 

other hand, decrease in PCs was detected in MC4-L2 cells as compared to the two 

polygonal EpH4 and MC4-L5 cells. Increased PCs levels have been reported in malignant 

cells with low level of progression [75], while PCs decrease was reported in metastatic 

breast cancer cells. These observations are in agreement with our results. MC4-L5 and 

MC4-L2 cancer cells showed slightly higher levels of SM and lower levels of PE as 

compared to EpH4 mammary epithelial cells. Interestingly, PI known to be actively 
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involved in growth and cell migration [27] only increased slightly in cancer vs non 

tumorigenic cells, while PS did not substantially change.  

To evaluate if in addition to differences in percentages of each PL class considering 

the total extract, it was possible to see differences in molecular composition among each 

PLs classes, lipid extract from each PL class spot was analyzed by MS and MS/MS and class 

members were identified. PI and PS classes were analyzed in the negative mode, 

presented in Table 4 with the indication of the m/z values of the ions [M-H]-.  

 

Table 4: Identification of [M-H]
- 
ions observed in the MS spectra of PI and PS.  

 
Diacyl 

 
[M-H]- C:N Fatty acids   

P
I 

835 34:01 16:00 18:01 

835 34:01 16:01 18:00 

837 34:00 16:00 18:00 

861 36:02 18:02 18:00 

861 36:02 18:01 18:01 

863 36:01 18:00 18:01 

865 36:00 18:00 18:00 

885 38:04 20:04 18:00 

887 38:03 20:03 18:00 

889 38:02 20:02 18:00 

     

P
S 

760 34:01 16:00 18:01 

760 34:01 16:01 18:00 

788 36:01 18:00 18:01 

790 36:00 18:00 18:00 

812 38:03 20:00 18:03 

812 38:03 20:03 18:00 

814 38:02 20:02 18:00 

836 40:05 18:00 22:05 

872 42:01 22:00 20:01 

 

 

 

 

 

The attribution of the fatty acyl composition of each PL molecular species was done accordingly 

to the interpretation of the correspondent MS/MS spectra. C:N: number of carbons in the fatty 

acid chain : number of double bonds; fatty acids (#:#): the first value indicates # of carbons in 

the fatty acid chain and the second value, the # of double bonds in that chain; PI: 

phosphatidylinositol; PS: phosphatidylserine 
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PC, SM, LPC and PE classes were analyzed in the positive mode and molecular 

species identified are presented in Table 5 with the indication of the m/z values of the ions 

[M+H]+.  

 

 

 

Table 5: Identification of [M+H]+ ions observed in the MS spectra of LPC, PC, SM and PE.  

 
Diacyl Akylacyl  

 
[M+H]+ C:N Fatty acids  [M+H]+ C:N Fatty acids  

LP
C

 496 16:00 16:00 482 16:00 O-16:00 

522 18:01 18:01 508 18:01 O-18:01 

524 18:00 18:00 510 18:00 O-18:00 

         

P
C

 

706 30:00 14:00 16:00 692 30:00 O-14:00 16:00 

732 32:01 14:00 18:01 718 32:01 O-14:00 18:01 

732 32:01 16:00 16:01 744 34:02 O-16:00 18:02 

758 34:02 16:01 18:01 746 34:01 O-16:00 18:01 

760 34:01 16:00 18:01 772 36:02 O-16:00 20:02 

762 34:00 16:00 18:00 774 36:01 O-16:00 20:01 

786 36:02 18:01 18:01 
    788 36:01 18:00 18:01 
    790 36:00 18:00 18:00 
    812 38:03 20:01 18:02 
    814 38:02 20:01 18:01 
    842 40:02 22:01 18:01 
    

         

SM
 

703 34:01 18:01 16:00 
    705 34:00 18:00 16:00 
    787 40:01 18:01 22:00 
    813 42:02 18:01 24:01 
    815 42:01 18:01 24:00 
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P
E 

690 32:01 14:00 18:01 702 34:02 O-16:01 18:01 

690 32:01 16:00 16:01 704 34:01 O-16:00 18:01 

716 34:02 16:01 18:01 728 36:03 O-18:02 18:01 

718 34:01 16:01 18:00 730 36:02 O-18:01 18:01 

718 34:01 16:00 18:01 732 36:01 O-18:00 18:01 

742 36:03 18:01 18:02 750 38:06 O-18:02 20:04 

744 36:02 18:01 18:01 750 38:06 O-16:01 22:05 

744 36:02 18:00 18:02 752 38:05 O-16:01 22:04 

746 36:01 18:00 18:01 752 38:05 O-18:01 20:04 

748 36:00 18:00 18:00 776 40:07 O-18:02 22:05 

768 38:04 20:04 18:00 778 40:06 O-18:01 22:05 

768 38:04 20:03 18:01 
    772 38:02 20:01 18:01 
    792 40:06 22:06 18:00 
     

 

 

 

 

 

In general, for the three different types of cells, we see the same molecular 

species in each PL class. However, in some cases the relative abundances were different 

and resulted in different PL profiles. Due to its very low abundance in EpH4 and MC4-L5 

cells, the LPC class was only analyzed in the MC4-L2 cells. The PL profile observed for each 

class in each cell type is described in the following section. 

 

Phosphatidilcholine and Lysophosphatidylcholine profile  

 

The most abundant PLs in the cell are PCs, which are also the most important 

structural PL in the plasmatic membrane. PCs obtained from the three different types of 

cells were analysed by ESI-MS in positive mode, with formation of both [MH]+ and 

[MNa]+. In order to identify exclusively the [MH]+ ions, precursor ion scanning of the ion 

at m/z 184 was obtained in a triple quadrupole, as typical approach for the detection of 

choline lipids [76, 77]. Precursor ion scan is possible because fragmentation of protonated 

The attribution of the fatty acyl composition of each PL molecular species was done 

accordingly with the interpretation of the correspondent MS/MS spectra. C:N: number of 

carbons in the fatty acid chain : number of double bonds; fatty acids (#:#): the first value 

indicates # of carbons in the fatty acid chain and the second value, the # of double bonds in 

that chain; PC: phosphatidylcholine; LPC: lysophosphatydilcholine; SM: sphingomyelin; PE: 

phosphatidylethanolamine. 
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ions ([MH]+) gives rise to a typical product ion at m/z 184, characteristic of its choline 

head. This approach allowed to obtain the spectra shown in Figure 12, which revealed the 

[MH]+ ions of PCs isolated in the extract from the TLC spot.  

 

 

 

Figure 12: Phosphatidylcholine (PC) spectra. A. Diacyl PC structure; B: Alkylacyl PC structure; C. 
MS spectra obtained by electrospray ionization mass spectrometry analysis of PC extracted from 
the correspondent spots separated by thin layer chromatography. PCs were selectively detected 
by diagnostic precursor ion scan of the product ion at m/z 184 in the positive mode of obtained 

using an electrospray triple quadrupole. Y-axis: Relative abundance considering the highest 
abundant ion as 100 %; x-axis: m/z for each ion. 

 

Analysis and interpretation of PCs spectra allowed identification of diacyl and 

acylalkyl PCs. This identification of both daicyl and acylalkyl PLs as well as their fatty acyl 

chain composition and location along the glycerol backbone was achieved by direct 

analysis and interpretation of MS/MS spectra of each ion identified in the MS spectra 

(Table 5). Fragmentation observed in MS/MS spectra of the [MNa]+ give more product 

ions and thus gives more structural information, namely ion of [MNa-59]+, which 

corresponds to the neutral loss of choline ((CH3)3N), the loss of sodiated choline polar 
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head group ([MNa-205]+) and the ions corresponding to the loss of fatty acyls chains 

([MNa-R1COOH]+ > [MNa-R2COOH]+), in diacyl PCs (Figure 13), and the loss of R2COOH in 

acylalkyl PCs [77].  

 

 

 

Figure 13: ESI – MS/MS spectrum of the [MH]+ at m/z 760 (left) and [MNa]+ at m/z 782 (right), 
corresponding to PC (16:00/18:01). Molecular structure of phosphatidylcholine (PC) is shown in 

presenting main cleavages correspondent to the fragmentation observed in the MS/MS spectrum 
of [MNa]+ ion. Fragmentation of [MH]+ ions originated the characteristic ion of m/z 184 

corresponding to the phosphatidylcholine head group of PCs (left spectrum obtained in ESI-Q 
TOF), and additional ions from [MNa]+ providing more structural information (right spectrum 

obtained in ESI-ion trap)  

 

The three cell types showed high relative abundance of PC (16:00/18:01) and PC 

(18:01/18:01) corresponding to [MH]+ at m/z 760 and 786, respectively; followed by PC 

(14:00/18:01 and 16:00/16:01) and PC (O-16:00/18:01) corresponding to [MH]+ at m/z 

732 and 746 respectively (Figure 12 and Table 5). Additionally, PC (18:01/18:01) and PC (O-

16:00/18:01) (m/z 786 and 760 respectively), although not substantially, were present in 

higher relative abundance in MC4-L5 cells, which did not happen in the other types of 
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cells (EpH4 and MC4-L2). However, there were no substantial differences between the 

three spectra which indicate no variations in the type of PCs found, even though there 

was a decrease in the percentage of PCs in MC4-L2 cells (Figure 11).  

A study about the distribution of PLs in human MCF7 and T-47D breast cancer 

cells, compared with other primary cells (HMECs), revealed similarities in composition of 

diacyl PLs, including diacyl PC [78], comparable with our results. The lipid transfer protein 

StARD10 – a PC and PE binding protein involved in their shuttling across membranes and 

net transfer of these PLs between subcellular compartments – cooperates with c-erb 

signalling, is over-expressed in mammary tumors from Neu/ErbB2 transgenic mice [79], 

and its loss is significantly associated with decreased patient survival [80]. Therefore, 

specific PC molecular species and the total PC content in the cell may not vary [81] but 

the PC content in the different cellular compartments can be altered. Interestingly, this is 

in agreement with our results in the three spectra and the percentage of PCs in EpH4 and 

MC4-L5 cells. The percentage of PCs in MC4-L2 cells was lower than in the more 

differentiated EpH4 and MC4-L5 cells, which could be related to the increase of LPC, once 

the percentage of LPC in this more metastatic cells is substantially higher and PC can be a 

precursor of LPC by PC enzymatic hydrolysis due to the enzyme phospholipase A2 (PLA2; 

Figure 10).  

 

Due to its very low abundance in EpH4 and MC4-L5 cells, the LPC class was only 

analyzed in the more aggressive, metastatic MC4-L2 cells. LPC class was analyzed by ESI-

MS in positive mode, with formation of both [MH]+ and [MNa]+. Both acyl and alkyl PLs 

were identified (Table 5). This identification of acyl and alkyl lyso PLs as well as their fatty 

acyl chain composition along the glycerol backbone was achieved by direct analysis and 

interpretation of MS/MS spectra of each ion identified in the MS spectra. As explained in 

the class of PCs, this is possible because fragmentation of protonated ions ([MH]+) form a 

typical ion of m/z 184, characteristic of its choline head. Fragmentation of [MNa]+ give 

more product ions thus providing more structural information, namely ion of [MNa-59]+, 

which correspond to the neutral loss of choline polar head ((CH3)3N), the loss of sodiated 
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polar head group ([MNa-205]+) and the ions corresponding to the loss of fatty acyl chain 

([MNa-RCOOH]+) in acyl LPCs as in the class of PCs.  

The most abundant LPC found is LPC (18:01) with [MH] + at m/z 522 and LPC 

(18:00) at [MH] + m/z 524, followed by LPC (16:00) at [MH] + m/z 496. The less abundant 

were alkyl LPC.  

It was observed an increase in LPC content in MC4-L2 cells, which may be the 

result of higher PC enzymatic hydrolysis due to PLA2 influence, which correlated to the 

decrease in PC content observed in this type of cells. This alteration could be related to 

the metastatic phenotype as it was shown that the levels of PC were increased in 

malignant cells with low level of progression, and decreased in breast cancer cells with 

high level of progression [75]. Activation of cytosolic PLA2 is responsible for the hydrolysis 

of the sn-2 ester bond of PC to yield free LPC and fatty acid, predominantly arachidonic 

acid [82]. The activity and expression of several PLA2 isoforms are increased in several 

human cancers [83]. In addition, many of LPC functions are thought to be due to the 

actions of autotaxin (ATX) and LPA production. ATX promotes metastasis as well as cell 

growth, survival, and migration of cancer cells. These actions could depend on the 

catalytic activity of ATX, which converts LPC into LPA in the extracellular fluid surrounding 

the tumor [84]. In breast cancer cells, ATX is associated with invasiveness [85] and higher 

plasma LPA levels are present in patients with ovarian cancer and other gynecologic 

malignancies, like breast cancer, compared with healthy controls [86]. Elevated levels of 

LPC in the plasma of patients with ovarian cancer were also described [87].  

 

 

Sphingomyelin profile  

 

SM is synthesized from ceramide by SM synthases [88] (Figure 10) and are also 

precursors of ceramide; SM can serve as a substitute for phosphatidylcholine as a building 

block of membranes and, when in specific domains like membranes “rafts”, can 

coordinate various signaling pathways. SMs extracted from TLC spots were analyzed by 

ESI-MS in positive mode, with formation of both [MH]+ and [MNa]+. In order to identify 
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exclusively the [MH]+ ions, precursor ion scan of the ion at m/z 184 was obtained in the 

triple quadrupole, as explained for PC class [65, 76]. This approach allowed to obtain the 

spectra, which revealed the [MH]+ ions of SMs present in the TLC spot (Figure 14).  

 

 

Figure 14: Sphingomyelin (SM) spectra. A. Diacyl SM structure; B: MS spectra obtained by 
electrospray ionization mass spectrometry analysis of SM extracted from the correspondent spots 

separated by thin layer chromatography. SMs were selectively detected by diagnostic precursor 
ion scan of the product ion at m/z 184 in the positive mode obtained using an electrospray triple 

quadrupole. Y-axis: Relative abundance considering the highest abundant ion as 100 %; x-axis: 
m/z for each ion. 

 

Analysis of SMs species allowed to identify diacyl PLs as summarized in Table 5. 

This identification of diacyl PLs, as well as their fatty acyl chain composition, was achieved 

by direct analysis and interpretation of MS/MS spectra of each ion identified in the MS 

spectra. As in PCs, fragmentation of [MNa]+ ions gave more product ions thus providing 

additional structural information, inclusive the ions corresponding to the loss of fatty acyl 

chain with water ([MNa-R2CO-H2O]+) (Figure 15).  
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Figure 15: ESI – MS/MS spectrum of the [MH]+ at m/z 703 (left) and [MNa]+ at m/z 725 (right), 
corresponding to SM (18:01/16:00). Molecular structure of Sphingomyelin (SM) is shown below 

and present main cleavages correspondent to the fragmentation pathways observed in the 
MS/MS spectrum of [MNa]+ ion. Fragmentation of [MH]+ ions originated the characteristic ion at 

m/z 184 corresponding to the choline head of SMs (left spectrum obtained in ESI-Q TOF). 
Fragmentation of [MNa]+ ions gave more product ions thus providing additional structural 

information (right spectrum obtained in ESI-ion trap), inclusive the ions corresponding to the loss 
of fatty acyl chain with water ([MNa-R2CO-H2O]+) 

 

As it is observed in the Figure 14, the major SM found was SM (18:01/16:00) 

corresponding to [MH]+ at m/z ion of 703, followed by SM (18:01/24:01) [MH]+at m/z 813 

and SM (18:01/24:00) of [MH]+ at m/z 815. SM (18:00/16:00) and SM (18:01/22:00) 

corresponding to the [MH]+ at m/z 705 and 787, respectively, appeared with less relative 

abundance.  

Some differences in the sphingomyelin profile appear evident, comparing tumor 

cells with control cells. The relative amount of SM (18:01/24:01), SM (18:01/24:00) and 

SM (18:01/22:00) (m/z 813, 815 and 787, respectively) compared to SM (18:01/16:00) 

(m/z 703) was inversely correlated to cells aggressiveness (i.e. higher in EpH4>MC4-

L5>MC4-L2). Curiously, the total percentage of SM increased in both tumor cells, 
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comparing to our control cells, which can suggest an increase of SM (18:01/16:00) and SM 

(18:00/16:00).  

SM is synthesized from ceramide, an important lipid with roles in apoptosis and 

cell growth through the action of SM synthases [88]. Interestingly, recent data showed 

that the levels of C16-ceramide are significantly high in different types of tumors, 

compared to other healthy tissue [89]. These results are in agreement with high levels of 

SM (18:01/16:00) and SM (18:00/16:00) (m/z 703 and 705, respectively) observed in 

MC4-L5 and MC4-L2 cancer cells.  

In the context of tumor growth, higher SM content maybe important for cell 

survival as SM containing vesicles have been shown to have angiogenic activity [90]. SM is 

important for maintenance of membrane bilayer structure, macrodomain formation and 

signaling, which are altered in breast cancer [91]. An example of specialized domains rich 

in SM are lipid rafts, which, when enriched with ceramide generally promotes apoptosis, 

but when enriched in cholesterol, they are involved in normal cell signaling. This lipid raft 

with cholesterol, when deregulated promotes cell transformation and tumor progression, 

and it is known to be higher in cancer cells [91]. Due to this alteration in cancer cells, the 

lipid rafts enriched in ceramide would be lower and the ceramide could generate SM, 

increasing the levels of SM in the cell.  

 

 

Phosphatidilethanolamine profile  

 

Ethanolamine phospholipids are the key membrane fluidizing phospholipids. Due 

to its cone-shaped form, PE is a typical non-bilayer preferring lipid, which may regulate 

the fluidity of membranes and modify the Ca+2 transport process [75]. PE was analyzed by 

ESI-MS in positive mode, with formation of [M+H]+, and confirmation by neutral loss scan 

(neutral loss of polar head, -141 Da) was obtained in the triple quadrupole, as typical 

approach for PEs [76, 77]. This is possible because fragmentation of protonated ions 

([M+H]+) originates a typical ion formed due to the loss of 141 Da, characteristic from its 
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ethanolamine head. This approach permitted to obtain the spectra, which revealed the 

[M+H]+ ions of PEs present in the extracts obtained from the PE TLC spot (Figure 16).  

 

 

Figure 16: Phosphatidylethanolamine (PE) spectra. A. Diacyl PE structure; B: Alkylacyl PE 
structure; C. MS spectra obtained by electrospray ionization mass spectrometry analysis of PE 

extracted from the correspondent spots separated by thin layer chromatography. PEs were 
selectively detected by diagnostic neutral loss scan correspondent to the neutral loss of PE polar 

head (neutral loss of 141 Da) in the positive mode obtained using an electrospray triple 
quadrupole. Y-axis: Relative abundance considering the highest abundant ion as 100 %; x-axis: 

m/z for each ion. 

 

Analysis of PEs species allowed to identify both diacyl and acylalkyl PLs as resumed 

in Table 5. This analysis of both diacyl and acylalkyl PLs was achieved by direct analysis and 

interpretation of MS/MS spectra of each ion identified in the MS spectra, as explained 

before. Fragmentation observed in MS/MS spectra of the [MNa]+ give more product ions 

and thus more structural information. Since the analysis of a MS/MS spectrum cannot 

discriminate between an alkenylacyl from an alkylacyl, it was considered always to be 

alkylacyl PEs. Fragmentation of [M+Na]+ showed loss of fatty acyl chains ([M+Na-

R1COOH]+ > [M+Na-R2COOH]+), in diacyl PEs, and the lost of [M+Na-R2COOH]+ in acylalkyl 

PEs. Also, the relative abundance of the ion [M+Na-R2COOH]+ was higher than [M+Na-
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R1COOH]+ in this class and allowed the identification of both the fatty acyl composition 

and its location along the glycerol backbone (Figure 17).  

 

 

 

Figure 17: ESI – MS/MS spectrum of the [M+H]+ at m/z 746 (left) and [M+Na]+ at m/z 768 (right), 
corresponding to PE (18:00/18:01). Molecular structure of phosphatidylethanolamine (PE) is 

shown below presenting main cleavages correspondent to the fragmentation observed in the 
MS/MS spectrum of [M+Na]+ ion. Fragmentation of [M+H]+ form a typical ion due to neutral loss 
of 141 Da, characteristic from its phosphatidylethanolamine head group (left spectrum obtained 
in ESI-QTOF). Fragmentation of [M+Na]+ ions gave more product ions thus providing additional 

structural information (right spectrum obtained in ESI-ion trap) 

 

 In all cell types, the most abundant PEs molecular species observed were PE 

(18:01/18:01 and 18:00/18:02) and PE (18:00/18:01), corresponding to m/z values of 744 

and 746 (Figure 16).  
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However, differences were particularly evident in the spectrum of MC4-L2 

compared to the other two types of cells (MC4-L5 and EpH4), indicating that this class of 

PLs are modified in the more aggressive cells. The most evident alteration occurred in PE 

(O-18:00/18:01) corresponding to m/z value 732 and PE (20:04/18:00 and 20:03/18:01), 

corresponding to m/z value 768, as both ions showed higher relative abundance in the 

MS spectra of MC4-L2 cells, compared to the other two types of cells.  

PE content is significantly elevated in malignant tumors compared to benign 

tumors and to non involved breast tissue [67], and altered in different meningiomas [92]. 

Further, malignant breast tumors appear to be particularly rich in PEs [66]. At first 

impression, these results are in clear contrast with our findings where in EpH4 mammary 

epithelial cells, relative PEs amount was higher than in both cancer cells. However, 

differences may be explained by the source of material used (tissue vs cell culture) and 

the absolute values obtained by 32P-NMR while in our case PE content was calculated 

relative to all PL levels. Alternatively, certain molecular species of PEs (O-18:00/18:01, 

20:03/18:01 and 20:04/18:00) were observed with higher relative abundance in the 

highly metastatic MC4-L2 cells.  

Higher PE levels have also been reported in hormone resistant, highly metastatic 

cell lines such as MDA-MB 231 [75]. In our spectra, it can also be confirmed that the PE 

profile is more altered in metastatic MC4-L2 cells compared to the control and not 

metastatic cells, EpH4 and MC4-L5, respectively.  

Low levels of alkylacyl PE in ER+ breast cancer lines with low metastatic potential 

versus normal breast epithelium have been reported [75]. This study is in agreement with 

our results where higher levels of PE (O-18:00/18:01), PE (O-16:00/18:01) and PE (O-

16:00/22:05) were found in the more aggressive MC4-L2 cells, compared to mammary 

epithelial or cancer cells with low metastatic potential were observed. 
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Phosphatidylserine profile  

 

PS is a negatively charged phospholipid that constitutes approximately 2–10% of 

total cellular lipid [93]. PS is normally localized in membrane leaflets that face the cytosol. 

However, certain conditions can cause translocation of PS to the outer leaflet of the 

plasma membrane where it may initiate and participate in cellular processes such as 

blood coagulation [94] and apoptosis [66, 95].  

PSs were analyzed by ESI-MS in negative mode, with formation of [M-H]-. This 

approach permitted to obtain the spectra, which revealed all [M-H]- ions of the PSs 

present in the extract obtained from TLC spot (Figure 18). The MS spectra of the PS for the 

three cell lines were similar.  

 

 

 

Figure 18: A. Diacyl PS structure; B. MS spectrum obtained by electrospray ionization mass 
spectrometry analysis of PS extracted from the correspondent spots separated by thin layer 

chromatography of EpH4 mammary epithelial cells. The MS spectra of the other cell lines were 
identical. The PS spot was extracted and acquired in the negative mode obtained using an 

electrospray ion trap. Y-axis: Relative abundance considering the highest abundant ion as 100 %; 
x-axis: m/z for each ion. 

 

 

Interpretation of MS/MS spectra of each ion identified in the MS spectra allowed 

identification of diacyl PSs as well as their fatty acyl chain composition and location along 



  Results and Discussion  
 _______________________________________________________________________________ 

59 
 

the glycerol backbone (Table 4). This is possible because fragmentation of deprotonated 

ions ([M-H]-) lead to the formation of a typical ion from the loss of 87 Da ([M-H-87]-), 

characteristic from its serine polar head, and the ions corresponding to the fatty acyls as 

carboxylate anions chains ([R2COO]- > [R1COO]-) [77] as shown in Figure 19.  

 

 

 

Figure 19: ESI – MS/MS spectrum of the [M-H]- at m/z 760, corresponding to PS (16:00/18:01). 
Molecular structure of phosphatidylserine (PS; below) presenting main cleavages correspondent 

to the fragmentation observed in the MS/MS spectrum of [M-H]- ion obtained in ESI-ion trap. 
Fragmentation of [M-H]- gave the typical neutral loss of 87 ([M-H-87]-), characteristic of its serine 

polar head, and ions corresponding to the fatty acyls chains carboxylate anions ([R2COO]- and 
[R1COO]-). 

 

 

The three cell types showed similar ESI-MS spectra in terms of molecular species 

and their relative abundance (Figure 18, only spectrum from EpH4 cells). The most 

abundant PS, observed and identified, was the PS (18:00/18:01), corresponding to the ion 
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[M-H]- at m/z of 788. The rest of PSs found have almost the same relative abundance and 

also showed similar relative abundance in all cell lines.  

In addition to a structural function, PS is involved in signaling pathways such as 

protein kinase C pathways [96] and in localization of intracellular proteins to the cytosolic 

membrane leaflets [97]. These PS functions make this PL important in the cell and its 

distribution in cancer is altered [98], but the total amount seems to remain identical in 

cell lines [75] and tumor tissue [67]; which confirm our results where no differences in PS 

relative amounts or molecular species were observed. 

 

 

Phosphatidylinositol profile  

 

 PIs mediate communication between cell surface receptors and intracellular 

organelles. This is possible by PIs single or combinatorial phosphorylation of the 3, 4 and 5 

positions on the inositol ring of PI which can generate at least seven unique PIPs, with 

diverse roles in receptor-mediated signal transduction, cytoskeletal remodeling, nuclear 

events and membrane trafficking [27].  

PIs were analyzed by ESI-MS in negative mode, with formation of [M-H]-. This 

approach permitted to obtain the spectra shown in Figure 20, which revealed the PI [M-H]- 

ions present in the lipid extract obtained from the TLC spot.  
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Figure 20: A. Diacyl PI structure; B. MS spectra obtained by electrospray ionization mass 
spectrometry analysis of PI extracted from the correspondent spots separated by thin layer 

chromatography. The PE spot was extracted and MS spectra were acquired in the negative mode 
obtained using an electrospray ion trap. Y-axis: Relative abundance considering the highest 

abundant ion as 100 %; x-axis: m/z for each ion. 

 

 

Analysis of PIs species allowed to identify diacyl PIs as shown in Table 4. Similar to 

PS, this analysis was achieved by direct interpretation of MS/MS spectra of each ion 

identified in the MS spectra. This is possible because fragmentation of deprotonated ions 

([M-H]-) form typical ions as the loss of fatty acyls with the inositol ([M-H-R1COOH-162]- 

and [M-H-R2COOH-162]-), the loss of fatty acyls chains ([M-H-R1COOH]- and [M-H-

R2COOH]-), and, like PSs, the ions corresponding to the fatty acyls chains ([R2COO]- > 

[R1COO]-) [77] (Figure 21).  
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Figure 21: ESI – MS/MS spectrum of the [M-H]- at m/z 837, corresponding to PI (16:00/18:00). 
Molecular structure of phosphatidylinositol (PI; below) presenting main cleavages correspondent 

to the fragmentation observed in the MS/MS spectrum of [M-H]- ion obtained in ESI-ion trap. 
Fragmentation of [M-H]- gave the typical ions as the loss of fatty acyls with the inositol ([M-H-
R1COOH-162]- and [M-H-R2COOH-162]-), loss of fatty acyls chains ([M-H-R1COOH]- and [M-H-
R2COOH]-), and ions corresponding to the fatty acyls chains carboxylate anions ([R2COO]- > 

[R1COO]-) 

 

 Differences in PIs profile, between cancer cells and control cells were observed 

(Figure 20). Curiously, the PI profile of both cancer cells was similar although different 

compared to EpH4 mammary epithelial cells, suggesting that PI molecular species may be 

target of, or reflect malignant transformation.  

The most abundant PIs in EpH4 non malignant cells were PI (18:00/18:02 and 

18:01/18:01) at m/z of 861 and PI (20:03/18:00) at m/z 887, followed by PI (18:00/18:01) 

at m/z 863 and PI (20:04/18:00) at m/z 885. In cancer cells, the most abundant ion was PI 

(18:00/18:01) at m/z 863, followed by less abundant PI (18:00/18:02 and 18:01/18:01) at 

m/z 861. It is interesting that the unsaturated PIs found in EpH4 were replaced by 
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saturated PIs, not just considering ions at m/z 863 and 861 but also PI (16:00/18:01) and 

PI (16:01/18:00) at m/z 835, PI (16:00/18:00) at m/z 837. The most remarkable change 

was observed in PI (20:03/18:00) at m/z 887, and PI (20:04/18:00) at m/z 885, which were 

present in less relative abundance in cancer cells compared to EpH4 cells.   

PIs are precursors of PIP3, a signaling lipid that modulates cell growth, 

proliferation and motility [32]. In malignant cells, this messenger process is altered by 

various mechanisms. The formation of PIP3 is promoted by PI3K of which the gene 

encoding the catalytic subunit was found to be amplified and overexpressed in several 

types of cancers including breast cancers [99]. PTEN is a tumor suppressor that removes 

the 3rd phosphate of PIP3 and attenuates signaling downstream of activated PI3K and is 

frequently mutated or lost in different breast cancers [99]. In this work, levels of PIP3 

precursors (PIs) were slightly higher in both tumor cells which is consistent with results 

shown by others in breast cancer cells [75] and tissues [67]. However, it is evident from 

the small differences that enzymatic activity regulating PIPs levels is a major if not more 

important signaling regulatory point. 

In some studies it is found that arachidonic acid caused significant increase of cell 

growth and a significant portion of this growth depended on PI3K activation [100]. This 

can justify our changes in the PI (20:03/18:00) and PI (20:04/18:00). It has been reported 

that high levels of DAG (C20:04/C18:00) and polyunsaturated PIs increase fluidity of 

liposomes, even at low temperatures [101]. Curiously, the MS/MS profile showed that in 

cancer cells, the unsaturated fatty acyl substitution was replaced by the saturated fatty 

acyl one, which suggests that low fluidity of cell membrane may be characteristic of 

malignant cells. Whether the level of saturation / membrane fluidity has an impact on cell 

signaling by PIPs, remains to be investigated. 
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2.  Phospholipid profiling of human mammary epithelial cell lines  

 

With a similar approach as that used in mouse cell lines, PL content and profile of 

lipid extracts was obtained from non-tumorigenic MCF10A mammary epithelial cells, T-

47D epithelial, non-metastatic and MDA–MB-231 spindle-shaped, metastatic mammary 

cancer cell lines. For this purpose, the PL classes separated by TLC were analyzed by MS 

and MS/MS using ESI ionization and quantified by phosphorus assay.  

To know the approximate amount of lipids and proteins per cell we counted the 

number of cells and quantified the PL and protein content in each extraction (Table 6).  

 

 

Table 6: Amount of PL and proteins per cell in µg in all three types of cells  

  PLs per cell (µg) Proteins per cell (µg)  

MCF10A 1,23E-05 ± 2,58E-06 3,35E-04 ± 1,30E-04 

T-47D 4,15E-05 ± 1,02E-05 5,67E-04 ± 2,15E-04 

MDA-MB-231 2,10E-05 ± 7,02E-06 3,61E-04 ± 1,70E-04 

 

 

Phospholipid class separation and quantification 

 

Separation of PL classes was accomplished by TLC permitting the fractionation and 

identification of LPC, SM, PC, PI, PS, PE, PA and CL classes in distinct spots (Figure 22).  
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Figure 22: Separation of PL classes by thin layer chromatography. The class named as Lyso PL 
could not be identified with any standard used.  

 

Relative PL content (%) of each PL class in total lipid extract was evaluated by 

quantifying the amount of PL in each spot by phosphorus assay and results obtained are 

shown in Figure 23.  
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Figure 23: Relative phospholipid (PL) content (%) of PL classes in human non-tumorigenic and 
cancer cell lines. Phosphate content in each spot was related to total phosphate content in the 

sample. Mean +/- SD from three independent experiments is shown  

 

The most abundant PL class in all cell lines was PC, followed by PE. The lyso PL was 

a class found in both cancer cells but with no correspondence to any standard used in the 

TLC and since its abundance was very low, it was impossible to analyze by MS. However, 

due to its position in the TLC plate, it appears to be a lyso SM. LPC was slightly lower in 

the less metastatic T-47D cell line compared to the other cell lines, MDA-MB-231 and 

MCF10A. Many studies refer that lyso PLs are more abundant in cancer cells [102], as 

appears to happen in our results. Increased PC levels have been reported in malignant 

cells compared to non-tumorigenic cell, but with no substantial differences between 

malignant cells with low and high level of progression [75]. These observations are in 

agreement with our results. Curiously, levels of PI, the precursors of PIPs known to be 

actively involved in growth and cell migration [27] have a slight decrease in cancer vs non 

tumorigenic cells, while PS, CL and SM did not substantially change. The percentage of PE 

class decreased with the increase of aggressiveness, being more evident the difference 
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between non-tumorigenic cells and both cancer cells. PAs were only detected in the most 

metastatic cells, MDA-MB-231, which could indicate that this PL class exist in very low 

abundance in the other two types of cells, MCF10A and T-47D.  

 

Each PL class was analyzed by MS and MS/MS and the molecular species of each 

class were identified in order to evaluate if, in addition to differences in relative PL classes 

content, differences in molecular composition of each PL class could be observed. PI, PS, 

CL and PA classes were analyzed in the negative mode, and the results obtained are 

summarized in Table 7 with the indication of the m/z values of the ions [M-H]-.  

 

 

Table 7: Identification of [M-H]
- 
ions observed in the MS spectra of PA, PI, PS and CL.  

 
Diacil 

 
[M-H]- C:N Fatty acids   

P
A

 

647 32:00 16:00 16:00 

673 34:01 16:00 18:01 

675 34:00 16:00 18:00 

701 36:01 18:00 18:01 

703 36:00 18:00 18:00 

       

P
I 

835 34:01 16:00 18:01 

835 34:01 16:01 18:00 

837 34:00 16:00 18:00 

861 36:02 18:02 18:00 

861 36:02 18:01 18:01 

863 36:01 18:00 18:01 

865 36:00 18:00 18:00 

885 38:04 20:04 18:00 

887 38:03 20:03 18:00 

889 38:02 20:02 18:00 

909 40:06 22:06 18:00 

911 40:05 22:05 18:00 

913 40:04 22:04 18:00 
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P
S 

734 32:00 16:00 16:00 

760 34:01 16:00 18:01 

760 34:01 16:01 18:00 

786 36:02 18:00 18:02 

786 36:02 18:01 18:01 

788 36:01 18:00 18:01 

812 38:03 20:00 18:03 

812 38:03 20:03 18:00 

814 38:02 20:02 18:00 

836 40:05 18:00 22:05 

844 40:01 18:00 22:01 

872 42:01 22:00 20:01 

       

C
L 

1377 66:01 16:00 16:00 16:00 18:01 

1399 68:04 16:00 16:01 18:01 18:02 

1403 68:02 16:00 16:00 18:01 18:01 

1423 70:06 16:01 18:01 18:02 18:02 

1425 70:05 16:01 18:01 18:01 18:02 

1427 70:04 16:01 18:01 18:01 18:01 

1429 70:03 16:00 18:01 18:01 18:01 

1447 72:08 18:02 18:02 18:02 18:02 

1449 72:07 18:01 18:02 18:02 18:02 

1451 72:06 18:01 18:01 18:02 18:02 

1453 72:05 18:01 18:01 18:01 18:02 

1455 72:04 18:01 18:01 18:01 18:01 

1475 74:08 18:01 18:02 18:02 20:03 

1475 74:08 18:02 18:02 18:02 20:02 

1477 74:07 18:01 18:01 18:02 20:03 

1477 74:07 18:01 18:02 18:02 20:02 

 

 

 

 

 

 

 

The attribution of the fatty acyl composition of each PL molecular species was done 

accordingly with the interpretation of the correspondent MS/MS spectra. C:N: number of 

carbons in the fatty acid chain : number of double bonds; fatty acids (#:#): the first value 

indicates # of carbons in the fatty acid chain and the second value, the # of double bonds in 

that chain; PI: phosphatidylinositol; PS: phosphatidylserine; PA: phosphatidic acid; CL: 

cardiolipin 
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PC, SM, LPC and PE classes were analyzed in the positive mode and molecular 

species identified are summarized in Table 8 with the indication of the m/z values of the 

ions [M+H]+.  

 

 

Table 8: Identification of [M+H]+ ions observed in the MS spectra in LPC, PC, SM, PE and PS 

 
Diacil Alquilacil  

 
[M+H]+ C:N Fatty acids  [M+H]+ C:N Fatty acids  

LP
C

 494 16:01 16:01 508 18:01 O-18:01 

522 18:01 18:01 510 18:00 O-18:00 

524 18:00 18:00 
    

         

P
C

 

706 30:00 14:00 16:00 718 32:01 O-14:00 18:01 

732 32:01 14:00 18:01 720 32:00 O-14:00 18:00 

732 32:01 16:00 16:01 744 34:02 O-16:00 18:02 

734 32:00 16:00 16:00 746 34:01 O-16:00 18:01 

734 32:00 14:00 18:00 748 34:00 O-16:00 18:00 

758 34:02 16:01 18:01 772 36:02 O-16:00 20:02 

760 34:01 16:00 18:01 774 36:01 O-16:00 20:01 

762 34:00 16:00 18:00 
    784 36:03 18:01 18:02 
    786 36:02 18:01 18:01 
    788 36:01 18:00 18:01 
    808 38:05 20:04 18:01 
    808 38:05 20:03 18:02 
    810 38:04 20:01 18:03 
    812 38:03 20:01 18:02 
    814 38:02 20:01 18:01 
    834 40:06 20:03 20:03 
    

         

SM
 

703 34:01 18:01 16:00 
    705 34:00 18:00 16:00 
    785 40:02 18:01 22:01 
    787 40:01 18:01 22:00 
    813 42:02 18:01 24:01 
    815 42:01 18:01 22:00 
    841 44:02 18:01 26:01 
    843 44:01 18:01 26:00 
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P
E 

690 32:01 14:00 18:01 702 34:02 O-16:01 18:01 

690 32:01 16:00 16:01 704 34:01 O-16:00 18:01 

716 34:02 16:01 18:01 732 36:01 O-18:00 18:01 

718 34:01 16:01 18:00 
    718 34:01 16:00 18:01 
    740 36:04 18:02 18:02 
    742 36:03 18:01 18:02 
    744 36:02 18:01 18:01 
    744 36:02 18:00 18:02 
    746 36:01 18:00 18:01 
    748 36:00 18:00 18:00 
    766 38:05 20:04 18:01 
    768 38:04 20:04 18:00 
    768 38:04 20:03 18:01 
    770 38:03 20:02 18:01 
    790 40:07 22:06 18:01 
    792 40:06 22:06 18:00 
    794 40:05 22:05 18:00 
    796 40:04 22:04 18:00 
    

         

P
S 

736 32:00 16:00 16:00 
    762 34:01 16:00 18:01 
    762 34:01 16:01 18:00 
    788 36:02 18:00 18:02 
    788 36:02 18:01 18:01 
    790 36:01 18:00 18:01 
    814 38:03 20:00 18:03 
    814 38:03 20:03 18:00 
    816 38:02 20:02 18:00 
    838 40:05 18:00 22:05 
    846 40:01 18:00 22:01 
    874 42:01 22:00 20:01 
     

 

 

 

 

In general for the three different types of cells we see the same molecular species 

in each PL class. However, in some cases the relative abundances were different and 

The attribution of the fatty acyl composition of each PL molecular species was done accordingly 

with the interpretation of the correspondent MS/MS spectra. C:N: number of carbons in the 

fatty acid chain : number of double bonds; fatty acids (#:#): the first value indicates # of carbons 

in the fatty acid chain and the second value, the # of double bonds in that chain; PC: 

phosphatidylcholine; LPC: lysophosphatydilcholine; SM: sphingomyelin; PE: 

phosphatidylethanolamine; PS: phosphatidylserine 
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resulted in different PL profiles. The profile of PA class is just from MDA-MB-231 cell line, 

since it was only detected in this type of cells. A profile of either both lyso classes could 

not be traced due to their low abundance; however, some LPCs presented in the spot 

could be identified. The PL profile observed for each class in each cell type is described in 

the following section.  

 

 

Phosphatidilcholine and Lysophosphatidylcholine profile  

 

 PCs obtained from the three different types of cells were analyzed by ESI-MS in 

positive mode, with formation of both [MH]+ and [MNa]+. In order to identify exclusively 

the [MH]+ ions, precursor ion scan of the ion at m/z 184 were obtained in the triple 

quadrupole, as typical approach for choline lipids and described previously for mouse 

mammary epithelial cells. This approach permitted to obtain the spectra shown in Figure 

24, which revealed the [MH]+ ions of all PCs present in the extract from the spot obtained 

after TLC separation.  

 

 

Figure 24: Phosphatidylcholine (PC) spectra obtained by electrospray ionization mass 
spectrometry analysis of PC extracted from the correspondent spots separated by thin layer 

chromatography. PCs were selectively detected by diagnostic precursor ion scan of the product 
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ion at m/z 184 in the positive mode obtained using an electrospray triple quadrupole. Y-axis: 
Relative abundance considering the highest abundant ion as 100 %; x-axis: m/z for each ion. 

 

Identification of both diacyl and alkilacyl PCs as well as their fatty acyl chains 

composition along the glycerol backbone was achieved by direct analysis and 

interpretation of MS/MS spectra of each ion identified in the MS spectra, as resumed in 

Table 8.  

The major PCs found were PC (16:00/18:01) corresponding to [MH]+ at m/z 760, 

followed by PC (18:01/18:01), PC (18:00/18:01) and PC (14:00/18:01 and 16:00/16:01) 

corresponding to [MH]+ at m/z 786, 788 and 732 respectively. The less abundant PCs 

appears to be the alkylacyl PCs, as PC (O-16:00/18:01) and PC (O-16:00/20:01) 

corresponding respectively to [MH]+ at m/z 746 and 774.  

Slightly relative PC levels were observed between the three cell lines, where there 

appeared to be an increase in the amount of PC with the increase of metastatic potential, 

i.e., MCF10A <T-47D<MDA-MB-231. Looking to the spectra, some differences were also 

found as PC (18:01/18:01) (m/z 786) and PC (18:00/18:01) (m/z 788), were higher in the 

metastatic cell line, MDA-MB-231. In addition, an increase of alkylacyl PCs was observed 

in MDA-MB-231 cells. There is another difference in both cancer cells comparing to non-

tumorigenic cell line MCF10A, where PC (14:00/18:01 and 16:00/16:01) seemed to be 

increased.  

Augmented synthesis of PC was reported in the T-47D cell line compared to 

normal breast tissue, but revealed similarities between the composition of diacyl PC, 

which is consistent with our results, both at the relative PL content levels (Figure 23) and 

the appearance of the spectrum [78]. The amount of PCs did not vary substantially 

between both tumor cell lines, in agreement with the literature [75], and as mentioned 

previously in our study in mouse cell lines.  

It has been proposed that low levels of ether PCs are characteristic of breast 

cancer versus normal breast tissue [78]. Further, reduced levels of ether PCs were found 

to be characteristic of early stages of breast cancer progression, but not in all stages, 

being reported higher levels of ether PCs in malignant versus benign breast tumors [75].  
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Despite being detectable in all three cell types it was not possible to trace a LPC 

class profile due to its very low abundance. However, some LPC species could be 

identified in the LPC MS spectra with formation of both [MH]+ and [MNa]+. Both acyl and 

alkyl LPCs were identified in Table 8 . This identification of acyl and alkyl LPCs as well as 

their fatty acyl chain composition along the glycerol backbone was achieved by direct 

analysis and interpretation of MS/MS spectra of each ion identified in the MS spectra, as 

explained in mouse cell line analysis.  

In the spectra it was identified five LPC, including diacyl LPC (16:01), LPC (18:01) 

and LPC (18:00) corresponding to [MH]+ at m/z 494, 522 and 524 respectively, and akyl 

LPC (O-18:01) and LPC (O-18:00) corresponding respectively to [MH]+ at m/z 508 and 510.  

Interestingly, the relative PL content of LPC class decreased slightly in the low 

metastatic T-47D cells but increased in the MDA-MB-231 cells. One of the main sources of 

LPC comes from the hydrolysis of the sn-2 ester bond of PC by PLA2, to yield free LPC and 

fatty acid, predominantly arachidonic acid, as described previously [82]. The activity and 

expression of several PLA2 isoforms are increased in several human cancers. Therefore, 

we propose that the increase of LPC in our sample is probably due to higher PLA2 levels 

or enzymatic activity [83].  

 

 

Sphingomyelin profile  

 

 SMs were analyzed by ESI-MS in positive mode obtained for the three different 

types of cells, with formation of both [MH]+ and [MNa]+. In order to obtain exclusively the 

[MH]+ ions, precursor ion scan of the ion at m/z 184 was obtained in the triple 

quadrupole, as typical approach for choline lipids and described previously for mouse 

mammary epithelial cells. This approach permitted to obtain the [MH]+ ions of all PCs 

present in the spot obtained after TLC separation, as the spectra shown in Figure 25.  
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Figure 25: Sphingomyelin (SM) spectra obtained by electrospray ionization mass spectrometry 
analysis of SM extracted from the correspondent spots separated by thin layer chromatography. 
SMs were selectively detected by diagnostic precursor ion scan of the product ion at m/z 184 in 
the positive mode obtained using an electrospray triple quadrupole. Y-axis: Relative abundance 

considering the highest abundant ion as 100 %; x-axis: m/z for each ion 

 

Interpretation of MS/MS spectra of each ion identified in the MS spectra allowed 

the identification of diacyl SMs as well as their fatty acyl chains composition along the 

glycerol backbone, as resumed in Table 8.  

Observing the three spectra, SMs ions with higher relative abundance are SM 

(18:01/16:00), SM (18:01/24:01) and SM (18:01/24:00), corresponding to [MH]+ at m/z 

703, 813 and 815 respectively followed by SM (18:01/22:00) corresponding to [MH]+ at 

m/z 787. Due to their high abundance and because they elute close to each other, we can 

see some PCs species in this spot, ions 760 and 732. However, PCs and SMs are easily to 

differentiate since PC species form ions with m/z even and SM species form ions with m/z 

odd.  

Differences among the three spectra could be observed. First, a slight decrease in 

the relative abundance of SM (18:01/24:01), SM (18:01/24:00) and also SM (18:01/22:00) 

in T-47D comparing with non-tumorigenic MCF10A cells, which was more pronounced 
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when compared to MDA-MB-231 cells. Evident differences in the MDA-MB-231 profile 

compared with the other two types of cells, MCF10A and T-47D were observed and 

include: the relative abundance of SM (18:01/22:00), SM (18:01/24:01) and SM 

(18:01/24:00) increased substantially in the most metastatic cell line. Interestingly, 

looking to the relative SM abundance we see an increase of SMs, despite not 

substantially, in the MDA-MB-231 cells in addition to the differences in the SM profile 

which could be correlated.  

As explained in the previous section (mouse cell lines), sphingolipids, such as SM, 

have important roles in basic cellular processes, such as proliferation, apoptosis, 

transformation, differentiation, motility and angiogenesis and also in maintain the bilayer 

structure, macrodomain formation and signaling, all of which are altered in breast cancer 

[91]. High levels of C16-ceramide, a precursor of SM biossynthesis, have been found in 

different types of tumors, compared to other healthy tissue [89]. These results are in 

agreement comparing our observations in non-tumorigenic cell line MCF10A and the low 

metastatic cell line T-47D, where the relative abundance of all SM is lower compared to 

SM (18:01/16:00) and (18:00/16:00). Highly metastatic cell line MDA-MB-231 profile have 

some similarities with MCF10A profile probably because these type of cells share some 

features, i. e. not express the three hormone receptors, ER, PR and HER2 and cluster 

within the same group of expressed genes. However, they obviously present important 

differences since MDA-MB-231 are cancer cells and MCF10A are not.  

 

 

Phosphatidilethanolamine profile  

 

PE was analyzed by ESI-MS in positive mode, with formation of [M+H]+, and 

confirmation of neutral loss scan (neutral loss of polar head, -141 Da) was obtained in the 

triple quadrupole, as typical approach for PEs [76, 77] and as described previously for 

mouse mammary epithelial cells. This approach permitted to obtain the spectra in the 

Figure 26, which revealed the [M+H]+ ions of PEs present in the TLC spot.  
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Figure 26: Phosphatidylethanolamine (PE) spectra obtained by electrospray ionization mass 
spectrometry analysis of PE extracted from the correspondent spots separated by thin layer 

chromatography. PEs were selectively detected by diagnostic neutral loss scan correspondent to 
the neutral loss of PE polar head (neutral loss of 141 Da) in the positive mode obtained using an 
electrospray triple quadrupole. Y-axis: Relative abundance considering the highest abundant ion 

as 100 %; x-axis: m/z for each ion 

 

Analysis of both diacyl and alkylacyl PEs was achieved by direct interpretation of 

MS/MS spectra of each ion identified in the MS spectra, permitting the identification of 

both their fatty acyl chains composition along the glycerol backbone, as described 

previously and resumed in Table 8.  

The most abundant PEs in all cell types were PE (18:01/18:01 and 18:00/18:02) 

and PE (18:00/18:01) corresponding respectively to the ion [M+H]+ at m/z of 744 and 746 

by followed PE (16:01/18:00 and 16:00/18:01), PE (20:04/18:01) and PE (20:04/18:00 and 

20:03/18:01) with m/z of 718, 766 and 768 respectively.  

There was a difference in the highly metastatic MDA-MB-231 cell line profile; the 

PE (20:04/18:00 and 20:03/18:01) (m/z 768 ) and PE (22:06/18:00) (m/z 792 ) had a higher 

relative abundance compared to the other two types of cells, MCF10A and T-47D cells, 
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which could be related to the metastatic phenotype. In addition, when we compare the 

mass range of the PE spectra between m/z of 700 and 740, a higher relative abundance of 

PE (O-18:00/18:01) and PE (O-16:00/18:01) which correspond to the ion [M+H]+ at m/z of 

732 and 704 respectively was observed in the high metastatic MDA-MB-231 cells. T-47D 

cell line present also some differences, as a higher relative abundance of PE (16:01/18:00 

and 16:00/18:01) and, more notorious in the PE (18:01/18:01 and 18:00/18:02) which had 

a higher relative abundance than PE (18:00/18:01), in contrast to MCF10A and MDA-MB-

231 cell lines.  

As explained in the mouse cell lines section, malignant tumors appear to be 

particularly rich in PEs [66] which were found to be significantly altered in malignant 

tumors compared to benign tumors and to non-involved breast tissue [67]. Curiously once 

again, these results are in clear contrast with ours, since in the non-tumorigenic MCF10A 

cells, the relative PE amount was higher than in both cancer cells.  

PEs have also been demonstrated to be significantly increased in MDA-MB-231 

[75]. These is in agreement with our results, using the same cells, where certain molecular 

species of PEs (per example PE (20:04/18:00 and 20:03/18:01) and PE (O-18:00/18:01)) 

were found with the highest relative abundance.  

 

 

Phosphatidylserine profile  

 

PSs were analyzed by ESI-MS in negative mode, with formation of [M-H]-. This 

approach permitted to obtain the spectra in Figure 27, which revealed [M-H]- ions present 

in the TLC spot.  
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Figure 27: MS spectrum obtained by electrospray ionization mass spectrometry analysis of PS 
extracted from the correspondent spots separated by thin layer chromatography. The PS spot was 

extracted and acquired in the negative mode obtained using an electrospray ion trap. Y-axis: 
Relative abundance considering the highest abundant ion as 100 %; x-axis: m/z for each ion. 

 

PS profile was also confirmed with a neutral loss scan in the positive mode 

(neutral loss of polar head, -185 Da) in the triple quadrupole in order to identify all PSs 

content in the TLC spot. This approach permitted to obtain the spectra in Figure 28, which 

revealed all [M+H]+ PS ions present in the TLC spot.  
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Figure 28: Phosphatidylserine (PS) spectra obtained by electrospray ionization mass spectrometry 
analysis of PS from spots separated by thin layer chromatography. PSs were selectively detected 
by diagnostic neutral loss scan correspondent to the neutral loss of PE polar head (neutral loss of 

184 Da) in the positive mode obtained using an electrospray triple quadrupole. Y-axis: Relative 
abundance considering the highest abundant ion as 100 %; x-axis: m/z for each ion. 

 

Interpretation of MS/MS spectra of each ion identified in the MS spectra allowed 

identification of diacyl PSs as well as their fatty acyl chain composition as described in 

mouse cell lines, as present in Table 7 and Table 8.  

The most abundant PS in the MCF10A and MDA-MB-231 cells was PS 

(18:00/18:01) corresponding to the ion [M-H]- at m/z of 788 and to the ion [M+H]+ at m/z 

of 790, followed by PS (16:00/18:01 and 16:01/18:00) corresponding to the ion [M-H]- at 

m/z of 760 and to the ion [M+H]+ at m/z of 762. In the T-47D cells, we observed exactly 

the opposite, the most abundant ion was PS (16:00/18:01 and 16:01/18:00) followed by 

PS (18:00/18:01). Curiously there was a significant alteration in PS (16:00/18:01 and 

16:01/18:00) (m/z 760 in the negative mode and m/z 762 in the positive mode) that were 

found with a high relative abundance in T-47D cells but with a very low relative 

abundance in the MCF10A and MDA-MB-231 cells. On the other hand, PS (18:00/18:01) 

(m/z 788 in the negative mode and m/z 790 in the positive mode) had a high relative 
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abundance in the MCF10A and MDA-MB-231 cells but a very low abundance in the T-47D 

cells.  

 

As previously described, PS, a PL found predominantly on the inner membrane 

leaflets, plays very important roles in cellular homeostasis, and is therefore very 

important in the cell. PS is involved in signaling pathways and in localization of 

intracellular proteins to the cytosolic membrane leaflets, in addition to a structural 

function [96, 97]. The appearance PS on the outer leaflet of a lipid bilayer initiates many 

biological events, including platelet aggregation, cell adhesion, and is an indication of 

cellular apoptosis.  

It has been described that PS distribution in cancer cells is altered [98]. Our results 

showed differences between low metastatic T-47D cells and highly metastatic MDA-MB-

231 cells, but the highly metastatic cells have a very similar profile to non-tumorigenic 

MCF10A cells, which puts in doubt whether or not these differences are related to cancer 

development and aggressiveness or cellular morphology. In addition, gene expression 

profiles of MCF10A and MDA-MB-231 are very similar, and both cells are classified as 

basal-like.  

 

 

Phosphatidic Acid profile   

 

This class of PLs has the simplest polar head group, and serves as a precursor and 

metabolite in the PL biosynthetic and catabolism pathways.  

PAs were analyzed by ESI-MS in negative mode, with formation of [M-H]-. This 

approach permitted to obtain the spectra shown in Figure 29, which revealed the PA     

[M-H]- ions present in the TLC spot. 
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Figure 29: A. Diacyl PA structure; B. MS spectrum obtained by electrospray ionization mass 
spectrometry analysis of PA extracted from the correspondent spot separated by thin layer 

chromatography of MDA-MB-231 mammary cancer cells. The PA spot was extracted and acquired 
in the negative mode obtained using an electrospray ion trap. Y-axis: Relative abundance 

considering the highest abundant ion as 100 %; x-axis: m/z for each ion. 

 

Analysis of PAs species allowed to identify diacyl PAs as resumed in Table 7. This 

identification as well as their fatty acyl chain composition and location along the glycerol 

backbone was achieved by direct analysis and interpretation of MS/MS spectra of each 

ion identified in the MS spectra. This is possible because fragmentation of deprotonated 

ions ([M-H]-) is characteristic only for the ions from the loss of the fatty acyls chains ([M-

H-R1COOH]- and [M-H-R2COOH]-) and the ions corresponding to the fatty acyls chains 

themselves ([R2COO]- > [R1COO]-) [77] (Figure 30).  
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Figure 30: ESI – MS/MS spectrum of the [M-H]- at m/z 675, corresponding to PA (16:00/18:00). 
Molecular structure of phosphatidic (PA; below) presenting main cleavages correspondent to the 

fragmentation observed in the MS/MS spectrum of [M-H]- ion obtained in ESI-ion trap. 
Fragmentation of [M-H]- gave the loss of the fatty acids, and ions corresponding to the fatty acyls 

chains carboxylate anions ([R2COO]- and [R1COO]-). 

 

Interestingly, this class was only separated in the MDA-MB-231 cell line. 

Therefore, only the profile from this cell line was obtained. The most abundant PA found 

was PA (16:00/18:00) corresponding to the ion [M-H]- at m/z of 675 followed by PA 

(16:00/16:00) and PA (18:00/18:00) corresponding to the ion [M-H]- at m/z of 647 and 

703 respectively.  

 

PA is a vital cell lipid that acts as a biosynthetic precursor for the formation 

(directly or indirectly) of triacylglycerols and phospholipids in the cell, and acts as a 

signaling molecule. PA can be generated by different ways (Figure 10): via the hydrolysis of 

PC by phospholipase D (PLD), via phosphorylation of DAG by diacyl glycerol kinase (DAGK) 

and phospholipase C (PLC), and via acylation of LPA by LPA acyltransferase (LPAAT). PA is 
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degraded by conversion into DAG by lipid phosphate phosphohydrolases (LPPs), keeping 

PA concentrations at extremely low levels in the cell in normal conditions [103], which 

could explain the difficulty of separation and / or visualization of the PA band by TLC in 

MCF10A and T-47D cells lipid extracts.  

PLD is an important signaling enzyme implicated in the control of many biological 

processes, including cell proliferation and survival [104]. PLD expression was shown to be 

elevated in human breast tumors compared with normal breast tissues [105] indicating a 

possible role of PLD in human breast tumorigenesis. This is in agreement with our high 

levels of PA in the high metastatic MDA-MB-231 cells.  

ATX, which converts LPC into LPA, is well known to promote metastasis, cell 

growth, survival, and migration in cancer cells [84], and also described in breast cancer 

cells [85]. Higher plasma LPA levels are present in patients with ovarian cancer and other 

gynecologic malignancies, like breast cancer, compared with healthy controls [86]. Since 

one of the main syntheses of PA is from LPA, differences in LPA levels could also influence 

our levels of PAs. However, because we have not found LPAs in PL separation, probably 

due to its low abundance, we can not infer if levels of LPA are related with our high levels 

of PA in the more metastatic cell lines MDA-MB-231.  

 

 

Phosphatidylinositol profile  

 

PIs were analyzed by ESI-MS in negative mode, with formation of [M-H]-. This 

approach permitted to obtain the spectra shown in Figure 31, which revealed the PI [M-H]- 

ions present in the TLC spot.  
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Figure 31: MS spectra obtained by electrospray ionization mass spectrometry analysis of PI 
extracted from the correspondent spots separated by thin layer chromatography. The PI spot was 
extracted and MS spectra were acquired in the negative mode obtained using an electrospray ion 

trap. Y-axis: Relative abundance considering the highest abundant ion as 100 %; x-axis: m/z for 
each ion. 

 

Interpretation of MS/MS spectra of each ion identified in the MS spectra allowed 

to identify diacyl PIs as explained previously for mouse mammary epithelial cells and 

resumed in Table 7.  

Differences between the spectra corresponding to the three cell types were 

observed, comparing non tumorigenic cells with cancer cells and between the cancer cells 

with low and high metastatic potential, underlining once more the idea that PI molecular 
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species may be target of, or reflect malignant transformation. In the relative PL content of 

this class, there is a slight decrease with the increase of aggressiveness.  

The PIs (observed as [M-H]-) that were most abundant in MCF10A cells were PI 

(20:03/18:00) at m/z of 887 followed by PI (22:05/18:00) at m/z 911, and by PI 

(18:01/18:01 and 18:02/18:00) and PI (16:00/18:01 and 16:01/18:00) at m/z of 861 and 

835 respectively. In the T-47D and MDA-MB-231 cell lines the most abundant PIs were PI 

(18:00/18:01) and PI (20:03/18:00) at m/z of 863 and 887 respectively, followed by PI 

(16:00/18:01 and 16:01/18:00) and PI (22:05/18:00) at m/z of 835 and 911 respectively.  

Observing the differences between non tumorigenic cells and cancer cells, the 

high relative abundance of PI (18:00/18:01) (m/z 863) in both cancer cells is evident. 

Comparing cancer cell lines, it appears that in the highly metastatic cells the PI 

(22:05/18:00) increased while PI (16:00/18:01 and 16:01/18:00) decreased. Curiously, 

regarding these PIs, MCF10A and MDA-MB-231 shared a similar profile compared to the 

T-47D cells. These again may be related to the similarities in gene expression profiles and 

therefore in cell type of origin between MDA-MB-231 cells and MCF10A. 

PI is responsible for mediating communication between receptors on the cell 

surface and the extracellular medium, because it is precursor of PIP3, a signalling lipid 

that modulates cell growth, proliferation and motility [32]. In malignant cells, this 

messenger process is altered by various mechanisms, as described in the mouse cell lines 

sections.  

In some works with breast cancer tissues the levels of PIs were slightly higher [67], 

which is not consistent with our results. A more recent study in breast cancer cells 

showed no substantial differences [75], which could suggest no significant alterations in 

the total content of this class in the cell, but an alteration in the molecular species which 

constitute its profile.  
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Cardiolipin profile  

 

The most complex phospholipid present in eukaryotic cells is CL, because this PL 

consists of two phosphatidic acids with a glycerol bond. The exact role of cardiolipin in 

cellular biochemistry is complex; but, it is clear that cardiolipin is necessary for 

cytochrome C (cyt c) insertion into the mitochondrial membrane, and that it is involved in 

mitochondrial stability and function. CL obtained from the three different types of cells 

was analyzed by ESI-MS in negative mode, with formation of both [M-H]- and [M-2H]2-. 

The Figure 32 represents the spectra of the ions [M-H]- present in the TLC spot of CL class.  

 

 

Figure 32: A. cardiolipin (CL) structure; B. MS spectra obtained by electrospray ionization mass 
spectrometry analysis of CL extracted from the correspondent spots separated by thin layer 

chromatography. The CL spot was extracted and MS spectra were acquired in the negative mode 
obtained using an electrospray ion trap. Y-axis: Relative abundance considering the highest 

abundant ion as 100 %; x-axis: m/z for each ion 
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Figure 33: ESI – MS/MS spectrum of the [M-H]- at m/z 1451 and [M-2H]2- at m/z 725, 
corresponding to CL (18:02/18:02/18:01/18:01). Molecular structure cardiolipin (CL; below) 

presenting main cleavages correspondent to the fragmentation observed in the MS/MS spectrum 
of [M-H]- ion obtained in ESI-ion trap. Fragmentation of [M-2H]2- gave more products, as the loss 

of the fatty acids, the loss of the fatty acids in the PA and ions corresponding to the fatty acyls 
chains carboxylate anions ([R1COO]-, [R2COO]-, [R3COO]- and [R4COO]-). 
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Analysis of CLs species allowed to identify diacyl CLs as resumed in Table 7. This 

analysis was achieved by direct interpretation of MS/MS spectra of each ion identified in 

the MS spectra, both [M-H]- and [M-2H]2-. This is possible because fragmentation of 

desprotonated ions ([M-H]- and [M-2H]2-) form second product ions, some due to the 

elimination of each fatty acids [57]. Examples of main product ions of CL are: [M-H-

RCOOH]-, the two different PAs ([PA-H]-), PAs with the glycerol ([PA-H+56]-) and with the 

glycerol plus phosphate group ([PA-H+136]-), the loss of fatty acyls in PAs                      

([PA-H-RCOOH]-) and the ions corresponding to the fatty acyls chains ([R1COO]-, [R2COO]-, 

[R3COO]- and [R4COO]-) as shown in Figure 33.  

 

The most abundant CLs were CL (18:01/18:01/18:02/18:02) and CL 

(16:01/18:01/18:01/18:02) corresponding to the ion [M-H]- at m/z 1451 and 1425, 

respectively, followed by CL (16:00/16:01/18:01/18:02) and CL (18:01/18:02/18:02/20:03 

and 18:02/18:02/18:02/20:02) corresponding to the ion [M-H]- at m/z of 1399 and 1475, 

respectively.  

Despite the percentage of CL in the total lipid extract being similar, there were 

some remarkable differences between the CL profiles of the three different types of cells. 

Curiously, the profile of the most metastatic MDA-MB-231 cancer cells was more similar 

to non-tumorigenic MCF10A cells, than to low metastatic T-47D cancer cells, as observed 

in the PS profiles. The most abundant CL in the MDA-MB-231 and MCF10A was CL 

(18:01/18:01/18:02/18:02) (m/z 1451) while in the T-47D cells the most abundant was CL 

(16:01/18:01/18:01/18:02) (m/z 1425) followed by CL (16:00/16:01/18:01/18:02) (m/z 

1399), with a higher relative abundance of CL (18:01/18:01/18:02/18:02) (m/z 1451). The 

unique difference between non tumorigenic cells and both cancer cells is the decrease in 

the relative abundance of CL (18:01/18:02/18:02/20:03 and 18:02/18:02/18:02/20:02) 

(m/z 1475).  

In mammalian cells, CL is found almost exclusively in the inner mitochondrial 

membrane where it is essential for the optimal function of numerous enzymes that are 

involved in mitochondrial energy metabolism, and when CL is oxidized, is transferred 

from the inner to the outer membrane, and then helps in the release of cyt c, one of the 
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fundamental steps of apoptosis. Alterations in the content and/or structure of CL have 

been reported in several tissues in a variety of pathological settings [106]. The fatty acyl 

chain composition of CL is highly specific, being predominantly comprised of 18-carbon 

unsaturated acyl chains, and linoleic acid (18:2) is the most abundant fatty acyl chain in 

most mammalian tissues [107], which is consistent with our results, as all major four CLs 

possess at least one 18:02 fatty acid.  

Cell viability requires a constant level of energy, and most normal mammalian cells 

achieve this level of energy through respiration. In 1926, Otto Warburg found that cancer 

cells produce most of their Adenosine triphosphate (ATP) through glycolysis [108], now 

known to be a combination of respiration and glycolysis [109]. Indeed, elevated glycolysis 

is the metabolic hallmark of nearly all tumors, being a correlation between glycolytic ATP 

production and aggressiveness of the tumor cells [109]. This alteration in the 

mitochondria of a cancer cell can alter the composition of CL in the membrane, as is 

shown in the different profiles of the three types of cells in our results. Some studies 

showed that CL composition and/or content in mouse brain tumor mitochondria differed 

markedly from those in mitochondria derived from the normal syngeneic host brain tissue 

[110], indicating, since CL is intimately involved in mitochondrial respiratory functions, 

the CL abnormalities found will compromise respiratory energy metabolism in brain 

tumors.  
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3. Cross comparison between results of mouse and human species  

 

In this study PL content of two cell groups, one from mouse and other from 

human origin, were analyzed by TLC and MS. The comparison between these two species 

is important in order to understand if the differences obtained are likely to be conserved 

among species and therefore, how far it is possible to use another animal model to model 

the human pathology. TLCs were similar allowing the identification of the major PL 

classes, although some small differences were observed probably due to experimental 

details as the elution of TLC, which could be affected by temperature and humidity. One 

example is human PE class, which eluted more close to the top of the TLC. In mouse cells, 

the PA spot was not found and analyzed and what we thought that could be the CL spot 

was not supported by the MS analysis. In spite of these differences, we were able to 

characterize the profile of most PL classes and to see some differences in some of the 

major classes of PL that could be important to understand what happens in tumor cells in 

different stages of malignancy, and between mouse and human cell lines.  

 

 

Phosphatidilcholine and Lysophosphatidylcholine profile  

 

Observing the percentages of PL content of all cells, it is consistent the increase of 

PC in the low metastatic cells (MC4-L5 and T-47D) comparing to non-tumorigenic cells 

(EpH4 and MCF10A). However, in the high metastatic MDA-MB-231 cells, the increase 

remained, while in the mouse highly metastatic MC4-L2 cells the level of PCs decreased 

substantially. The LPC class appeared with higher levels in highly metastatic cells and 

lower levels in both non-tumorigenic cells followed by the low metastatic MC4-L5 and T-

47D cells. However, there was a lower increase of LPC in the human MDA-MB-231 cells 

compared to the increased observed in the mouse MC4-L2 cells. This could be related to 

the decrease of PC in MC4-L2 cells but not MDA-MD-231 cells, which in the former, could 

reflect activity of PLA2 to originate LPC.  
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Looking at the PC profile in all six cell lines, there was no substantial difference 

between their molecular species compositions. Regarding their relative abundances, 

akylacyl PCs seemed to be in a higher relative abundance in all mouse cell lines in 

comparison with human cell lines. The relative abundance of PC (18:01/18:01) and PC 

(18:00/18:01) appeared to vary but with no specific pattern, because they were higher in 

all cells except human T-47D and MCF10A cells.  

 

 

Sphingomyelin profile  

 

This PL class had a similar variance in the relative content comparing the different 

degrees of aggressiveness in mouse and human cell lines. There was a very slight increase 

on both cancer cell types compared to non-tumorigenic cells.  

In relation to the profile, there was a consistent decrease of SM (18:01/22:00), SM 

(18:01/24:01) and SM (18:01/24:00) in all ER+ cancer cells (MC4-L5, MC4-L2 and T-47D) 

relative to SM (18:01/16:00) and SM (18:00/16:00) comparing with non-tumorigenic cells. 

As we are comparing relative abundances we don’t know exactly in absolute levels which 

SM increase or decrease, but this is an evident difference which could be studied and 

explored.  

In the most metastatic human MDA-MB-321 cells the behavior is different 

comparing to the other cell lines appearing to be the profile with the highest relative 

abundance of SM (18:01/24:01) and SM (18:01/24:00). As explained previously, this could 

be probably because MDA-MB-231 cancer cells is from a different and more 

aggressiveness type of tumor, called basal like, do not express hormone receptors, 

consisting of very undifferentiated cells.  
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Phosphatidylethanolamine profile  

 

Curiously, the relative PL content of PE class was similar among the different 

degrees of aggressiveness comparing mouse cell lines and human cell lines. The non-

tumorigenic cells had an evident higher percentage of PEs compared to both types of 

cancer cells, which seemed to be characteristic of both mouse and human cell lines. Since 

we measured relative PL contents, we can not infer that there is a decrease of PEs in 

cancer cells, but differences in the relative PL content among the different degrees of 

aggressiveness are identical between mouse and human cells.  

However, when we looked to the lipid composition by analysis of MS spectra, we 

saw a reduced number of alkylacyl PEs species in human cells. Despite this, both highly 

metastatic MC4-L2 and MDA-MB-231 cells, had a slightly higher relative abundance of 

some alkylacyl PEs, such as PE (O-18:00/18:01) and PE (O-16:00/18:01) (at m/z of 732 and 

704 respectively), suggesting that this difference could be related to aggressiveness and / 

or morphology, since these cells have a more metastatic potential having a more 

distinguished spindle-shape morphology.  

 

 

Phosphatidylserine profile  

 

PS content seemed to be similar in all cell types, not having substantial differences 

in the relative PL content of this class between the different degrees of aggressiveness 

and between mouse and human cell lines.  

Looking to all profiles from mouse and human cells, they all seemed to have a 

similar PS composition, except for human low metastatic T-47D cells, which had an 

evident difference in the relative abundance of PS (18:00/18:01) and PS (16:00/18:01 and 

16:01/18:00) (at m/z of 788 and 760). Curiously there is no known reason for this 

difference just in the lipid profile of T-47D cell line, therefore, we can not conclude it is 

characteristic of low metastatic human cancer cells.  
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Phosphatidylinositol profile  

 

Comparing the relative PL content of PI class in mouse and human cell lines, the 

behavior was not the same. In the mouse cell lines there was a slightly higher percentage 

in both cancer cells compared to non-tumorigenic cells. In human cell lines it was exactly 

the opposite. Still, we can not conclude on whether there was an increase or decrease in 

absolute PI levels, but its content could be related to PI3K pathway which produces PIPs 

from PI (more concretely phosphorylates PIP2 resulting in PIP3) and is known to be 

altered in cancer. The increase or decrease of PIs could be related to the activation of 

PI3K.  

Comparing profiles of mouse and human cell lines, we see some differences in the 

molecular composition, for example, PI (22:05/18:00) (m/z 911) present in human cells 

but almost unidentifiable in mouse cells lines, suggesting that both species do not have 

exactly the same PI composition. Another curious difference was in the relative 

abundance of PI (16:00/18:01 and 16:01/18:00) (m/z 835) that appeared to be almost the 

same in all cell lines, except in T-47D cells were it was higher. There was an evident 

alteration that was consistent in both mouse and human cell lines: the ratio between the 

two most abundant PIs, PI (18:00/18:01) (m/z 863) and PI (20:03/18:00) (m/z 887). In 

mouse cell lines, the ratio of PI (18:00/18:01) / PI (20:03/18:00) increased in both cancer 

cells (MC4-L5 and MC4-L2) comparing to non-tumorigenic EpH4 cell line due to a minor 

relative abundance of PI (20:03/18:00) in both cancer cells. In human cells, the ratio of PI 

(18:00/18:01) / PI (20:03/18:00) increased in both cancer cells (T-47D and MDA-MB-231) 

comparing to non-tumorigenic MCF10A cell line due to a higher relative abundance of PI 

(18:00/18:01) in both cancer cells. Despite their differences in the relative abundance, the 

variation of the ratio of this two PIs between non-tumorigenic and cancer cells is similar 

in both mouse and human cell lines indicating an obvious alteration in the fatty acyl 

composition in cancer cells compared to non-tumorigenic cells.  
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IV. Conclusion  

 

In this work we described differences and similarities of the phospholipid profile 

from non-tumorigenic and cancer cells in both mouse and human cell lines. The main goal 

of the work was to evaluate if non-tumorigenic and cancer cells display differences in PL 

profile, which could be a consequence of their distinct metabolic state and / or different 

morphology. Also, this approach was used to search for differences among breast cancer 

cells with different levels of aggressiveness.  

The results obtained allowed us to identify some differences, between non-

tumorigenic and cancer cells that were observed both in mouse and human cell lines. 

Although the same molecular species were seen in all PL classes, the relative abundance 

of the molecular species changed for SM, PI and CL classes. SM class appeared to have a 

decrease of the SMs with C16 fatty acids in cancer cells compared to non-tumorigenic 

cells. Also in all cancer cells dramatic changes in the two most abundant PIs were 

observed; whereas the ratio PI (18:00/18:01) / PI (20:03/18:00) increased comparing to 

non-tumorigenic cells.  

It was also possible to distinguish the low from the high metastatic cell lines which 

could be associated to malignant progression in both mouse and human cell lines. The 

more aggressive cells showed increased relative amounts of LPCs. Alteration in PE profile, 

more concretely high amount of alkylacyl PEs were also found in the more aggressive cell 

lines.  

Despite having being analyzed only in human cells, CL and PA classes also showed 

differences. CL class had a minor relative abundance of long chain fatty acids in both 

cancer cells comparing to non-tumorigenic cells. PA class was only detected in the more 

metastatic cell line and its high abundance could also be associated to malignant 

progression.  

Comparison of mouse with human cell lines disclosed differences in PLs profile. 

However, the above mentioned similarities obtained in mouse cell lines, when compared 

to human cell lines, are likely to be conserved among species and reflect metabolic 

changes associated to cell morphology, gene expression and cancer progression, directly 
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related to enzymatic and metabolic activities known to be altered in cancer. Thus, 

identification of PL classes and their structure open new possibilities for exploration of 

such alterations in cancer and provide novel biomarkers. 
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