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Abstract 
 

The development of antimicrobials promoted the idea that diseases 
provoked by microorganisms would diminish and would be reduced 
to the insignificancy to human health. However, the great amount of 
antibiotics used in human medicine and veterinary lead to a selection 
of pathogenic bacteria resistant to multiple antibiotics, being hospital 
wastewaters one of the most important sources of antibiotic-
resistant organisms and antibiotic-resistance genes that are released 
into the environment.  
The significant increase in the development of multiple resistance 
mechanisms to antibiotics caused an increase in the research of 
alternative treatments that may be cost effective and human 
friendly. Antimicrobial photodynamic therapy (aPDT) is a quickly 
expanding technology for the treatment of diseases since it 
inactivates efficiently microorganisms, is cost effective and human 
safe.  
The general objective of this work was to assess the inactivation of 4 
clinical multidrug-resistant bacteria by aPDT, using a tetracationic 
porphyrin (PS). The efficacy of aPDT was assessed in phosphate 
buffered saline (PBS) and in hospital residual water for each isolated 
bacterium and for the bacteria mixtured all together. The synergistic 
effect of aPDT and antibiotics (ampicillin and chloramphenicol) was 
also evaluated as well as the effect of sodium dodecylsulphate (SDS) 
on aPDT efficiency.   
The results show an efficient inactivation of multidrug-resistant 
bacteria in PBS using 5 µM of PS during 270 minutes in the presence 
of a light fluence rate of 40 W.m-2 (reduction of 6 to 8 log). In the 
residual water, the inactivation of the 4 bacteria was also efficient 
and the decrease in bacterial number starts even sooner. 
It was observed a faster decrease in bacterial number when aPDT 
was combined with the addition of ampicillin and chloramphenicol at 
concentrations of 16 and 32 µg mL-1 (MIC dose 32 µg mL-1 for both 
antibiotics). The efficiency of aPDT with a lower porphyrin 
concentration (2.5 µM) in the presence of antibiotics at MIC dose was 
not significantly different of that obtained when just the PS was used.  
The addition of SDS did not affect the efficiency of aPDT.  
The results of this study showed that aPDT inactivate efficiently 
multidrug-resistant bacteria, in hospital residual water the bacterial 
inactivation is faster than in PBS, the combination of antibiotics and 
aPDT acts more efficiently than the aPDT alone, but aPDT in the 
presence of SDS does not affect the efficiency of bacterial 
inactivation. 
In conclusion, aPDT is effective to combating microbial diseases 
transmitted by multidrug-resistant bacteria and can be used to 
increase the efficacy of classical antibiotics. 
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Resumo 
 
 

O desenvolvimento de agentes antimicrobianos levou a pensar que 
as doenças provocadas por microrganismos diminuiriam, tornando-
se insignificantes para a saúde humana. No entanto, a grande 
quantidade de antibióticos utilizados na medicina humana e 
veterinária levaram a uma selecção de bactérias patogénicas 
resistentes a muitos antibióticos, sendo os efluentes hospitalares 
uma das fontes mais importantes de organismos resistentes a 
antibióticos e de genes de resistência a antibióticos que são 
lançados no meio ambiente. 
O aumento significativo no desenvolvimento de diversos 
mecanismos de resistência a antibióticos provocou um aumento na 
pesquisa de tratamentos alternativos que apresentem baixo custo e 
que não apresentem efeitos adversos para o homem. A terapia 
fotodinâmica antimicrobiana (aPDT) alternativa aos antibióticos 
para o tratamento de doenças, visto que inactiva eficientemente 
microrganismos, é barata e segura. 
O objectivo geral deste trabalho foi avaliar a inactivação de quatro 
isolados clínicos de bactérias multirresistentes pela aPDT, utilizando 
uma porfirina tetracatiónica (PS). A eficácia da aPDT foi avaliada em 
solução tampão (PBS) e em águas residuais hospitalares para cada 
bactéria isolada e para a mistura das 4 bactérias juntas. O efeito 
sinergético da aPDT e antibióticos (ampicilina e cloranfenicol) 
também foi avaliado, assim como o efeito do dodecilsulfato de 
sódio (SDS) sobre a eficiência da aPDT. 
Os resultados mostram uma inactivação eficiente de bactérias 
multirresistentes em PBS utilizando 5 µM de PS, durante 270 
minutos na presença de 40 W.m-2 de luz (redução de 6-8 log). Na 
água residual hospitalar, a inactivação das 4 bactérias foi igualmente 
eficiente, começado mesmo a diminuição do número de bactérias 
mais cedo que em PBS. 
Foi observado uma redução mais acentuada no número de bactérias 
quando a aPDT foi combinada com a adição de ampicilina e 
cloranfenicol nas concentrações de 16 e 32 μg mL-1 (dose MIC de 32 
μg mL-1 para ambos os antibióticos). A eficiência da aPDT com uma 
concentração inferior de PS (2.5 µM) na presença de antibióticos na 
dose MIC não foi significativamente diferente da obtida quando foi 
utilizado apenas a porfirina. A adição do SDS também não afectou a 
eficiência da aPDT. 
Os resultados deste estudo mostraram que a aPDT inactiva bactérias 
multirresistentes de forma eficiente; em água de esgoto hospitalar a 
inactivação bacteriana é mais rápida do que em PBS, a combinação 
de antibióticos e aPDT actua de forma mais eficiente do que a APDT 
sozinha, mas eficiência da aPDT na presença de SDS não é afectada. 
Em conclusão, aPDT é eficaz para combater doenças microbianas 
transmitidas por bactérias multi-resistentes e podem ser usados 
para aumentar a eficácia dos antibióticos clássicos.  
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1. Introduction 

1.1. Hospital Wastewaters 

Growth of cities, increase in population density, industrial development and 

the increase of garbage production per capita, turned hospital waste management into 

an important and multifaceted problem that requires efficient methodology and 

conformity with specific rules and regulations (Askarian et al., 2004a; Ortolan et al., 

2007). 

Hospital wastewaters are a big problem of public health care due to the huge 

amount of chemicals, pharmaceuticals and hormones released to the environment (Lin 

et al., 2005; Pauwels et al., 2006; Gautam, et al., 2007; Ortolan, et al., 2007). Some of 

those chemicals are genotoxic and suspected to be a possible cause of cancers 

observed in the last decades (Gautam et al., 2007; Ortolan et al., 2007). On the other 

hand, hospital wastewaters and farming facilities are the foremost source of 

pathogenic and antibiotic-resistant organisms and antibiotic-resistance genes that are 

released into the environment (Balcioğlu et al., 2002; Baquero et al., 2008). Since the 

effluents are discharged to the same extent as conventional urban discharge to the 

municipal sewage system without prior treatment (Darsy et al., 2002; Gautam et al., 

2007; Boillot et al., 2008) and there is a frequent disposal of wastewater treatment 

plants to surface water, there is a widespread contamination of freshwater supplies 

with emerging contaminants (Lin et al., 2005; Sosiak et al., 2005; Pal et al., 2010). 

1.1.1 Chemical characterization of hospital effluents  

The volume of waste achieved in a hospital is conditioned by various aspects, 

such as number of beds, nature of health care administered, economical, social and 

cultural status of the patient and the prevailing condition of the area where the 

hospital is located (Askarian et al., 2004b). Nevertheless, the global physicochemical 

parameters of hospital effluents show them to be less or as pollutant than urban 

wastewaters (Boillot et al., 2008).  
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There is a myriad of hospital waste types. They can be divided in several 

categories, a main one similar to urban wastewaters and other ones specific of 

hospitals: 

The residues of domestic nature include discharges resulting from the needs 

of individuals, like the releases from kitchens, cleaning detergents, laundry service or 

air-conditioning (Darsy et al., 2002; Askarian, et al., 2004a; Boillot, et al., 2008), and 

they have characteristics analogous to urban discharges (Askarian et al., 2004a; 

Tsakona et al., 2007). 

The other classes of wastes specific to hospitals include disinfectants and 

antiseptics, active principles, heavy metals, radioelements (Darsy et al., 2002; 

Emmanuel et al., 2005; Gautam et al., 2007; Boillot et al., 2008), acids, alkalis, solvents, 

benzene, hydrocarbons and colorants (Boillot et al., 2008), insecticides, surfactants 

and endocrine disruptors, including hormones (Lin et al., 2005; Sosiak et al., 2005; Pal 

et al., 2010).  

The most employed products for the disinfection of surfaces and medical 

material are chlorinated derivatives, aldehyde-containing products and betadine 

(Darsy et al., 2002). After application, some non-metabolized drugs are excreted by the 

patients (analgesics, antibiotics, anti-epileptics, β-blockers, hypocholesterolemics, 

anticancer-drugs, etc.), being a very important element for wastewater pollution 

(Darsy et al., 2002;Carballa et al., 2004; Emmanuel et al., 2005; Gautam et al., 2007; 

Boillot et al., 2008). Sometimes, unused drugs are also disposed into the drain 

(Emmanuel et al., 2005). 

Some sort of therapies demand the use of toxic products, like haemodialysis 

that rejects not only toxins but also other chemical products from the disinfection unit; 

nuclear medicine service (both therapeutic and diagnostic) disposes radioactive 

elements that create solid and liquid residues that are susceptible of dispersion (Darsy 

et al., 2002; Boillot et al., 2008). As an example, iodine131 used to treat the 

hyperthyroidism of thyroid cancer can be released in patient urine (Boillot et al., 2008). 

The presence of high concentrations of adsorbable organic halogens (AOX) is linked to 

the presence of iodinated contrast agents used for radiotherapy, to certain drugs and 

their metabolites that may contain organohalogenic elements, to the use of 
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disinfectants and chlorinated solvents and to other substances from laboratorial use 

(Boillot et al., 2008). 

Other chemicals such as Freon 113, glutaraldehyde, free chlorine, as well as 

alcohols, acetone, formaldehyde, acetaldehyde, ammoniums, phenols and several 

metals such as copper, lead, zinc and arsenic can also be found in wastewaters (Boillot 

et al., 2008). 

Another example of a major group of contaminants is the surfactants group. 

These are amphiphilic compounds (compounds that contain both hydrophilic and 

lipophilic moieties) and their major functions include solubilisation, emulsification, 

dispersion, wetting, foaming, and detergent capacity, as well as antimicrobial activity 

in some cases. Biosurfactants are applied in detergents, paints, coatings, cosmetics and 

pharmaceutics (Xu et al., 2011). 

1.1.2 Microbiological characterization of hospital effluents  

Even though the presence of bacteria and viruses in hospital wastewaters is 

confirmed, these have generally lower values than those present in urban effluents 

(Darsy et al., 2002; Emmanuel et al., 2005). The low number of faecal bacteria 

detected in hospitals wastewaters or effluents is probably due to disinfectants and 

antibiotics (Emmanuel et al., 2005). Markers of water viral pollution like enterovirus 

and other viruses are also present in hospital wastewaters (Emmanuel et al., 2005; 

Gautam et al., 2007). 

Some pathogens present in hospitals effluents may come from patient faeces 

and urine (Salmonelles, Shigella spp., coliforms, vibrions, streptococci, 

enterobactereaceae). Other bacteria (staphylococci, Pseudomonas spp.), viruses and 

parasites belong to the hospital environment and are susceptive of provoking 

nosocomial infections. In spite the fact that the overall amount of bacteria is lower in 

hospital wastewaters than in urban effluents (Emmanuel et al., 2005), some 

pathogenic bacteria such as Pseudomonas aeruginosa and pathogenic staphylococci 

have been found to be more concentrated in hospital waters (Darsy et al., 2002). 
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Hospital environment bacterial strains are characterized by its resistance to 

antibiotics (Darsy et al., 2002; Emmanuel et al., 2005) and one of the major risks is 

multiple drug resistance genes that these microorganisms might harbour, like 

vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus and 

multidrug resistant pseudomonads, living in biofilms (sewage sludge flocs) (Rowan, 

2011). 

1.2. Pharmaceuticals and their relationship with drug 

resistance 

Antimicrobials may be defined as chemotherapeutic agents that eradicate, 

inhibit or slow down the growth of microorganisms, and are extensively used for 

human and veterinary medicine, to boost the growth rate of animals utilized for food 

or in aquacultures to prevent diseases (Hirsch et al., 1999; Jones et al., 2005; 

Kümmerer, 2009a; Zhang et al., 2009; Rowan, 2011). Since its discovery by Fleming in 

the 20s, that extracted penicillin from a fungus belonging to the genus Penicillium 

(Elmolla et al., 2008), a huge variety of antibiotics was developed. Among the early 

compounds are sulfonamides, penicillin, and streptomycin. Soon after, came the 

tetracyclines, isoniazid, macrolides, glycopeptides, cephalosporins, nalidixic acid, and a 

variety of other molecular classes (Shlaes et al., 2004). 

The side effects of these drugs are usually assessed for humans and animals, 

but the environmental impact of their manufacture and use is less well understood 

and just aroused interest a few years ago (Hirsch et al., 1999; Doll et al., 2003; Boxall 

2004). The effects of some kinds of medicines are already known, like the 

anthelmintics used in veterinary medicine and antibacterial therapeutics (Boxall, 

2004), but there is a huge amount of drugs that affects the environment, such as 

antibiotics, statins or cytotoxins used in cancer treatment (Andreozzi et al., 2003; Doll 

et al., 2003; Boxall, 2004). In many countries, high-use drugs like acetaminophen, 

acetylsalicylic acid, ibuprofen, naproxen (Boxall, 2004) and carbamazepine (Doll et al., 

2003; Boxall, 2004) and the success of penicillin, streptomycin and tetracyclines made 

them widely spread in the environment (O'Riordan et al., 2005). Also, veterinary 
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medicine uses antibacterials, antifungals and parisiticides in aquaculture and 

agriculture that contribute to environmental stress (Boxall, 2004). Antibiotics used in 

clinical practice and animal husbandry are a big contributor to drug resistance and 

even a responsible hospital use of antibiotics have side effects, allowing the 

appearance of resistance in non-target bacteria (Salmon-Divon et al., 2004). Antibiotics 

use may also accelerate antibiotic resistance genes progress (Kümmerer, 2009a; Zhang 

et al., 2009). 

Some of the effects that come from the use of drugs arise at low 

concentrations, even below the concentrations used in safety tests (Boxall, 2004). One 

problem that arises from the application of low concentrations of antimicrobials in the 

environment is the increase of antibiotic resistant bacteria, since the presence of 

antibiotics can produce a selective pressure that favours the organisms that possess 

genes coding for antibiotic resistance (Hirsch et al., 1999; Elmolla et al., 2008; Rahube 

et al., 2010). 

By being inadequately degraded or removed in wastewater treatment plants 

(Sosiak et al., 2005), antibiotics may cause formation of toxic degradation products 

(Rowan, 2011). The concentration of these chemicals in the water is usually low (for 

example, µg.L-1 for pharmaceuticals and µg.L-1 in the case of estrogens). However, their 

biological effects can be dangerous to humans and aquatic life (Lin et al., 2005).  

1.3. Drug resistant bacteria 

The prodigious development of antimicrobials promoted the idea that 

diseases provoked by microorganisms would diminish and would be reduced to the 

insignificancy to human health. Nevertheless, resistance to antibiotics raised and this 

idea was refuted (Taylor et al., 2002; Jori et al., 2006a; Luksienė et al., 2009; Dai et al., 

2010). This increase in the resistance mechanisms such as genes coding for antibiotic 

resistance (Hamblin et al., 2004; Elmolla et al., 2008) or plasmid mediated resistance 

(Kümmerer, 2009b) caused a boost in the research of alternative treatments (Taylor et 

al., 2002; Salmon-Divon et al., 2004; Lambrechts, 2005), that may be cost effective, 
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human friendly (Luksienė, 2009) and do not lead to development of resistance (Jori et 

al., 2006b) 

1.3.1 Drug resistance in Gram-positive and Gram-negative 
bacteria 

Even though it was long considered that the most problematic bacteria were 

Gram-negative, markedly in hospital setting, antibiotic resistance is a rising problem in 

Gram-positive bacteria as well they are isolated in both community and hospital-

acquired infections (Barker, 1999). 

The focal difference between Gram-positive and Gram-negative bacteria is in 

the cell wall. While Gram-positive bacteria have a dense peptidoglycan layer, 

composed of multiple individual layers of peptidoglycan enclosing cell membrane, 

Gram-negative bacteria have merely a thin layer of peptidoglycan surrounding cell 

membrane, which is then circumscribed by an additional outer membrane (Barker 

1999; Albrecht et al., 2005; Jori et al., 2006a; Jori et al., 2006b) composed by 

lipolysaccharides and lipoproteins attached to peptidoglycan, and great outer 

membrane proteins designated porins (Barker, 1999; Parente, 2005). That fact makes 

them homogeneous but stratified (Parente, 2005). The outer membrane offers some 

extra protection from exogenous agents (Dahl et al., 1989; Poole, 2001; Hamblin et al., 

2004; Parente, 2005; Jori et al., 2006b) and the low number of porins existing in it are 

fundamentally responsible for restricting the penetration of many substances, such as 

antibiotics (Barker 1999; Albrecht et al., 2005), and it is the reason for the difficulty in 

arranging photosensitizers that are effective against both types of bacteria (Albrecht et 

al., 2005) 

1.3.2 Resistance Mechanisms in Bacteria 

Resistance may be inherited or acquired by processes of genetic mutation or 

gene transfer. Some bacteria are inherently resistant to some classes of antibiotics or 

to one in particular, for instance Pseudomonas spp. is resistant to tetracyclines and to 

almost all kinds of penicillins, Enterobactereaceae are resistant to macrolides, all Gram 

negatives are resistant to glycopeptides and Gram positive bacteria to aztreonam 
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(Barker, 1999). This resistance may occur at the level of permeability of bacterium to 

the particular antibiotic or at the target site (Barker, 1999). 

There is however, a large variety of mechanisms by which bacteria can 

enhance resistance to external threats, for example, thickening of outer wall, encoding 

new proteins preventing drug penetration, advent of mutants deficient on porin 

channels that would allow the influx of externally added chemicals (Jori et al., 2006a), 

enzymatic destruction or modification of the antibiotic, an increase in the efflux of the 

antibiotic from the cell, alteration or production of a new target site or over-

expression of the drug target (Barker, 1999).  

Important resistance structures in gram-negative bacteria are efflux systems, 

which are able to deviate various antimicrobial agents such as antibiotics, biocides, 

dyes or detergents. Merging this ability of excreting drugs with reduced drug entry by 

the membrane is a good protection from the harmful effects caused by antimicrobial 

agents (Poole, 2001). The efflux systems may be classified in five categories: major 

facilitator superfamily, ATP-binding cassette family, resistance nodulation family, small 

multidrug resistance family and multidrug and toxic compound extrusion family (Poole, 

2001). Many multidrug efflux systems are associated with occurrences of 

multidrug/fluoroquinolone resistance. In terms of clinical aspects, the most important 

family is the resistance-nodulation-division (RND) family (Poole, 2001) that was initially 

attributed to gram-negative specifically, but now is known to be in all kinds of 

organisms (Tseng et al., 1999; Poole, 2001). 

Gram-negative intrinsic and acquired resistance depends on restrained drug 

gathering and/or antimicrobial modification or even destruction. Since most gram-

negative bacteria do not have a hydrophilic or, except in some cases, hydrophobic-

uptake pathway and are highly resistant to hydrophobic antibiotics, another uptake 

pathway was proposed, the self-promoted pathway, in which polycationic antibiotics 

interact with a site on the outer membrane at which Mg2+ noncovalently cross-bridges 

adjacent lipopolysaccharide molecules (Hancock et al., 1984; Hancock et al., 1988).  

This outer membrane destabilization allows enhanced passage across the outer 

membrane of the chromogenic 1-lactam nitrocefin, protein lysozyme, and the 

hydrophobic fluorophores N-phenylnaphthylamine (NPN) and 1-anilino-8-
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naphthosulfonate (Hancock et al., 1984). Therefore, Hancock et al., (1984) suggests 

that the uptake of polycationic antibiotic that cause the outer membrane disruption is 

also promoted. This theory is supported by the evidence that EDTA, a divalent cation 

chelator which removes Mg2+ and Ca2+ from outer membrane sites (Hamilton-Miller 

1966; Hancock et al., 1984; Jori et al., 2006a), causes similar enhancement of uptake of 

lysozyme and β-lactams as well as enhanced killing by the polycationic antibiotics 

(Hancock et al., 1984). In addition, a single-point mutation of Pseudomonas aeruginosa 

makes the cells resistant to not only the polycationic antibiotics but also to EDTA, while 

external Mg2+ competes with both classes of agents (Hancock et al., 1984).  

Resistant bacteria are transmitted from the environment to humans by direct 

or indirect contact; increasing evidences point to an association between clinical 

resistance and environmental resistance genes (Zhang et al., 2009). 

1.4. Photodynamic Therapy 

Photodynamic therapy (PDT) is a quickly expanding concept to the treatment 

of diseases, since it eliminates unwanted cells like cancer cells or infectious microbial 

cells (Jori et al., 2006b; Jori, 2006; Dai et al., 2009). PDT is most satisfactory to the 

treatment of localized infections, including the infections that become chronic after 

long-lasting chemotherapy (Jori et al., 2006b). There are many works where bacteria, 

yeast, fungi and viruses are inactivated by aPDT (Merchat et al., 1996; Orenstein et al., 

1998; Embleton et al., 2002; Salmon-Divon et al., 2004; Demidova et al., 2005; 

Lambrechts et al., 2005; Jori et al., 2006a; Grinholc et al., 2007; Maish et al., 2007; 

Costa et al., 2008, Alves et al., 2009, Dai et al., 2009; Dai et al., 2010; Huang et al., 

2010; Ragàs et al., 2010; Tavares et al., 2010). 

1.4.1 History of PDT 

The first reports of reactions induced by light came from Egyptians, Indians 

and Chinese, centuries ago (Valenzeno 1990; Grossweiner et al., 2005; Rodica, 2007) 

and they were used to treat an assortment of skins diseases like psoriasis, vitiligo, 

rickets, cancer and psychosis (Rodica, 2007) by the ingestion of plants containing 

natural photosensitizers like psolarens (Sternberg et al., 1998) or hypericin 
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(Wainwright, 1998) leading to the production of extremely reactive singlet oxygen. 

Despite that fact, the essence of PDT was only ascertained a century ago, when Raab 

found out that acridine orange killed paramecia, in the presence of light, even though 

both factors were not toxic by themselves (Valenzeno, 1990; Sternberg et al., 1998; 

Nestor et al., 2006). His mentor, Hermann von Tappeiner assigned the term 

“photodynamic” after several studies about this photooxidative process (Valenzeno, 

1990; Szeimies et al., 2001) which is a light-activated biological process that requires 

the presence of molecular oxygen (Grossweiner et al., 2005). Shortly thereafter, von 

Tappeiner applied topical eosin and visible light to treat skin tumours, lupus vulgaris 

and condomilata lata (Nestor et al., 2006; Luksienė et al., 2009). However, the 

development of antimicrobial treatments based in photosensitization stopped soon 

after the advent of antibiotics, being used in the later decades mainly in tumour 

therapy (Castano et al., 2004; Hamblin et al., 2004; Luksienė et al., 2009). Of particular 

importance to the development of antimicrobial PDT (aPDT) was the emergence of 

antibiotic resistance (Wainwright, 1998; Hamblin et al., 2004; Dai et al., 2010) which 

required the development of alternative antibacterial therapies to overcome that 

problem (Salmon-Divon et al., 2004; O'Riordan et al., 2005). Occurrence of mutations 

in microorganisms, improper antibiotic prescription and not finishing the treatments, 

exacerbate the problem of resistance (Hamblin et al., 2004). 

aPDT has the potential to be a highly efficient alternative for the treatment of 

multidrug resistant bacteria, allowing the disadvantages of antibiotics use to be 

surpassed. 

1.4.2 Principles of PDT 

PDT is based on the action of light of an appropriate wavelength and a PS, in 

the presence of molecular oxygen (Soukos et al., 1998; Kenoth et al., 2001; Castano et 

al., 2004; Hamblin et al., 2004; Demidova et al., 2005; Lambrechts et al., 2005; Rodica, 

2007; Luksienė et al., 2009 ;Dai et al., 2009; Dai et al., 2010). In the presence of light, 

the PS in the ground state is excited to its triplet state, transferring the absorbed 

energy to molecular oxygen leading to the production of reactive oxygen species (ROS) 
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that are extremely toxic and able to oxidize the biological molecules (Demidova et al., 

2005; Peng et al., 2007; Dai et al., 2009; Luksienė et al., 2009).  

Two oxidative mechanisms of photoinactivation are implicated in the 

oxidation of the targets: Type I and Type II processes. In the first one, there is an 

electron-transfer from the PS in its triplet state to a substrate to produce radical ions. 

These will react with oxygen to produce cytotoxic species, such as superoxide, hydroxyl 

radicals and hydrogen peroxide, which remains in close proximity with the PS and the 

target (Castano et al., 2004; Jori et al., 2006b; O'Riordan et al., 2005; Wainwright, 

1998; Nyman et al., 2004). Type II involves the PS triplet state, in which occurs energy 

transfer to ground state molecular oxygen with the subsequent production of excited 

singlet oxygen, which can oxidize many biological molecules like proteins, nucleic acids 

and lipids (Castano et al., 2004; Hamblin et al., 2004; Jori et al., 2006b; Luksienė et al., 

2009; O'Riordan et al., 2005; Rodica 2007; Nyman et al., 2004).  

Singlet oxygen is the most important ROS, involved in many environmental 

and health effects, along with the therapeutic effects of some drugs and 

photochemotherapy treatments (Dahl et al., 1989; Jori et al., 2006b). Singlet oxygen 

alone can kill bacteria, and this was proved after some studies where the PS was 

physically separated from the target, attributing to singlet oxygen alone the killing 

effect observed during PDT (Dahl et al., 1989; Hamblin et al., 2004; Jori et al., 2006b).  

This therapy is as efficient in killing multi-drug resistant strains as native 

strains, microorganisms do not develop resistance to aPDT and its antimicrobial effect 

is faster than that of the usual antimicrobials (Hamblin et al., 2004; Lambrechts et al., 

2005; Maish et al., 2007; Dai et al., 2010; Tavares et al., 2010; Costa et al., 2011)  

1.4.3 Types of PS used in PDT 

Most of the PS utilized in clinic, in the environment as well as in laboratory 

experiments, derive from tetrapyrrole aromatic nucleus (Fig. 1Erro! A origem da 

referência não foi encontrada.)(Castano et al., 2004; Nyman et al., 2005). Naturally 

occurring porphyrins (Castano et al., 2004; O'Riordan et al., 2005) are fully conjugated 

tetrapyrroles and vary in the number and type of side groups particularly carboxylic 
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acid groups (uroporphyrin has eight, coproporphyrin has four and protoporphyrin has 

two), while chlorins are tetrapyrroles with the double bond in one pyrrole ring reduced 

and bacteriochlorins have two pyrrole rings with reduced double bonds (Castano et al., 

2004; Luksienė et al., 2009). Chemical derivatives from naturally occurring porphyrins 

and chlorins, like purpurins, pheophorbides, pyropheophorbides, pheophytins and 

phorbins also exist (Castano et al., 2004). 

 

Fig. 1: Structure of the seven cationic porphyrin derivatives (Alves et al., 2009) 
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Other groups of tetrapyrrolic PS are phthalocyanines (Fig. 2) (Castano et al., 

2004; O'Riordan et al., 2005) and naphthalocyanines. However, the four phenyl groups 

(or naphthyl) cause solubility and aggregation problems. Synthetic conjugated pyrrolic 

ring systems also used in aPDT includes texaphyrins, porphycenes and sapphyrins 

(Castano et al., 2004) 

 

The PS more frequently tested in aPDT are based mainly in meso-

tetraarylporphyrins (Almeida et al, 2011). The popularity of this type of PS results from 

their easy synthesis and potentiality toward further elaboration (Almeida et al, 2011). 

In fact, the synthetic approaches usually involve the condensation of pyrrole with 

adequate aldehydes, which are available in a wide range, providing porphyrins with 

different aryl or heteroaryl substituents at the meso-positions. Further manipulations 

of those substituents can give access to a high number of porphyrins that can be 

designed for the desired application (Almeida et al, 2011). The meso-tetra (N-methyl-

pyridyl)porphine is a cationic porphyrin used to prevent infections by Gram-positive, 

Gram-negative or fungal pathogens. The advantage of this compound is the ability to 

attack a variety of cell components and low toxicity toward animal tissues at doses 

that can kill pathogens (Di Poto et al., 2009). 

Some bacteria are also known to produce endogenous porphyrins (Luksiene, 

2009). A few studies revealed that bacteria that produce reasonable amounts of 

endogenous porphyrins can be efficiently degraded by photosensitization, since there 

is no need of break through cell barriers (Luksiene, 2009).   

Fig. 2: Molecular structure of a typical metal(II) phthalocyanine 



 
  13 

1.4.4 Characteristics of photosensitizing agents (PS)  

There are numerous studies that allude to diverse characteristics that a PS 

must have (Castano et al., 2004; Nyman et al., 2004; Jori et al., 2006a; Jori, et al., 

2006b; Rodica, 2007; Luksienė et al., 2009). Overall, an ideal PS must:  

 Be chemically pure,  

 Produce singlet oxygen or other oxygen species, 

 Be capable of accumulate in a microorganism in a strategic location,  

 Use low cost sources for activation 

 Be easy to deliver into the specific infection site  

 Be quickly excreted  

 Be a highly efficient killer, incorporating into vicious cells more efficiently 

than into normal cells 

 Not be mutagenic or genotoxic  

 Not be toxic in the absence of light, 

 Have a broad spectrum of action, acting on bacteria, viruses, fungi, yeasts 

and parasitic protozoa, 

 Be independent of the antibiotic resistance pattern 

 Have a mechanism of inactivation that minimizes the risk of inducing the 

selection of resistant strains 

The selectivity of the PS can be obtained by appropriate chemical design of 

the PS, which ensures that it will bind preferentially to microbial cells instead of 

mammalian cells (Dai et al., 2009).  

Another important characteristic during the design of a PS for aPDT is their 

water solubility and positive charge, the latter being of utmost importance in gram-

negative bacteria since their membrane structure excludes many anionic and 

uncharged lipophilic molecules (Dai et al., 2009), that would lead to phototoxicity in 

gram-positive bacteria (Hamblin et al., 2004). One way to bypass this problem is using 

a positively charged compound (Hamblin, 2004), usually based on tetrapyrrole nucleus 

(Luksienė, 2009) like phthalocianines, porphyrins (Jori et al., 2006a; Luksienė, 2009), 

chlorines, bacteriochlorines and texaphyrins (Luksienė, 2009). Porphyrins can be 

transformed to its cationic form by inserting a positively charged substituent in the 
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tetrapyrrole macrocycle (Jori et al., 2006a).  These can promote photoinactivation of 

both gram-positive and gram-negative bacteria since gram-negative bacteria use the 

self-promoted uptake pathway to take up the photosensitizer (Hancock, 1988; Jori et 

al., 2006a).  

In general, neutral or anionic PS are efficient to inactivate gram-positive 

bacteria but do not inactivate gram-negative bacteria after illumination like, for 

example, Pseudomonas aeruginosa or Escherichia coli (Hamblin, 2004; Salmon-Divon 

et al., 2004; Luksienė et al., 2009; Huang, 2010). This fact is explained by the 

differences observed on membrane physiology of both bacteria. As Gram-negative 

membrane is more differentiated and complex than in gram-positive bacteria , the 

photosensitizer penetrates through the membrane of Gram-positive bacteria and 

accumulate in the cell, while in Gram-negative singlet oxygen has to pass through the 

outer protection so it can reach the membrane or cytoplasmic components (Dahl, 

1989). As the cell wall is the main difference between gram-positive and gram-negative 

bacteria, once this barrier is passed through, the mechanism of inactivation is identical 

(Dahl, 1989). 

When cells are irradiated, formation of ROS starts degrading the cell wall 

(Luksiene et al., 2009). These ROS can interact with proteins, lipids, amino acid 

residues and nucleic acid bases as guanine and thymidine (Castano et al., 2004; 

Demidova et al., 2005; Luksienė et al., 2009). 

1.4.5 Antimicrobial PDT (aPDT) and its application 

aPDT is the application of PDT to treat infectious diseases of microbial origin 

(Jori et al., 2006b). aPDT relies on the accumulated experience in the treatment of 

malignant tumors by PDT. However, as the delivery of light is a localized process, this 

biomedical application is restricted to localized infections and not to systemic 

infections, such as sepsis (Hamblin et al., 2004; Demidova et al., 2005; Almeida et al., 

2011). Contrarily to PDT for cancer, where the PS is usually injected into the 

bloodstream and accumulates preferentially in the tumour cells, aPDT for localized 
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infections is mostly carried out by local delivery of the PS to the infected area (Hamblin 

et al., 2004; Almeida et al., 2011). 

aPDT has been applied not only in the clinical area but also in the 

environmental field (Jemli et al., 2002; Almeida et al., 2011). Although only a few 

studies have been conducted in this area, preliminary results suggest that aPDT has a 

great potential for environmental application, namely for use in water disinfection in 

treatment plants (DeRosa et al., 2002; Jemli et al., 2002; Carvalho et al., 2007; Costa 

et al., 2008; Alves et al., 2009) and in fish-farming plants (Almeida et al., 2011; 

Arrojado et al., 2011).  

aPDT is considered a promising alternative to other kinds of treatment for 

several reasons, which include its broad spectrum of action, an efficacy independent of 

antibiotic resistance patterns, extensive pathogen reduction with limited damage to 

host tissue, specific delivery of PS in the infected area (Jori et al., 2006a; Jori et al., 

2006b), low cost light sources, inexistence of photoresistant strains after multiple 

treatments (Jori et al., 2006b; Luksienė, 2009; Costa et al., 2011), absence of 

microorganisms viability recovery after treatment (Jori et al., 2006b; Tavares et al., 

2010; Costa et al., 2011) and fast inactivation than usual antimicrobials (Hamblin et al., 

2004; Lambrechts et al., 2005; Maish et al., 2007; Dai et al., 2010; Tavares et al., 2010). 

In a clinical perspective, it can be established a group of factors that optimize 

the treatment of microbial infections by aPDT, allowing the selective killing of 

pathogens but not human cells. Those can be short incubation period, low PS 

concentration and soft irradiation (Jori et al., 2006). 

The main targets of aPDT are the external microbial structures, as cell walls, 

cell membranes and nucleic acids (Käsermann et al., 1997).The damages to the 

external microbial structures can involve leakage of cellular contents or inactivation of 

membrane transport systems and enzymes (Gábor et al., 2001). Some damages 

produced in the nucleic acid chain can be repaired by the action of DNA repairing 

systems (Vzorov et al., 2002). It has been concluded that although nucleic acids 

damage occurs, it cannot be the principal cause of microbial photodynamic 

inactivation (Egyeki et al., 2003). 
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As the main targets of aPDT are the external structures, the PS does not need 

to enter in the microorganism. So, target microorganisms have no chance to develop 

resistance (Hamblin et al., 2004). 

In an environmental perspective, some other aspects less relevant to aPDT in 

the clinic area, need to be taken into consideration, namely the removal of the 

sensitizer after photodynamic action to avoid the release of the PS to the water 

output; the determination of the stability of the PS conjugates under sun light 

irradiation conditions; the assessment of the impact of this procedure on the natural 

non-pathogenic microbial community structure; the toxicity of the PS on superior 

organisms at doses which induce marked mortality of microbial pathogens (Almeida 

et al, 2011). 

1.4.6 Synergistic effect between aPDT and antibiotics 

It is well known the use of large amounts of antibiotic compounds in clinical 

practice is undesirable, since they adversely affect the patient’s condition and give rise 

to the selection of antibiotic-resistant strains, which consecutively increase the need of 

new and more powerful antibacterials. Therefore, being able to increase the efficacy of 

antimicrobial compounds, without administering them in large dosages has become an 

important aim of present-day research. However, little effort has been made to 

employ porphyrin derivatives in order to increase the efficacy of such antibiotics, 

reducing the dosages of these compounds needed to combat microbial infections. 

Xing et al. (2011) tested a divalent vancomycin-porphyrin to inactive 

vancomycin-resistant enterococci (VRE). The divalent vancomycin-porphyrin showed 

strong aPDT activity against vancomycin-sensitive and resistant strains, when 

compared to vancomycin and porphyrin alone, with exceptional advantages necessary 

for multivalent interactions with the VRE and selective adhesion to bacteria cells 

leading to enhanced photodynamic inactivation and the divalent compound acts as a 

fluorescent probe to label and monitor bacterial strains effectively (Xing et al., 2011). 

The combination of vancomycin with PDT was also useful in the disruption of 

S. aureus biofilms. Pre-treating the biofilms with PDT and then apply vancomycin at 
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concentrations bellow the biofilm inhibitory concentration, causes a disintegration of 

the biofilm matrix and allows the killing of bacteria almost entirely (Di Poto et al., 

2009).  Malik and Nitzan (1995) tested also the combination of different porphyrins 

(deuteroporphyrin and hemin) and antibiotics (methicillin, ampicillin, polymyxin B 

nonapeptide, tetracycline) to inactivate both Gram-positive (multi-resistant S. aureus) 

and Gram-negative bacteria (multi-resistant E. coli). The results of the study showed 

that in the presence of porphyrins and antibiotics the bacterial inactivation was higher 

than when porphyrins were used alone. 

These results suggest that the aPDT effect in hospital wastewaters can be 

improved since the hospitals effluents have high amounts of antibiotics (Kümmerer, 

2001) 

1.5. Objectives 

The general objective of this work was to assess the inactivation of clinical 

multidrug-resistant bacteria by aPDT, using a tetracationic porphyrin. 

To reach this objective, the photoinactivation of the bacteria was studied in 

different conditions: 

 using cultures of one bacteria and mixtures of four different bacteria 

 in a known saline buffer solution (PBS) 

 in samples of a hospital sewage water 

 in combination with antibiotics 

 in combination with SDS 
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2. Materials and Methods 

2.1 Biological material 

In this study it was used four multidrug-resistant bacterial strains resistant to 

at least three from four common and representative drugs, for example, ceftazidime, 

imipenem, ciprofloxacin, tobrazidime (Jung et al., 2004)  with vital clinical importance: 

S. aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Escherichia coli. 

Staphylococcus aureus is a gram positive emergent resistant bacteria to 

antibiotics that is regarded within staphylococci as the most virulent species due to its 

great heterogeneity of virulence factors, and its ability of forming biofilms, a 

fundamental factor in persistent infections caused by staphylococci (Di Poto et al., 

2009). The biofilms can develop on central venous catheters or implanted medical 

devices and biofilm-associated infections can only be undertaken by removal of the 

infected piece (Di Poto et al., 2009). This bacterium is resistant to diverse antibiotics, 

namely to methicillin, considered one of the most effective antibiotics (MRSA) (Dai et 

al., 2010; Embleton et al., 2002; Jori et al., 2006a) and recently to glycopeptides 

antimicrobials, as vancomycin and teicoplanin (Embleton et al., 2002). They cause 

superficial and deep-seated skin, wound and tissue infections (Barker, 1999) and have 

turned into one of the predominant nosocomial pathogens colonising people for many 

months which calls for long hospital stays (Maisch et al., 2007).  In some cases of MRSA 

skin infections may occur significant morbidity, or even life threatening situations (Dai 

et al. 2010), being the second major cause of bacteraemia, right after E. coli.  

Pseudomonas aeruginosa is a gram-negative opportunistic pathogen, infecting 

immune compromised patients in hospitals (Masuda et al., 1995; O’Toole et al., 1998; 

Olayinka, 2004). Infections provoked by Pseudomonas aeruginosa are very often life 

threatening and not easy to treat. Although it can infect a diverse amount of tissues, 

they are more often founded in respiratory tract (O’Toole et al., 1998; Jung et al., 

2004). This organism membrane has a low permeability level (Masuda et al., 1995), 

which takes native strains to have already limited susceptibility leading to a high 
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regularity emergency of resistance to drugs, especially with the regular use of broad-

spectrum antibiotics (Jung et al., 2004). 

Biofilm-grown P. aeruginosa has also been shown to acquire increased 

resistance to antibiotics (O’Toole et al., 1998; Mah et al., 2003), up to 1,000-fold 

greater than planktonic cells, whereas bacteria within these microbial communities 

employ distinct mechanisms to resist the action of antimicrobial agents (Mah et al., 

2003). 

Acinetobacter baumannii is a Gram-negative bacterium that captivated much 

attention due to its outstanding ability to acquire resistance to drugs and is becoming a 

growing problem in health systems, especially in burn infections units (Dai et al., 2009; 

Cisneros et al., 1996). It have been implicated in a variety of nosocomial infections, 

including bacteraemia, urinary tract infection, and secondary meningitis, but its main 

role at nosocomial pneumonia, particularly ventilator-associated pneumonia in 

patients confined to hospital intensive care units. Multiresistant Acinetobacter spp. is 

likely to be selected in the hospital environment in response to increasing antibiotic 

pressure (Bergogne-Bérézin et al., 1996). 

Escherichia coli is a non-fermentative Enterobactereaceae pathogen in the 

community (Barker, 1999) and in hospitals, in particular in immunocompromised 

patients, being a great cause for diseases such as bacteraemia, pneumonia, skin and 

soft tissue infection and catheter-related sepsis (Barker, 1999) and its clinical 

management is complex because of the increasing incidence of infections caused by 

multidrug resistant strains (Manges et al., 2001). 

Extended-spectrum β-lactamases are plasmid-mediated enzymes that confer 

resistance to oxyimino- β-lactams such as cefotaxime, ceftazidime, and aztreonam, 

antibiotics that were intended to be effective against strains producing known 

plasmid-determined β-lactamases (Jacoby et al., 1991).  

Resistance to ampicillin and amoxicillin in E. coli is predominantly caused by 

the plasmid-encoded β-lactamase TEM-1, which is sensitive to β-lactamase inhibitors 

such as clavulanic acid. There are several mechanisms by which E. coli can be resistant 

to β-lactam–β-lactamase inhibitor combinations, such as amoxicillin plus clavulinic 
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acid. Since chromosomally encoded Bush group 1 β-lactamases are less sensitive than 

group 2 enzymes to inhibitors, overproduction of the E. coli chromosomal β-lactamase 

is one cause of this resistance. Some plasmid-encoded β-lactamases such as OXA-1 are 

less sensitive than TEM-1 to inhibition by clavulanic acid, so organisms that produce 

these enzymes are more frequently resistant to amoxicillin-clavulanic acid. 

Overproduction of TEM-1 also results in resistance, and also the deficiency in the 

OmpF and/or OmpC porins in conjunction with TEM-1 production. The most recently 

discovered mechanism of resistance to amoxicillin-clavulanic acid is production of β-

lactamases derived from TEM-1 but with substantially reduced sensitivity to clavulanic 

acid and other β-lactamase inhibitors (Stapleton et al., 1995). 

The bacterial strains were isolated from patients from University of Coimbra 

Hospital, (Hospitais da Universidade de Coimbra - HUC). E. coli was isolated from a 

sample of urine, S. aureus and A. baumannii were isolated from non-cirurgical wound 

exudates and P. Aeruginosa from expectoration samples. 

The bacteria were identified and its profile of antibiotic susceptibility was 

characterized by the system BioMerieux Vitek 2® (BioMerieux).  

Bacteria stocks were kept at -20ºC, in 40% glycerol and daily use bacteria 

were kept at 4ºC on tryptic soy agar (TSA) medium plates. 

Before each assay, an aliquot of the selected bacteria was aseptically 

transferred to tryptic soy broth (TSB) and kept at 37ºC. Each bacterium was peaked up 

two more times before use. 

2.2 Photosenstitizer 

The PS applied in this study was a tetracationic porphyrin, the 5,10,15,20-

tetrakis(1-methylpiridinium-4-yl)porphyrin tetra-iodide (Tetra-Py+-Me). The PS was 

prepared in two steps. First, the neutral porphyrin was obtained from the Rothemund 

and crossed Rothemund reactions using pyrrole and the appropriate aldehyde at reflux 

in acetic acid and nitrobenzene. After being separated by column chromatography 

(silica), the pyridyl groups were quaternized by reaction with methyl iodide (Alves et 

al., 2009).  
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A stock solution of this porphyrin, at 500µM, was prepared in DMSO and 

stored in the dark. Before each assay the porphyrin solution was sonicated during 30 

minutes at room temperature. According to previous data (Alves et al., 2009), the PS 

concentration used in these assays was 5 µM. 

2.3 Irradiation Conditions 

It was used a set of white light lamps (PAR radiation, 13 lamps OSRAM 21 of 

18W each lamp, with wavelength between 380-700nm) with a fluence rate of 40 W.m-2 

(radiometer LI-COR Model LI-250) as light source. 

2.4 Photoinactivation Assays 

2.4.1 Assays in PBS 

Each isolate and a mixture of the four bacteria were tested in PBS. For the 

assays with the mixture of bacteria, each bacterium was grown separately and they 

were mixed just before the assay. It was used the same concentration of each 

bacterium. 

For each assay three goblets were prepared, one with bacteria diluted 1:10 in 

PBS and 5 µM of PS (test microcosm); other with bacteria diluted 1:10 in PBS and 5µM 

of PS, which was kept in dark conditions, wrapped in aluminium foils (dark control) and 

other just with bacteria diluted 1:10 in PBS (light control). The goblets were kept under 

irradiation 270 minutes and aliquots were taken at 0, 30, 60, 90, 180 and 270 minutes 

after incubation. The aliquots were diluted in PBS and plated in TSA by incorporation. 

After 24h at 37ºC, the number of colonies was enumerated and the results were 

expressed in colony forming units per mL (CFU.mL-1). All the assays were done in 

duplicate and for each assay two replicates were done. 
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2.4.2 Assays in hospital sewage water 

The samples utilized in these assays were collected in the HUC at the days 10, 

24 and 30 of November 2010, approximately at the same hour, 10h a.m.. The samples 

were transported to the laboratory and refrigerated at 4˚C until being utilized. The 

sewage water was filtered sequentially by 0,7 µm and by a 0,22 µm pore membranes, 

to eliminate bacteria and suspended organic matter of the water. The water pH and 

the optical density were measured with a conductivity meter and a spectrophotometer 

respectively. 

Each isolate and a mixture of the four bacteria were tested in the hospital 

sewage water, using the same procedure of the PBS assays. For each assay it was done 

with two replicates. 

2.4.3 Assays in PBS with PS and antibiotics 

With this assay, it was tested the inactivation of E. coli by aPDT in the 

presence of two antibiotics: ampicillin and chloramphenicol. In the assays with 

ampicillin it was tested two PS concentrations (2.5 µM and 5 µM) and three 

concentrations of ampicillin, the MIC concentration (32 µg.mL-1) (CLSI, 2010) and two 

lower concentrations (16 µg.mL-1 and 8 µg.mL-1). 

In the assays with chloramphenicol, it was tested one PS concentration (5 µM) 

and The MIC concentration (32 µg mL-1) (CLSI, 2010). 

For each assay were prepared four goblets: one with bacteria diluted 1:10 in 

PBS and PS; other with bacteria diluted 1:10 in PBS and PS, plus antibiotic; other with 

bacteria diluted 1:10 in PBS and PS, plus antibiotic, which was kept in dark conditions, 

wrapped in aluminium foils (dark control) and other with bacteria diluted 1:10 in PBS , 

plus antibiotic (light control). The goblets were kept under irradiation 270 minutes and 

aliquots were taken at 0, 30, 60, 90, 180 and 270 minutes after incubation. The 

aliquots were diluted in PBS and plated in TSA by incorporation. After 24h at 37ºC, the 

number of colonies was enumerated and the results were expressed in colony forming 

units per mL (CFU mL-1). Each assay was done in duplicate, and for each assay two 

replicates were done. 
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2.4.4 Assays in PBS with PS and sodium dodecyl sulfate (SDS)  

For this test, it was also used the E. coli isolate. It was tested one PS 

concentration (5 µM) and one concentration of SDS (2mM, one quarter of the micellar 

concentration). The procedure was similar to that of the assays with antibiotics, but 

instead of antibiotics it was used SDS. 

The assays were done in duplicate, and for each assay two replicates were 

done. 

2.4.5 Statistical analysis 

The statistical analysis was done with SPSS 17.0. Normal distributions were 

assessed by Shapiro-Wilk test and the variances homogeneity with the Levene’s test. 

After normality tests were done, ANOVA and the parametric student’s t test and the 

non-parametric Mann-Whitney test were applied to assess the differences between 

groups. 
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3. Results 

3.1 Resistance profiles of the bacteria strains 

The clinical strains employed in this study have diversified resistance profiles 

(Tab. 1). 

A. baumannii is resistant to the gentamicin, tobramycin, meropenem, the 

combinations amoxicillin/clavulinic acid and piperacillin/tazobactam, ampicillin and 

penicillin G It is also resistant to cephalothin, cefotaxime and ceftazidime, to 

ciprofloxacin and levofloxacin and to trimethoprim/sulfamethoxazole. It is sensitive to 

amikacin and tigecycline.  

E. coli is resistant to first, second and third generation cephalosporins 

cephalothin, cefaclor, cefuroxime–sodium, cefotaxime and ceftazidime. It is also 

resistant to ciprofloxacin and levofloxacin; to the sulphonamide 

trimethoprim/sulfamethoxazole, to ampicillin and the penicillin combinations 

amoxicillin/clavulinic acid and to nitrofurantoin. This strain is sensitive to ertapenem 

and meropenem and it is a β-lactmase producer. 

P. aeruginosa is resistant to ceftazidime, to the penicillin combination 

piperacillin/tazobactam and to minocycline. This strain is sensitive to imipenem, to 

amikacin, tobramycin and gentamicin, and has intermediate resistance to the 

ciprofloxacin. 

S. aureus is resistant to penicillin G, to combination piperacillin/tazobactam, 

levofloxacin, and to erythromycin. This strain is sensitive to gentamicin, tobramycin 

and vancomycin and to trimethoprim/sulfamethoxazole. 
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Bacterial strain A. baumannii E. coli P. aeruginosa S. aureus 
Ampicillin Resistant Resistant ---------- ---------- 
Amikacin Sensitive Sensitive Sensitive ---------- 
Amoxicillin/Clavulinic 
Acid 

Resistant Resistant ---------- ---------- 

Cefaclor ---------- Resistant ---------- ---------- 
Cephalothin Resistant Resistant ---------- ---------- 
Cefotaxime Resistant Resistant ---------- ---------- 
Ceftazidime Resistant Resistant Resistant ---------- 
Cefuroxime - Sodium ---------- Resistant ---------- ---------- 
Ciprofloxacin Resistant Resistant Intermediate ---------- 
Erythromycin ---------- ---------- ---------- Resistant 
Ertapenem ---------- Sensitive ---------- ---------- 
Gentamicin Resistant Resistant Sensitive Sensitive 
Imipenem ---------- ---------- Sensitive ---------- 
Levofloxacin Resistant Resistant ---------- Resistant 
Meropenem Resistant Sensitive ---------- ---------- 
Minocycline ---------- ---------- Resistant ---------- 
Nitrofurantoin ---------- Resistant ---------- ---------- 
Penicillin G ---------- ---------- ---------- Resistant 
Piperacillin/Tazobactam Resistant Resistant Resistant Resistant 
Tigecycline Sensitive ---------- ---------- ---------- 
Tobramycin Resistant Resistant Sensitive Sensitive 
Trimethoprim/ 
Sulfamethoxazole 

Resistant Resistant ---------- Sensitive 

Vancomycin ---------- ---------- ---------- Sensitive 
Broad spectrum  
β-lactmase 

---------- β-lactmase 
Producer 

---------- ---------- 

Tab. 1: Drug resistance profile for the studied strains (---  not done). 
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3.2 Photoinactivation of bacteria in PBS  

The aPDT was effective against all bacteria, Gram-positive and Gram-negative, 

leading to a reduction in colony forming units (CFU) between 6 to 8 log, after 270 

minutes of irradiation. 

For E. coli (Fig. 3 A), there was a gradual inactivation to the limit of detection 

after 180 minutes. For P. aeruginosa (Fig. 3 B)  a 7 log inactivation was observed after 

270 minutes and the bacterial reduction started only after 30 minutes of irradiation. 

For A. baumannii (Fig. 3 C) it was not observed the inactivation to the limit of 

detection, 2 log of bacteria were not inactivated after 270 minutes of irradiation. The 

greater decrease in bacterial number for these bacteria was observed only after 90 

minutes of irradiation. The reduction of bacterial density for S. aureus (Fig. 3 D) was 

observed sooner, after 30 minutes of irradiation it was observed already a decrease of 

3 log and after 90 minutes of irradiation a decrease of 6 log. For the mixture of 

bacteria the greater reduction was observed between 30 and 180 minutes of 

irradiation. It was not observed a significant reduction of the bacteria between 180 

and 270 minutes of irradiation. 

Dark and light controls did not exhibit reduction in bacterial number after the 

incubation period. 
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Fig. 3: Photoinactivation of E. coli (A), P. aeruginosa (B), A. baumannii (C), S. aureus (D) and a mixture 
of all four bacteria (E), in PBS, after 30, 60, 90, 180 and 270 minutes of irradiation (PS, Photosensitizer; 
LC, Light Control; DC, Dark Control). It was done 2 independent assays, where, each value corresponds 
to the mean ± standard deviation of two replicates. Error bars correspond to standard deviations 
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3.3 Bacterial photoinactivation in sewage water  

The pH of the two first samples of sewage was similar, but the third samples 

had a higher value of pH. The value of optical density after filtration by 0.2 µM was 

higher for the second date (Tab. 2). The second water sample was more yellow than 

the others. 

Collection date pH Optical density 

10 Nov 7.272 0.004 

24 Nov 7.145 0.008 

30 Nov 8.268 0.004 

Tab. 2: pH and optical density values for the three samples of hospital sewage water 

The patterns of bacterial photoinactivation were different for the three dates, 

namely between 180 to 270 minutes (p<0.05) (Fig. 4). The difference between the 

three samples was not significant for the other times of irradiation. 

For all the bacteria the major reduction was observed after 30 minutes of 

irradiation, with reduction of at least 4 logs. The reduction to the limits of detection 

rarely was observed even for S. aureus. P. aeruginosa reach the reduction to the limit 

of detection in two of the three dates. For the mixture of bacteria the pattern of 

inactivation was similar to those observed for the isolated bacteria, the major 

reduction of bacterial number was observe after 30 minutes of irradiation and the 

reduction to the detection limit was not observed in none of the three dates, 

remaining approximately 1,5 log of bacteria after irradiation. 

Dark and light controls do not exhibit any reduction in bacterial counts during 

the irradiation period. 
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Fig. 4: Photoinactivation of E. coli (A), P. aeruginosa (B), A. baumannii (C), S. aureus (D) and a 
mixture of bacteria (E), in sewage water, after 30, 60, 90, 180 and 270 minutes of irradiation (PS, 
Photosensitizer; LC, Light Control; DC Dark Control). It was done 3 independent assays, where each value 
corresponds to the mean ± standard deviation of two replicates. Error bars correspond to standard 
deviations. 
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3.4 Comparison between photoinactivation of bacteria in PBS 

and in sewage water 

In general, the pattern of photoinactivation in PBS and in sewage water was 

significantly different for all the bacteria tested and for the mixtures of bacteria. For E. 

coli, the difference between the results obtained in PBS and in hospital sewage waters 

was significant after 30 minutes of incubation to 270 minutes (ANOVA, p <0.05)., while 

for P. aeruginosa, the difference between the results obtained in PBS and in hospital 

sewage waters was significant only between 30 and 180 minutes (ANOVA, p <0.05). 

The photoinactivation of A. baumannii was also significantly different right after 30 

minutes to 270 minutes of irradiation (p <0.05). For S. aureus, the difference between 

the two types of assays was significant at 30 minutes of irradiation and after 180 and 

270 minutes of irradiation (p <0.05). For the mixture of the bacteria, there is a 

significant difference between the results obtained in PBS and in hospital sewage in 

the sampling times of 30 and 90 minutes (p<0.05). After 60 minutes of irradiation 

there is no statistical difference between PBS and hospital residual waters (p>0.05) 

3.5 Photoinactivation of bacteria by aPDT and antibiotics  

The photoinactivation with 5 µM of PS in the presence of ampicillin at MIC 

concentration (32 µg.mL-1) was higher than when the antibiotic was not added (Fig. 5 

A). The major reduction on E. coli was achieved after 60 to 90 minutes of irradiation. It 

was observed a difference of about 1.5 log between the inactivation of E. coli by aPDT 

alone and aPDT together with ampicillin, after 180 minutes of irradiation and after 270 

minutes this different was approximately 2 log. The difference between the results 

obtained with aPDT alone and aPDT combined with 32 µg.mL-1 was statistically 

significant for the sampling times of 180 minutes and 270 minutes (p <0.05). At the 

end of 180 minutes the bacterial reduction was approximately 6 log for aPDT alone 

and 7 log for aPDT combined with ampicillin and at the end of 270 minutes the 

bacterial reduction remain in the 6 log for aPDT alone and for aPDT combined with 

ampicillin increased for 8 log reduction. 

When the concentration of ampicillin was decreased to 16 µg.mL-1 (Fig. 5 B), 

the major reduction was observed after 180 minutes of irradiation, being the 
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difference between aPDT and aPDT combined with ampicillin significantly different 

after 180 minutes and 270 minutes of incubation (p<0.05). At the end of 180 minutes 

the bacterial reduction was approximately 4 log for aPDT alone and 6 log for aPDT 

combined with ampicillin and at the end of 270 minutes the bacterial reduction was 

5.5 log for aPDT alone and 6.5 log for aPDT combined with ampicillin. 

At 8 µg.mL-1 ampicillin (Fig.5 C), the pattern of inactivation was similar to that 

obtained without antibiotic (p >0.05). At the end of the experiment the difference in 

bacterial inactivation between the two assays was of 0.5 log, with the higher reduction 

value for aPDT in the presence of the antibiotic. 

In the light and dark control samples, it was not observed inactivation of E. 

coli during the 270 minutes of incubation 
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Fig. 5: Photoinactivation of E. coli in PBS, after 30, 60, 90, 180 and 270 minutes of irradiation, with ampicillin 
concentrations of 32 µg.mL

-1 
(A), 16 µg.mL

-1
 (B) and 8 µg.mL

-1
 (C) (PS, Photosensitizer; PS + Amp, Photosensitizer 

with ampicillin; LC, Light Control; DC, Dark Control). Two independent assays were done, in which each value 
corresponds to the mean ± standard deviation of two replicates. Error bars correspond to standard deviations 
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When the PS concentration was reduced to 2.5 µM in the presence of 32 

µg.mL-1 of ampicillin (Fig. 6), at the end of 270 minutes, the inactivation pattern was 

similar to that obtained when no antibiotic was added (p >0.05), being the difference 

between the two less than 1 log. 

 
Fig. 6: Logarithmic inactivation of E. coli in PBS, after 30, 60, 90, 180 and 270 minutes of irradiation, with 

a concentration of PS of 2.5 µM and an ampicillin concentration of 32 µg.mL
-1

 (PS, Photosensitizer; PS + Amp, 
Photosensitizer with ampicillin; LC, Light Control; DC, Dark Control). It was done two independent assays in which 
each value corresponds to the mean ± standard deviation of two replicates. Error bars correspond to standard 
deviations  
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When aPDT with 5 µM PS was used in combination with 32 µg mL-1 of 

chloramphenicol (Fig. 7), the bacterial reduction was higher than that obtained only in 

the presence of PS, being the difference significantly different after 270 minutes of 

irradiation (p <0.05). The difference between aPDT alone and aPDT combined with 

chloramphenicol after 270 minutes of irradiation was in average 2 logs. 

 
Fig. 7: Photoinactivation of E. coli in PBS, after 30, 60, 90, 180 and 270 minutes of irradiation, with a PS 

concentration of 5µM and a chloramphenicol concentration of 32 µg.mL-1 (PS, Photosensitizer; PS + Cm, 
Photosensitizer with chloramphenicol; LC, Light Control; DC, Dark Control). Each value corresponds to the mean ± 
standard deviation of two replicates. Error bars correspond to standard deviations. 
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3.6 Photoinactivation of bacteria by aPDT and SDS 

The inactivation of E. coli by aPDT was not significantly different (p >0.05) 

from that observed in the presence of 2 mM of SDS (Fig. 8) during the whole assay. 

 
Fig. 8: Photoinactivation of E. coli in PBS, after 30, 60, 90, 180 and 270 minutes of irradiation, with 2mM 

of SDS (PS, Photosensitizer; PS + Cm, Photosensitizer with chloramphenicol; LC, Light Control; DC, Dark Control). 
Each value corresponds to the mean ± standard deviation of two replicates. Error bars correspond to standard 
deviations. 
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4. Discussion 

Antibiotic resistance is a complex, continually evolving problem which is often 

difficult to put into perspective (Barker, 1999). In recent years, facing the growing costs 

of research on new antimicrobials, and despite the increasing frequency and severity 

of antimicrobial resistance, the pharmaceutical industry has diminished its investment 

in this field, turning to more profitable drugs. This has dramatically weakened the so 

called pipeline for new antibiotic compounds, particularly against Gram-negative 

bacteria. It is therefore, a major goal of the present research to find new approaches 

to combat microbial diseases, as well as to increase the efficacy of classical 

antimicrobial compounds, without administering them in large dosages. 

The results of this study showed that (1) aPDT can efficiently inactivate 

multidrug resistant bacteria; (2) bacterial photoinactivation in hospital sewage water is 

faster than in PBS in the first 30 minutes of treatment, but after 270 minutes of 

treatment the efficiency were not significantly different; (3) the combination of aPDT 

with antibiotics increase the efficiency of bacterial inactivation; (4) the combination of 

aPDT with SDS did not lead to a higher photoinactivation of bacteria. 

The studied cationic porphyrin Tetra-Py+-Me at the concentration of 5 µM, 

when irradiated with white light (40 W m-2), efficiently inactivated both gram-positive 

and gram-negative bacteria (between 6 and 8 log) in PBS, and was also efficient when 

the bacteria were tested all together (approximately 6 log of inactivation).  

In general, multidrug resistant bacteria were inactivated to the detection 

limits (≈ 8 log) but the profile of the photoinactivation process varied among the 

bacterial strain (ANOVA, p<0.05). As previously reported (Hamblin et al., 2004; Jori et 

al., 2004; Arrojado et al., 2011) the Gram (+) bacterium was inactivated faster than 

Gram (-) bacteria. The major reduction on cell viability occurred after 30 min of 

irradiation, causing approximately 3 log decrease for the Gram (+) bacteria, but, in 

general, the major reduction for Gram (-) bacteria occurred only after 60-180 min of 

irradiation, causing approximately 3-4 logs decrease. All the multidrug resistant 

bacteria, with the exception of A. baumannii, were completely inactivated after 270 

min of exposure to the white light in PBS. For A. baumannii after 270 min of exposure 
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around 2 logs of cell survived to the photoinactivation process. The difference in the 

susceptibility of Gram (+) and Gram (-) bacteria to the photoinactivation process is 

easily explained by the different structure of the cell wall. In gram-positive bacteria, 

the wall is easily crossed by all types of photosensitizers (Hamblin et al., 2004; Jori et 

al., 2004; Arrojado et al., 2011). The different profiles of inactivation among the Gram 

(-) bacteria can be also related to differences in the cell wall. Although all Gram (-) 

bacteria have a thin layer of peptidoglycan and an asymmetric outer membrane of 

lipidic composition, the composition of the lipopolysaccharide of the external outer 

membrane varies among bacteria (Dahl et al., 1987; Jori et al., 2004; Arrojado et al., 

2011). The lower inactivation of A. baumannii can be related to the fact that this 

bacterium has fewer and smaller porins than other Gram-negative bacteria, thereby 

decreasing cell permeability and increasing antibiotic resistance (Villa et al., 2007) and 

also probably difficult the porphyrin penetration. In fact, the strain used in this study is 

more resistant to antibiotics than the other isolates tested in this study. A. baumannii 

was resistant to 86 % of the tested antibiotics, E. coli to 78 %, P. aeruginosa to 40 % 

and S. aureus to 50 %. Differences in the effectiveness of aPDT among bacteria were 

also showed in other studies (Grinholc et al., 2007; Arrojado et al., 2011). 

The patterns of bacterial photoinactivation in hospital wastewater samples 

were different from those obtained in PBS for all bacteria (p<0.05). Most of the 

bacterial inactivation occurred during the first 30 minutes, resulting in, at least, 3 logs 

reduction after this time. However, after 270 minutes of irradiation the difference 

between the two types of samples was not significant and, in general, the efficiency of 

the photoinactivation process was even slowly lower in the sewage water (p<0.05). 

Some studies have shown, however, that microbial inactivation by aPDT in 

environmental waters is not as effective as in laboratory conditions in which 

microorganisms are suspended in buffer solutions. Alves et al (2011) verified that the 

inactivation of Vibrio fischery by 5,10,15-tris(1-methylpyridinium-4-yl)-20-

(pentafluorophenyl)porphyrin triiodide in laboratory conditions, using PBS, was more 

effective than in water from aquaculture tanks. The same authors showed that the 

removal of particulate suspended matter from the aquaculture water increases the 

success of aPDT. Arrojado et al. (2011) find also that it is more difficult to inactivate 
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the natural bacterial communities in aquaculture waters than pure cultures of 

bacteria isolated from aquaculture systems in PBS. The authors suggested that the 

difficulty in the inactivation of bacteria in aquaculture waters could be due to 

differences in bacterial community structure but can be also attributed to differences 

in suspended matter quantity and quality. Jemli and Alouini (2002) concluded also 

that the suspended solids (turbidity) were the parameter that most influenced on the 

efficiency of the photochemical process of helminth eggs in wastewater by meso-

tetrakis(1-methylpyridinium-4-yl)porphyrin tetratosylate. To the best of my 

knowledge this is the first study that the efficiency of photoinactivation was higher in 

environmental waters than in buffered solutions as PBS. However, as the sewage 

waters were filtered by 0.2 µM membranes before the photoinactivation assays, most 

of the suspended matter was removed. 

The dissimilarity could be due the existence of diverse kind of dissolved 

compounds in the hospitals wastewaters, like pharmaceuticals (Andreozzi, et al., 

2003), heavy metals, polycyclic aromatic hydrocarbons, chlorinated dioxins, furans, 

pesticides and detergents (Elmolla et al., 2008), which, some of them, can stimulate 

the photoinactivation process. As in the light and dark controls of the 

photoinactivation assays in sewage waters were not observe any reduction in the 

bacterial number for the four bacteria, these dissolved compounds do not affected 

directly the bacteria. 

As the four bacteria tested in this work are all multi-resistant to antibiotics it 

was tested the aPDT in the presence of antibiotics in order to understand if a 

synergistic effect of aPDT and antibiotics could explain the stimulation of aPDT in 

sewage waters containing several families of antibiotics. Being the main target of aPDT 

the external structures of the bacteria, cell membrane and cell wall, are destabilized 

allowing an easier enter of the antibiotics into the resistant cells (inhibiting for instance 

protein synthesis that can be the antibiotic target, like for chloramphenicol) and, 

naturally, improving the action of antibiotics which have the external structures as its 

target (like for ampicillin). By this way, the antibiotic effect can be also stimulated. This 

synergistic effect between aPDT and antibiotics was already detected by Malik and 

Nitzan (1995) for the inactivation of both Gram-positive multi-resistant bacteria (S. 
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aureus) and Gram-negative multi-resistant bacteria (E. coli) and for the disruption of S. 

aureus biofilms (Di Poto et al., 2009). 

On the other hand, the porphyrin and the antibiotic can be combined to form 

a new molecule that acts as a truly new antibacterial. This hypothesis is supported by 

Xing et al. (2011) who developed a vancomycin-porphyrin conjugate with enhanced 

properties in the photoinactivation of vancomycin-sensitive and vancomycin-resistant 

enterococci. 

The results of this study showed that the photodynamic activity combined 

with antibiotics, lead to a higher inactivation of E. coli than aPDT alone. With 32 µg mL-

1 and 16 µg mL-1 of ampicillin it was obtained a greater inactivation with the 

combination of aPDT and antibiotics. This effect was not observed when 8 µg mL-1 of 

antibiotic was used. For the tested concentration of chloramphenicol (32 µg mL-1) the 

efficiency of the bacterial inactivation was also increased after the photoinactivation 

treatment. However, at this moment it is not yet possible to discriminate between the 

two hypotheses, synergistic effect or the formation of a new molecule. Nevertheless, 

the results of this study suggest that porphyrins can be exploited to increase the 

efficacy of antibiotics, and to reduce the dosages of antibiotic concentration needed to 

combat infections. 

As sewage waters have high concentrations of detergents and these chemicals 

are used in laboratory to lise bacterial cells due to their high content in lipids in 

membranes it was also tested the aPDT in the presence of SDS in order to explain the 

different efficiency of aPDT in sewage waters and in PBS. The difference between aPDT 

alone and in combination with SDS was however not significant (p >0.05). This means 

that the effect of the SDS on the bacterial external structures is not enough, but the 

effect of 4 mM of SDS was similar (data not shown), or that the effect of aPDT on the 

external structures is enough to destabilize the bacterial cells and the effect of the SDS 

is, by this way, masked. Other possible explanation is the potential interaction of the 

SDS with the porphyrin. Some dyes may form dye-rich premicellar aggregates in dilute 

surfactant solutions, detected by modified absorption spectra for aggregated dyes 

when compared with monomeric dyes. Surfactant-dye interaction is common for 

oppositely charged dye-detergent pairs (Barber et al., 1991) 
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From the data obtained in this study, it can be concluded that aPDT has the 

potential to be an effective alternative for the treatment of multidrug-resistant 

infections and can be combined with antibiotics to enhance its effectiveness. 
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